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Abstract. The present paper develops a probabilistic model to cluster the nodes of a

dynamic graph, accounting for the content of textual edges as well as their frequency. Ver-

tices are clustered in groups which are homogeneous both in terms of interaction frequency

and discussed topics. The dynamic graph is considered stationary on a latent time interval

if the proportions of topics discussed between each pair of node groups do not change in

time during that interval. A classification variational expectation-maximization (C-VEM)

algorithm is adopted to perform inference. A model selection criterion is also derived to

select the number of node groups, time clusters and topics. Experiments on simulated data

are carried out to assess the proposed methodology. We finally illustrate an application to

the Enron dataset.

Keywords. Dynamic random graph, model based clustering, stochastic block model,

non homogeneous Poisson process, topic modeling, latent Dirichlet allocation.

1 Introduction

One of the main goals in network analysis consists in clustering the nodes of a graph into

groups of homogeneous interactivity behavior. The clustering techniques can be used to
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study various types of data recorded, namely the presence/absence of interactions between

nodes, the frequency of such interactions, the number of neighbors of nodes, etc. However,

the increasing volume of communication in social networks such as Linkedin, Twitter and

Facebook, has being motivating researches on new techniques accounting for both the

graph connectivity and the textual contents on the edges. When dealing with time evolving

networks, it is of interest to be able to detect deep changes in the graph structure (structural

changes) that can affect either the groups composition or the way existing groups interact.

As shown in this paper, a joint analysis of both the text contents and the interaction

dynamics can provide important insights.

1.1 Statistical approaches for dynamic network analysis

The interactions between nodes are assumed to occur over the time interval [0, T ], each

interaction being represented by a triplet (i, j, u) if i connects with j at time u ≤ T . Such

datasets are considered in Guigourès et al. (2012, 2015); Corneli et al. (2017) to develop

probabilistic models to group the vertices into time invariant groups and to detect change

points in the graph structure.

Although this continuous time approach has the advantage of preserving time infor-

mation (e.g. the exact order in which interactions occur), statistical models in dynamic

network analysis are usually in discrete time: a time partition up to time T is considered

and interactions are aggregated on the time intervals of such partition to obtain a sequence

of static graphs. In the binary case, for example, two nodes are connected if an interaction

between them occurs in the corresponding time frame. Notice that, following this approach,

a dynamic graph is synonymous of sequence of static graphs. In such a framework, several

clustering methods have been proposed, based on the stochastic block model (SBM, Wang

and Wong, 1987; Nowicki and Snijders, 2001). This model assumes that the vertices are
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clustered in hidden groups and that the probability of interactions between two nodes only

depends on the clusters they belong to. Yang et al. (2011) proposed a dynamic extension of

SBM, allowing nodes to switch from their cluster at time t to another cluster at time t+ 1,

according to a transition probability matrix. Hence, the stochastic process that assigns

one node to a group, at each time step, is an homogeneous Markov chain. An alterna-

tive approach, based on non-homogeneous Markov chains is proposed in Xu and Hero III

(2013). The two approaches described so far are generalized in Matias and Miele (2016).

Moreover, in their paper, they also show that restrictions on the connectivity behaviour of

groups are needed to ensure parameter identifiability. Two dynamic extensions of SBM,

relying on conditional non-homogeneous Poisson processes (NHPPs) were independently

developed by Matias et al. (2015) and Corneli et al. (2016a). The former introduced condi-

tionally independent NHPPs to count interactions between all pair of nodes in a dynamic

graph. Nodes are clustered in hidden, not time-varying groups and the intensity functions

of the NHPPs only depend on the groups of the corresponding pair of nodes. The authors

relied on a variational expectation-maximization algorithm (VEM) to cluster vertices and

proposed two non parametric techniques to estimate the intensity functions of the NHPPs.

In order to avoid over-fitting problems, a further hypothesis is introduced in Corneli et al.

(2016a). They assume that the Poisson intensity functions associated with each pair of

nodes are piecewise constant on hidden time clusters that are common to the whole graph.

In that paper, the inference procedure to cluster both nodes and time intervals relies on

a greedy maximization of the exact-ICL (see Biernacki et al., 2000; Côme and Latouche,

2015). It also allows them to select the number of clusters and time clusters.

We finally review some important contributions to cluster analysis (and sometimes

change point detection) in dynamic graphs based on probabilistic models alternative to

SBM. The dynamic random subgraph model (dRSM, Zreik et al., 2016) extends the RSM

model (Jernite et al., 2014) to uncover time varying clusters of nodes within subgraphs
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provided a priori. The generalized hierarchical random graph model (GHRG, Peel and

Clauset, 2014) decomposes the vertices of a graph into a series of nested groups, whose

relationships are represented in a dendrogram where the original nodes are the leaves and

the probability of interaction between two nodes is located at their lowest common an-

cestor. Moreover, the authors developed a statistical test to detect structural changes in

the dynamic network based on a sliding window of fixed length and the posterior Bayes

factor (Aitkin, 1991). The temporal exponential random graph model (TERGM) of Han-

neke et al. (2010) generalizes the exponential random graph model (ERGM) (see Robins

et al., 2007, for instance), which is often considered in real applications. In this framework,

the evolution of the graph snapshots is modeled through a Markov chain whose transition

probabilities depend on some user-defined functions. A similar technique is adopted by

Krivitsky and Handcock (2014) who introduced an hypothesis of separability (i.e. condi-

tional independence) between appearing and disappearing connections in two consecutive

snapshots of a dynamic graph. This assumption justifies the name STERGM (separable

TERGM) and allows the model to gain in ease of specification and tractability. Finally,

the popular latent position model (LPM, Hoff et al., 2002) and latent position cluster

model (LPCM, Handcock et al., 2007) were also extended by Sarkar and Moore (2005);

Friel et al. (2016); Sewell and Chen (2015, 2016) to deal with dynamic, binary or weighted

interactions. In a recent work, Durante et al. (2016) allow the node coordinates to evolve

in continuous time, via nested Gaussian processes, in order to account for non stationarity

in real networks.
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1.2 Statistical approaches for the joint analysis of texts and net-

works

Among probabilistic methods for text analysis, the latent Dirichlet allocation (LDA, Blei

et al., 2003) is quite popular. The basic idea of LDA is that documents are represented

as random mixtures over latent topics, where each topic is characterized by a distribution

over words. The topic proportions are assumed to follow a Dirichlet distribution. The

author-topic (AT, Steyvers et al., 2004; Rosen-Zvi et al., 2004) and the author-recipient-

topic (ART McCallum et al., 2005) models partially extend LDA to deal with textual

networks. Although providing authorships and information about recipients, these models

do not account for the graph structure, e.g. the way vertices are connected. A first attempt

to take into account the graph structure, along with the textual content of edges is due to

Zhou et al. (2006). The authors propose two community-user topic (CUT) models: CUT1,

modeling the communities based on the graph structure only and the CUT2, modeling the

communities based on the textual information alone. More recently, Pathak et al. (2008)

extended the ART model by introducing the community-author-recipient-topic (CART)

model. In this context, authors and recipients are assigned to latent communities and they

are clustered by CART based on homogeneity criteria, both in terms of graph structure

and textual content. Interestingly, the nodes are allowed to belong to multiple commu-

nities and each pair of nodes is associated with a specific topic. Although flexible, the

models illustrated so far rely on Gibbs sampling for the inference procedure, which can be

prohibitive when dealing with large networks. An alternative model, that can be fitted via

variational EM inference, is the topic-link LDA (Liu et al., 2009) performing both com-

munity detection and topic modeling. This model employs a logistic transformation based

on topic proportions as well as author latent features. A family of 4 topic-user-community

models was proposed by Sachan et al. (2012). These models, accounting for multiple com-
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munity/topic memberships, discover topic-meaningful communities in graphs with different

types of edges. This is of particular interest in social networks like Twitter where different

types of interactions exist: follow, tweet, re-tweet, etc.

In order to overcome the limitations of previous methods in terms of scalability and

flexibility, Bouveyron et al. (2016) proposed the stochastic topic block model (STBM) along

with an inference procedure. This approach can exhibit node partitions that are meaningful

both regarding the graph structure and the topics, in directed and undirected graphs. The

graph structure analysis relies on SBM, allowing the model to recover a large variety of

topological structures (see Latouche et al., 2012, for SBM clustering properties) whereas

the textual analysis relies on LDA, allowing the model to characterize the construction of

documents. The inference procedure is based on an original classification variational EM

algorithm.

1.3 Goals and outline of this paper

In this paper, we aim at analyzing a dynamic graph, i.e. a sequence of static graphs, where

interactions between nodes involve text data. The starting point is the STBM model of

Bouveyron et al. (2016) and we extend it to the dynamic framework. Data are aggregated

over time intervals defined at hand and clusters of time intervals with specific parameters are

introduced in the graphical model. An inference procedure is derived allowing to retrieve

clusters of nodes with homogeneous connection profiles involving both the interactions

patterns and the topics discussed. The procedure also allows us to uncover clusters of time

intervals. Finally, a model selection criterion is developed.

The model proposed, called dSTBM, is introduced in Section 2. The model inference

and model selection are discussed in Section 3. Section 4 focuses on experiments on sim-

ulated and real data to highlight the main features of the proposed approach (model and
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inference).

2 The dynamic STBM (dSTBM)

In the first part of this section we detail a generative model for the interactions between

nodes of a dynamic graph. Then, in the second part, we describe a generative model for

the textual content associated with graph edges. The last part of this section links the

proposed methodology to the existing literature.

2.1 Dynamic modeling of edges

A dynamic graph consisting in instantaneous interactions between M nodes, over the time

interval [0, T ], is considered. Interactions are directed and self loops are not allowed. In a

block modeling perspective, nodes are assumed to belong to Q hidden groups A1, . . . ,AQ,

whose number has to be estimated (see Section 3). Let Y be an hidden M -vector de-

noting node memberships (Yi = q iff node i is in cluster Aq). A multinomial probability

distribution is attached to Y

p(Y |ρ) =

Q∏
q=1

ρ|Aq |
q ,

where ρq := P{Yi = q},
∑Q

q=1 ρq = 1 and |Aq| is the number of nodes in cluster Aq. In

the following, the zero-one notation (Yiq = 1 if node i is in cluster Aq, zero otherwise) will

be used interchangeably, when no confusion arises. Interactions from node i to node j are

assumed to be counted by a non homogeneous Poisson process (NHPP) {IDij(t)}t≤T whose

intensity function, λij(t), positive and integrable on [0, T ], only depends on the clusters of

the two nodes

IDij(t)|YiqYjr = 1 ∼ P
(∫ t

0

λqr(u)du

)
,
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for t ≤ T . The M × (M − 1) NHPPs, associated with all different pairs (i, j), are assumed

to be independent conditionally on Y .

As in Corneli et al. (2016a), we switch to a discrete time framework (see Section 1.1)

introducing a partition of the interval [0, T ] in U subintervals, Iu := [tu−1, tu[, where

0 = t0 < t1 < · · · < tU = T. (1)

The increments of each counting process on the considered time partition can be computed

Diju := IDij(tu)− IDij(tu−1), ∀(i, j, u) (2)

and stored in the M ×M × U tensor D = {Diju}i,j,u. Hence, we focus on the number of

interactions from i to j taking place over the time interval Iu. The time intervals I1, . . . , IU

are assigned to L disjoint hidden time clusters C1, . . . , CL whose number has to be estimated.

Hence, each cluster contains a certain number of time intervals, not necessarily adjacent and

an hidden U -vector X is introduced to label memberships to time clusters: Xu = l if and

only if Iu belongs to cluster Cl. We stress that the time intervals of the user defined partition

(1) are known whereas the time clusters are not observed and have to be estimated. Then,

X is assumed to follow a multinomial distribution

p(X|δ) =
L∏
l=1

δ
|Cl|
l ,

where δl := P{Xu = l},
∑L

l=1 δl = 1 and |Cl| denotes the number of time intervals in Cl.
The following assumption is made: the intensity functions are stepwise constant on each

time cluster Cl, such that

Diju|YiqYjrXul = 1 ∼ P(∆uλqrl),

where ∆u denotes the size of Iu. In the rest of this paper, the grid in (2) is assumed to

be regular to simplify the notation. This means that ∆u = ∆ and the time intervals {Iu}u
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have a constant size. It is also possible to consider intervals with different sizes as is Corneli

et al. (2015). A Q×Q×L tensor Λ = {λqrl}q,r,l is finally introduced and the complete-data

likelihood of the model described is given by

p(D, Y,X|Λ, ρ, δ) = p(D|Y,X,Λ)p(Y |ρ)p(X|δ), (3)

where the random vectors Y and X are independent and

p(D|Y,X,Λ) ∝
Q∏
q,r

L∏
l

(
∆λqrl

)Sqrl exp(−∆λqrlPqrl), (4)

with

Sqrl : =
M∑
j 6=i

U∑
u=1

YiqYjrXulDiju

Pqrl : =
M∑
j 6=i

U∑
u=1

YiqYjrXul.

(5)

Notice that ∆ is a time scale factor and can be set equal to one without loss of generality,

indeed when ∆ 6= 1, we can safety define λ̃qrl = ∆λqrl and reduce to the previous case.

2.2 Dynamic modeling of documents

The model described in the previous section can easily be extended to deal with textual

communication networks, by assuming that a directed interaction characterizing the pair

(i, j) corresponds to a document sent from i to j. With the previous notations, Diju is

the number of documents sent from i to j over the time interval Iu and more generally

IDij(t) is the number of documents sent from i to j up to time t. The documents counted

by Diju are considered as a unique document obtained by concatenation and Niju denotes

the number of words of such document. In the following, a dictionary containing V words
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will be considered and each word in a document is extracted from the dictionary: W iju
n

will denote the n-th word (in the aggregated document) sent from i to j during the time

interval Iu and, using a zero-one notation, W iju
nv = 1 if the word W iju

n is the v-th in the

dictionary, 0 otherwise.

In line with the LDA model (Blei et al., 2003), a list of K topics is introduced and

each word of a document is associated with one topic through a latent Niju-vector, noted

Ziju. In more details, Ziju
n = k if and only if the word W iju

n is associated with the k-th

topic. For each pair of clusters (Aq, Ar) and a time cluster Cl, a vector of topic proportions

θqrl := (θqrlk)k≤K is assumed to follow a Dirichlet distribution

θqrl ∼ Dir(α = (α1, . . . , αK)),

such that
∑K

k=1 θqrlk = 1. Hence, the n-th word in the document associated with the

triplet (i, j, Iu), namely W iju
n , is extracted from the latent topic k according to the following

conditional probability distribution

P(Ziju
nk = 1|D, Y,X, θ) =

Q∏
q,r

L∏
l

θ
YiqYjrXul

qrlk

corresponding to a multinomial distribution of parameter θqrl. The following full conditional

distribution is obtained

p(Z|D, Y,X, θ) =

Q∏
q,r

L∏
l=1

K∏
k=1

θ
∑M

j 6=i

∑U
u=1

∑Niju
n=1 YiqYjrXulZ

iju
nk

qrlk , (6)

where the exponent counts the total occurrences, in the dynamic graph, of words associated

with the k-th topic, sent from cluster Aq to cluster Ar, during the time cluster Cl and

Z := (Ziju)i,j,u. Given Z, the word W iju
n is finally assumed to be drawn from a multinomial

distribution

W iju
n |Z

iju
nk = 1 ∼M(1, βk = (βk1, . . . , βkV )).
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Hence, β denotes a K × V matrix whose k-th line is βk. Notice that, unlike the topic

proportions θ, the matrix β depends neither on node clusters nor on time clusters. In

particular, this means that the mean number of occurrences of each word in each topic is

time invariant. Denoting by W = (W iju)i,j,u the whole set of documents appearing in the

dynamic network, the following conditional distribution is obtained by independence

p(W |Z,D, β) =
K∏
k=1

V∏
v=1

β
∑M

j 6=i

∑U
u=1

∑Niju
n=1 W iju

nv Z
iju
nk

kv , (7)

where the exponent counts the total occurrences, in the dynamic graph, of the v-th word

of the dictionary associated with the k-th topic.

The complete-data conditional distribution for the textual part of the model is finally

obtained by conditioning

p(W,Z, θ|D, Y,X, β) = p(W |Z,D, β)p(Z|D, Y,X, θ)p(θ)

and the joint distribution of the whole dSTBM model is

p(D, Y,X,W,Z, θ|Λ, ρ, δ, β) = p(W,Z, θ|D, Y,X, β)p(D, Y,X|Λ, ρ, δ).

A graphical representation of the dynamic STBM can be seen in Figure 1.

2.3 Link with existing models

First of all, let us clarify the relation between dSTBM and LDA. Assuming that Y and X

are known, the set of documents W can be reorganized such that W = (W̃qrl)qrl where

W̃qrl = {W iju|YiqYjrXul = 1}

is the set of all documents sent from any vertex in Aq to any vertex in Ar, during the time

cluster Cl. By marginalization over Z, it can easily be seen that each word W iju
n has a
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Figure 1: Graphical representation of the dynamic STBM model (dSTBM).

mixture distribution over topics which only depends on the clusters of i and j and the time

cluster of Iu. As a consequence, all words in W̃qrl share the same mixture distribution over

topics and removing the knowledge of (q, r, l), W̃qrl can be seen as one of Q2×L independent

documents. This means that, if the pair (X, Y ) is known, the generative model described

so far is the one of a LDA model with Q2 × L independent documents. Each documents

has its own vector of topic proportions and shares a matrix β of word probabilities.

More generally we can highlight the following relations between dSTBM and some of

the existing models mentioned so far.

1. Single time cluster (L = 1). In this case both Λ and θ are constant in time and

dSTBM reduces to STBM (Bouveyron et al., 2016).

2. Single topic (K = 1). When a single topic is used in the whole network, there is

no additional information that can be extrapolated relying on text analysis. In this
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case, dSTBM reduces to the dSBM model (Corneli et al., 2016a).

3. Single cluster (Q = 1). When all vertices are clustered in a single group, the

set of documents can be reorganized as W = (W̃l)l≤L corresponding to L documents.

Each one corresponds to a time cluster and has its own topic proportions (θl)l≤L. This

could be seen as an original dynamic extension of the LDA model (Blei et al., 2003) in

which the topic proportions evolve in time. From a generative point of view, we stress

that only L i.i.d. topic proportion vectors, θ1, . . . , θL, are generated. With respect to

the original time partition (1), all documents sent in time intervals belonging to the

same time cluster share the same (previously) extracted topic proportion parameter.

Notice that the dynamic approach described so far is completely different from the

one adopted by Blei and Lafferty (2006). In that paper, sequentially organized corpus

of documents are taken into account and both the Dirichlet parameter (α) and the

topic parameter (β) change in time according to (unit-root) autoregressive models

combined with multinomial-logit probabilities. Hence, from a generative point of

view, at each time step t, a new vector of topic proportions is drawn based on αt.

4. Case Q = L = 1. In line with the previous case, the set W can now be considered

as a single document with its own topic proportions. The dSTBM model reduces in

this case to the LDA model.

5. Case K = L = 1. In presence of a single topic discussed in the whole network (i.e.

text analysis is useless), with Λ constant in time, the dSTBM model reduces to SBM

with weighted Poisson distributed links (see e.g. Nouedoui and Latouche, 2013).
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3 Estimation

This section focuses on the inference procedure adopted to learn the model parameters and

provide estimates for X, Y and Z. In the last part of the section, a model selection criterion

is developed to select Q, L and K.

3.1 Variational inference

Let us assume for now that the number of clusters (Q), time clusters (L) and the number

of topics (K) are known.

Consider the following complete-data integrated log-likelihood

log p(D, Y,X,W |Λ, ρ, δ, β) = log
∑
Z

∫
θ

p(D, Y,X,W,Z, θ|Λ, ρ, δ, β)dθ. (8)

We aim at maximizing it with respect to the model parameters (Λ, ρ, δ, β) and the hidden

label vectors (Y,X). Unfortunately, (8) is not tractable due to the sum over all possible

values of Z inside the logarithm. Nonetheless, a variational decomposition of the above

log-likelihood can be employed to obtain a lower bound which can be directly maximized.

Adopted in Blei et al. (2003) and Bouveyron et al. (2016), this approach gives

log p(D, Y,X,W |ζ) = L(R(·);D, Y,X,W, ζ)

+ KL(R(·)||p(·|D, Y,X,W, ζ))
(9)

where ζ := {Λ, ρ, δ, β}, R(·) is a variational distribution over the pair (Z, θ),

L(R(·);D, Y,X,W, ζ) := ER(Z,θ)

[
log

p(D, Y,X,W,Z, θ|ζ)

R(Z, θ)

]
(10)

and KL(·) denotes the Kullback-Leibler divergence between the approximate and the true

posterior distribution of the pair (Z, θ) given the data and the model parameters

KL(R(·)||p(·|D, Y,X,W, ζ)) := −ER(Z,θ)

[
log

p(Z, θ|D, Y,X,W, ζ)

R(Z, θ)

]
.
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Notice that, since the left hand side of (9) does not depend on R(·), when maximizing the

lower bound L with respect to R(·), the KL divergence is necessarily minimized. When

performing variational inference, a common choice to approximate the true posterior distri-

bution of latent variables (e.g. Daudin et al., 2008), consists in assuming that R(·) factorizes

over the latent variables. In this case, this leads to

R(Z, θ) = R(Z)R(θ) = R(θ)
M∏
j 6=i

U∏
u=1

Niju∏
n=1

R(Ziju
n ).

Hence, since the integrated likelihood in (8) cannot be directly maximized, the idea is

to replace it with the lower bound L and maximize it with respect to the model parameters

(Λ, π, δ, β), the approximate posterior distribution R(Z, θ) in the above equation and the

hidden vectors Y and X. Furthermore, as it can be seen in the graphical model in Figure

1, the full joint distribution of the dSTBM model can be decomposed into two parts. The

component represented by the red rectangle does not depend on the pair (Z, θ). As a

consequence, the lower bound defined in (10), can be split into two parts also

L(R(·);D, Y,X,W, ζ) = L̃(R(·);D, Y,X,W, β) + log p(D, Y,X|Λ, ρ, δ), (11)

where

L̃(R(·);D, Y,X,W, β) := ER(Z,θ)

[
log

p(W,Z, θ|D, Y,X, β)

R(Z, θ)

]
. (12)

Note that the joint distribution p(D, Y,X|Λ, ρ, δ) appeared for the first time in (3) and

corresponds to the dynamic SBM part of the model. Furthermore, given Y and X, the

first term on the right hand side of (11) only involves the pair (R(·), β) while the second

term only involves (Λ, ρ, δ). Hence, the maximization algorithm that is detailed in the next

section consists in alternating the following two steps, up to convergence

1. VEM step. For a given pair (Y,X), the lower bound L is maximized with respect to

the pair (R(·), β), involving L̃ and the triplet (Λ, ρ, δ) involving the dSBM complete-

data likelihood.
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2. Classification step. The lower bound L is maximized in a greedy fashion with

respect to the pair (Y,X).

This algorithm, alternating a variational EM routine with a clustering step, was first used in

Bouveyron et al. (2016) and is built upon the Classification-EM (CEM) algorithm (Celeux

and Govaert, 1991).

3.2 Maximization of the lower bound

In this section, the updating formulas for R(Z, θ) and the model parameters (Λ, ρ, δ, β)

are provided by the following propositions. At the end of the section, we discuss the

maximization with respect to the pair (Y,X).

Maximization of L with respect to R(Z, θ). The updating formulas corresponding

to the E step of the VEM algorithm are given in the following two propositions.

Proposition 1. The VEM update step for distribution R(Ziju
n ) is given by

R(Ziju
n ) =M(Ziju

n ; 1, φijun = (φijun1 , . . . , φ
iju
nK))

where

φijunk ∝

(
V∏
v=1

βW
iju
nv

kv

)
Q∏

q,r=1

L∏
l=1

exp

(
ψ(γqrlk)− ψ(

K∑
k′=1

γqrlk′)

)YiqYjrXul

, ∀(n, k)

where φijunk is the approximate posterior probability of word W iju
n being in topic k and ψ(·)

denotes the digamma function.

Proof. In Appendix A.1.
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Proposition 2. The VEM update step for distribution R(θ) is given by

R(θ) =

Q∏
q,r=1

L∏
l=1

Dir(θqrl; γqrl = (γqrl1, . . . , γqrlK))

where

γqrlk = αk +
M∑
j 6=i

U∑
u=1

Niju∑
n=1

YiqYjrXulφ
iju
nk , ∀(q, r, l).

Proof. In Appendix A.2

Maximization of L with respect to the model parameters. The following propo-

sition provides the estimates of the model parameters (β,Λ, ρ, δ) obtained through maxi-

mizing the lower bound in (10). The lower bound L̃ in (12) is computed in the appendix.

Proposition 3. The estimates of (β,Λ, ρ) and δ are given by

βkv ∝
M∑
j 6=i

U∑
u=1

Niju∑
n=1

W iju
nv φ

iju
nk , ∀(k, v) (13)

λqrl =
Sqrl
Pqrl

, ∀(q, r, l) (14)

ρq ∝ |Aq|, ∀q, (15)

δl ∝ |Cl|, ∀l, (16)

where Sqrl and Pqrl were defined in (5).

Proof. In Appendix A.4.

Maximization of L with respect to the label vectors Other parameters being fixed,

we now attempt to maximize L with respect to the pair (Y,X). Since this combinatorial

problem cannot be attacked directly, due to the huge number of cluster assignments to
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test (QMLU), a greedy search strategy is employed to look for a local maximum. Greedy

search methods are quite popular in the network analysis literature. They are employed

for community detection problems (Newman and Girvan, 2004; Blondel et al., 2008) or

more general clustering purposes, either in static (Côme and Latouche, 2015) or dynamic

(Corneli et al., 2016b) graphs.

Consider Y at first and assume that nodes are clustered in Q initial groups (see Sec-

tion 3.3 for more details about initialization). If node i is currently in cluster Aq, the

algorithm assesses the increase/decrease in the lower bound L due to switching node i to

the cluster Ar for each r 6= q. The switch (if any) leading to the highest increase of the

lower bound is actually performed and the entire routine is iteratively applied to all nodes

until no further increase of L is possible. The maximization with respect to X is performed

similarly: nodes are replaced by time sub-intervals Iu and node clusters Aq by time clusters

Cl.
As previously explained, a greedy search is never guaranteed to converge to a global

maximum. Hence a good strategy consists in performing several independent greedy maxi-

mizations, randomizing over the node/time intervals moving order and finally choosing the

values of (Y,X) leading to the highest lower bound.

3.3 Further issues

Initialization. Assuming that Q,L and K are known, the C-VEM algorithm still needs

some initial values of (Y,X), in order to provide estimates for the model parameters and

the variational posterior distribution R(Z, θ). Since the EM-like algorithms are only guar-

anteed to converge to local optima (see e.g. Wu, 1983) it is crucial to provide them with

several initializations. The approach proposed in this paper relies on a spectral clustering

algorithm (von Luxburg, 2007) applied to proper similarity matrices. The initialization of

18



Y is considered at first. Recalling the definition of D = {Diju}iju, we proceed as follows

1. The VEM algorithm for the LDA model (Blei et al., 2003) is applied to the collection

of documents exchanged from all pair of nodes in the whole time horizon. Note that

these documents correspond to the entries of D and the VEM algorithm provides the

majority topic discussed in each document. Hence an M ×M ×U tensor MT (main

topic) is obtained, such that MTiju = k if and only if k is the main topic discussed

in the document sent form i to j, during the time interval Iu.

2. An M ×M similarity matrix Ξ is obtained as follows

Ξ(i, j) =
U∑
u=1

M∑
h=1

δ(MTihu = MTjhu)DihuDjhu +
U∑
u=1

M∑
h=1

δ(MThiu = MThju)DhiuDhju.

The rationale behind the above equation is quite intuitive: if i and j have a common

neighbour and they talk with it about the same (main) topic, then the similarity

between i and j increases. Two terms appear on the right hand side of the equality

because we are dealing with directed graphs.

3. The spectral clustering algorithm is applied to the graph Laplacian associated with

matrix Ξ. This allows us to cluster nodes in Q groups and to produce an initial

estimate of Y .

The initialization of X is performed similarly. A U×U similarity matrix Σ is built such

that two time intervals are similar if they share the same majority topic discussed in the

whole network

Σ(u, v) =
M∑
i=1

M∑
j=1

δ(MTiju = MTijv)DijuDijv

for all pairs of time intervals (Iu, Iv). The spectral clustering algorithm if finally applied to

the graph Laplacian associated with the similarity matrix Σ to produce an initial estimate

of X.
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Model selection. So far, the parameters Q,L and K were assumed to be known but in

real world datasets this assumption is fairly unrealistic. In order to estimate these parame-

ters, we rely on the ICL criterion (Biernacki et al., 2000) to approximate the complete-data

integrated log-likelihood in (8). This approach extends the model selection criterion pro-

posed in Bouveyron et al. (2016) to the dynamic framework of the present paper.

Proposition 4. An integrated classification criterion (ICL) for the dSTBM is

ICLdSTBM = L̃(R(·);D,Y,X,W, β)− K(V − 1)

2
log(LQ2) + max

Λ,ρ,δ
log p(D,Y,X|Λ, ρ, δ)

− LQ2

2
logMU(M − 1)− Q− 1

2
logM − L− 1

2
logU.

(17)

Proof. In Appendix A.5.

4 Numerical Experiments

In this section, both dSTBM and the ICL criterion introduced above are tested on sim-

ulated data. In order to highlight some peculiarities, dSTBM is tested in three different

scenarios and compared with four other models: dSBM (Corneli et al., 2016a), STBM

(Bouveyron et al., 2016), SBM using the mixer R package https://cran.r-project.

org/web/packages/mixer/index.html and LDA using the topicmodels R package https:

//cran.r-project.org/web/packages/topicmodels/index.html

4.1 Simulation setups

In the following simulation setups, the parameter αk is assumed to be equal to 1, inducing a

uniform distribution over the topic proportions θqrl. In each setup, 50 dynamic graphs are

independently simulated and the messages associated with graph edges are sampled from

four texts from BBC news. One text is about the birth of Princess Charlotte, the second

20
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(a) A. First time cluster (C1).
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(b) A. Second time cluster (C2).
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(c) B. First time cluster (C1).

 

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d) B. Second time cluster (C2).
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(e) C. First time cluster (C1).
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(f) C. Second time cluster (C2).

Figure 2: Dynamic graphs simulated according to three different setups (A,B and C). The

graph on the left (respectively right) hand side of each row is obtained through aggregation

of the interactions on the first (second) time cluster.
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is about black holes in astrophysics, the third one focuses on UK politics and the fourth

on cancer diseases. Each message, associated with one directed interaction, is made of 75

words. We finally stress that, the message sampling procedure adopted in the following

scenarios is not exactly the one described in the previous sections for dSTBM. Each setup

is detailed in the following.

Scenario A. Figures 2a and 2b. Nodes are grouped in three clusters and time intervals in two

time clusters. During the first time cluster, the graph exhibits a clear community

structure: interactions within groups are more frequent than interactions between

groups. An opposite non-assortative structure characterizes the graph during the

second time cluster: interactions between groups are more frequent than interactions

within groups. Each group talks about a single topic and a fourth shared topic is

associated with the interactions between two different groups. In order to introduce

some noise, 10% of interactions within each group are (randomly) associated to the

shared topic. In this first scenario the topic proportions do not change in time.

Scenario B. In this second scenario, the dynamic graph maintains a persistent community struc-

ture, whereas a structural time change occurs in the topic proportions. Nodes are

grouped into two clusters and time intervals into two time clusters. Two topics are

taken into account, corresponding to two of the four texts from the BBC news. Dur-

ing the first time cluster, each community talks preferentially about the same topic

(in yellow, say T1) and a second topic T2 (green) is reserved to the interactions be-

tween communities (Figure 2c). During the second time cluster, the two topics have

the opposite role. Hence T2 is used for the intra-community interactions whereas T1

is discussed between members of different groups (Figure 2d). As in the previous

setup, 10% of interactions inside each group is (randomly) associated with the shared

topic to introduce some noise.
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Scenario C. This third scenario consists in a dynamic graph whose nodes are grouped into four

clusters. However, only two of these clusters are real communities, with actors talking

preferentially about a unique topic inside the community. The other two clusters form

a single community and the topic they discuss about is the only discriminant. Hence,

three topics are considered: two clusters use one topic (green), the other two clusters

use another topic (blue) and a third topic is used for communications between all

different groups (yellow). In order to induce a relevant time structure, the topics

used within groups change from a time cluster to another as illustrated in Figures 2e

and 2f.

A detailed description of each scenario can be seen in Table 1.

4.2 Benchmark results

The C-VEM algorithm for dSTBM was run on 50 simulated dynamic graphs in each sce-

nario. First, we focus on the clustering produced by the methodology when the numbers

of clusters Q, time clusters L and topics K are known. The adjusted rand index (ARI,

Rand, 1971) provides a measure of the accuracy of the realised clustering: it ranges from

0, corresponding to a very poor clustering, to 1, when the found partitions are the actual

ones. The clustering results for dSTBM, dSBM, and STBM can be seen in Table 2. The

clustering measure “edge ARI” is equal to one when the main topic used in each exchanged

document is correctly retrieved by the model. We recall that one document is uniquely

associated with a triplet (i, j, Iu) in the dynamic graph: source node, destination node and

time interval. Hence, the number of exchanged documents coincides with the total degree

of the simulated dynamic graph. It follows that the edge ARI defined so far is not avail-

able for both dSBM and STBM: the former does not deal with topics, the latter cannot

recover information about the interactions taking place at time Iu since this information
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Scenario A B C

M 100

U 100

Q 3 2 4

L 2

K 4 2 3

ρ (1/Q, . . . , 1/Q)

δ (1/L, . . . , 1/L)

Λ on C1

λqq1 = 0.03

λqr1 = 0.0075 r 6= q

λqq1 = 0.03

λqr1 = 0.0075 r 6= q

λqq1 = λ141 = λ411 = 0.03

λqr1 = 0.0075 otherwise

Λ on C2

λqq2 = 0.0075

λqr2 = 0.03 r 6= q

λqq2 = 0.03

λqr2 = 0.0075 r 6= q

λqq2 = λ142 = λ412 = 0.03

λqr2 = 0.0075 otherwise

θ on C1


θ1111 = θ2212 = θ3313 = 1

θqr14 = 1 r 6= q

otherwise 0


θ1112 = θ2212 = 1

θqr11 = 1 r 6= q

otherwise 0



θ1112 = θ3312 = 1

θ2211 = θ4411 = 1

θqr13 = 1 r 6= q

otherwise 0

θ on C2


θ1121 = θ2222 = θ3323 = 1

θqr24 = 1 r 6= q

otherwise 0


θ1121 = θ2221 = 1

θqr22 = 1 r 6= q

otherwise 0



θ1121 = θ3321 = 1

θ2222 = θ4422 = 1

θqr23 = 1 r 6= q

otherwise 0

Table 1: Parametrization in different setups.

is definitely lost, due to aggregation. However, STBM can cluster the edges of the aggre-

gated graph. Namely, it estimates the main topic used by each pair of nodes during the

whole time horizon. Hence, the edge ARI corresponding to STBM can be calculated by

assigning to all the edges in the dynamic graph associated with the pair (i, j) the main
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Setup A

Model node ARI time ARI edge ARI

dSTBM 0.99 (0.06) 1 (0) 0.99 (0.06)

dSBM 1 (0) 1 (0) -

STBM 1 (0) - 0.66 (0.21)

SBM 0.01 (0.06) - -

LDA - - 0.73 (0.20)

Setup B

Model node ARI time ARI edge ARI

dSTBM 1 (0) 1 (0) 1 (0)

dSBM 0.98 (0.03) 0.00 (0.01) -

STBM 0.5 (0.5) - 0.02 (0.03)

SBM 0.99 (0.04) - -

LDA - - 1 (0)

Setup C

Model node ARI time ARI edge ARI

dSTBM 1 (0) 1(0) 1 (0)

dSBM 0.67 (0.05) 0.00 (0.01) -

STBM 1 (0) - 0.70 (0.10)

SBM 0.65 (0.04) - -

LDA - - 0.69 (0.15)

Table 2: Clustering results for dSTBM, dSBM, STBM, SBM and LDA on 50 graphs simu-

lated according to the different setups. The true values of Q, L and K are assumed to be

known. The average ARI values are reported, with standard deviations into brackets.

topic estimated for that pair by STBM (in the aggregated graph).

Let us discuss the clustering results of the first setup A. Not surprisingly, dSTBM and
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dSBM have very similar performances and dSBM is slightly more accurate in clustering

nodes (ARI equal to 1 versus ARI equal to 0.99). This small difference however is not

very significant and can be explained by the different initializations adopted by the two

approaches. As mentioned above, in this scenario the proportion of assigned topics (θ) is

constant in time, hence the structural change in the dynamic graphs can be fully detected

by dSBM and the analysis of documents does not bring any further information. This is

the reason why the time ARI is equal to one for both the approaches: the time structure

can be recovered with or without the analysis of documents. Since STBM cannot deal

with dynamic graphs, the C-VEM algorithm for this model is run on the static graph

obtained by aggregating the interactions on the whole time horizon (September, 2001 -

January, 2002). Despite of the structural change (Figures 2a and 2b), the topics used for

communications within each community and between communities remain distinct on the

whole time horizon. This is the reason why STBM can correctly cluster nodes. Similarly

to STBM, the SBM model is run on the aggregated graph. Its performance is poor since

the community structure in C1 and the non-assortative structure in C2 cancel each other

out when aggregating interactions over time. Looking at the edge ARI, when aggregating

interactions over time information is lost: this explains the edge ARI of 0.66 for STBM. The

edge ARI is slightly better for LDA which is applied to the whole collection of documents

(there is no aggregation).

Consider now the second setup B. Since the topic proportions are the only time varying

parameter, dSBM cannot see any time cluster (null time ARI). Nonetheless, the persistent

community structure allows it to recover the actual node partition most of the time (node

ARI of 0.98). A similar result can be seen for SBM. Conversely, since each topic is alterna-

tively used for intra and inter community interactions (Figures 2c and 2d), STBM suffers

in recovering the actual node partition (node ARI of 0.5). As explained before, the LDA

model can be applied to the original set of documents and in this case, not particularly
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Scenario C, ICL (dSTBM, K = 3)

Q/L 1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 48 1 0 0 0

5 0 1 0 0 0 0

6 0 0 0 0 0 0

Table 3: Frequency of selections by ICL for dSTBM (Q,L,K) on 50 simulated graphs in

the third scenario C. The actual values of (Q,L,K) are (4, 2, 3), respectively. The true

value for K is always selected by ICL and it is not reported.

noised, it performs very well.

The last scenario C is the hardest for dSBM. As in the previous case, the topic propor-

tions are the only time varying parameter and the time clusters are not correctly detected

by the model (null time ARI). Moreover, two clusters form a single community (Figures 2e

and 2f) and they are only discriminated by the used topic. Hence the node ARI is never

higher than 0.7 for dSBM (and SBM too). Instead, in contrast with the previous scenario,

the inter-community topic (yellow) is never employed for intra-community interactions and

STBM can recover the actual node partition. Notice, however, that both STBM and LDA

are performing worse than dSTBM in clustering the edges.
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4.3 Model Selection

So far, the C-VEM algorithm for dSTBM was run on 50 simulated dynamic graphs for each

setup and the actual number of groups Q, time clusters L and topics K were assumed to be

known. In real applications, these three parameters must be estimated and this can be done

for dSTBM relying on the ICL model selection criterion developed in Proposition 4. In

terms of model selection, the third scenario C is by far the hardest to deal with, due to the

quite sophisticated dynamic graph structure. Hence, we focus on this setup to assess the

ICL criterion. The estimates of Q, L and K, provided by ICL for dSTBM, are illustrated in

Table 3. The actual number of topics (K = 3) is always detected by ICL and it is therefore

not reported in the table. Tables with K 6= 3 would be full of zeros. As it can be seen, the

actual values of Q and L are recovered in 48 out of 50 cases. Notice also that, when ICL

fails to recover the actual solution, it selects a model very close to the actual one.

5 Analysis of the Enron scandal

This last section focuses on the famous scandal involving the energy company Enron Cor-

poration. The scandal was publicized in October 2001. Two moths later, USA experienced

the largest bankruptcy failure up to that time. The first part of this section describes

the Enron data set we used, while the second part illustrates the results obtained through

applying the dSTBM model to the dataset.

5.1 Context and data

The Enron communication network is a popular data set containing all e-mail exchanges be-

tween 149 employees of the company. The original dataset is available at http://www.cs.

cmu.edu/~./enron/ and cover the time horizon 1999-2002. The time window considered
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in the present section spans from September, 3rd, 2001 to January, 28th, 2002, including

the following three key dates

1. September, 11th, 2001: the terrorist attacks to the Twin Towers and the Pentagon

(USA).

2. October, 31st, 2001: the Securities and Exchange Commission (SEC) opened an

investigation for fraud concerning Enron.

3. December, 2nd, 2001: Enron failed for bankruptcy, resulting in more than 4,000 lost

jobs.

The selected time window is partitioned in weekly subintervals, thus corresponding to

U = 21 weeks. As previously explained, the e-mails sent from i to j during each time

interval Iu (a week) are aggregated into a single document, obtained by concatenation.

Each document is preprocessed in a classical way: words are stemmed, less than three

characters words and stop words are removed, punctuation and numbers are ignored. Thus,

each week is associated with a graph snapshot and one directed edge from i to j corresponds

to the e-mails sent from i to j during the week. The whole dynamic graph is made of 4321

directed edges, corresponding to the same number of exchanged documents. The dictionary

associated to these documents contains 49,955 words.

5.2 Results

The VEM algorithm for dSTBM was run on this dataset for all values of Q,K and L

varying between 1 and 10. For each value of (Q,K,L) several initializations were tested

(see Section 3.3 for further details) and the clustering results associated with the highest

value of the ICL criterion were retained. The ICL finally selected nine topics (K = 9), four

time clusters (L = 4) and six node groups (Q = 6).
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Figure 3: The 20 most representative words for each topic.

Topics. First of all, we discuss is a few details some topics that play a crucial role in

the dynamic network, as detailed in the following. Figure 3 shows the most representative

words of each topic and can be used in the attempt to understand the main theme of each

topic.

a. Topic 1 is related to the California electricity crisis, in which Enron was involved and

which almost caused the bankruptcy of the SCE-corp (Southern California Edison

Corporation).

b. Topic 3 is a technical topic focusing on gas deliveries (mmBTU are British thermal

units).

c. Topic 4 seems to be related to Netco: a set of trading activities bought by the Swiss

bank UBS after the Enron bankruptcy.
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d. Topic 5 is related to a backup plan developed to face possible work stoppages. In fact,

some areas of the Enron Center North building were put aside for recovery purposes

and backup seats assignments were announced to employees in November 2001.

e. Topic 7 contains words like “afghanistan” and “taleban” and it is concerned with

Enron activities in Afghanistan: Enron and the Bush administration were suspected

to work secretly with Talebans before the 9/11 attacks.

f. Topic 8 seems to focus on TRV (trader report viewer), a project allowing traders to

share their reports about particular issues. For example, an e-mail dating November,

13, 2001 announced to several employees that a report on West NG (west Virginia

natural gas) prices was available. A “link from Excel” was provided in the e-mail.

g. Topic 9 seems to be related to the company trading activities, as the words “book”,

“transferring” and “bid week” suggest. The bid week, in particular, is the last week

of the month when producers try to sell their core production and consumers seek to

buy for their core natural gas needs for the upcoming month.

Time structure. In Figure 4, an histogram reports the frequency of exchanged e-mails

in the whole network, each rectangle covers one week. Rectangles/weeks of the same color

are assigned to the same time cluster by dSTBM. Notice that, although time intervals in

the same cluster do not have to be adjacent in dSTBM, the clustering reported in Figure

4 clearly detects four segments of adjacent time intervals and three corresponding change

points, one for each color switch. It is worth to notice that the last two change points occur

some days after the two key dates mentioned at the beginning of the present section and

they are represented in the figure by two vertical lines, blue and red, respectively.
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Figure 4: Time clustering results with dSTBM on the Enron data set (Sept. 2001 - Jan.

2002). The black vertical line marks the day September, 11, 2001, the blue vertical line

marks the day October, 31st, 2001 (investigation opened by the SEC), the red vertical line

marks the day December, 2nd, 2001 (Enron’s bankruptcy).

Nodes clustering. The main clustering results are summarized in Figure 5. Four graphs

are associated with the time clusters detected by the model. Each node in a graph corre-

sponds to a cluster of nodes and node sizes are proportional to group membership proba-

bilities ρ. The edge colors indicate the most discussed topics in the corresponding (group)

interactions (see also Figure 3). The larger the arrow is, the more frequent the respective

interactions are. Some remarks can be made by looking at this figure.

1. Consider Group 4 (pink), consisting of 32 agents (mainly vice presidents, CEOs and

managers). The topic used by this group for internal communications changes on

each time segment: topic 9 in time clusters 1 and 4, topic 7 in time clusters 2, topic

8 in time cluster 3.

2. It is interesting to observe that Topic 7 appears as a main topic in the network during
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the time cluster C2, starting on September, 24th, 2001, exactly two weeks after the

9/11 attacks.

3. Topic 5 is only used for communications between clusters during the time cluster C2.

Topic 5 (as well as Topic 7) is no longer a main topic during the other time clusters.

4. Group 6 (yellow), 18 persons, has a similar composition of Group 4. It is concerned

with Topic 1 during the first three time clusters and switches to Topic 4 after the

company bankruptcy, during the fourth segment.

5. Group 5 (red), 17 employees, looks like a real persistent community both in terms

of interactivity pattern and used topic. This group focuses during the whole time

horizon on Topic 3.

Finally, Figure 6 shows four graph snapshots associated with the Enron dataset. Each

snapshot is obtained by aggregating the interactions over the corresponding time cluster.

Nodes of the same color are assigned to the same cluster by the C-VEM algorithm and

edges of the same color are associated with the same majority topic on the considered time

cluster.

6 Conclusion

We proposed in this paper the dynamic stochastic topic block model (dSTBM), a new prob-

abilistic model for the clustering of both nodes and edges of a textual dynamic network.

Moreover, relying on an external time partition, our methodology allows one to uncover

time clusters during which the network is stationary both in terms interaction frequency

(between groups of nodes) and discussed topics. The inference procedure relies on a classi-

fication VEM approach and an ICL model selection criterion is derived in order to estimate
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the number of node groups, time clusters and discussed topics. Numerical experiments on

simulated data allowed us to highlight the main features of the proposed methodology,

which proves to generalize several existing approaches. Finally, the application of dSTBM

to the Enron communication network leaded to likely results.

Future researches could focus on a “clever” way to set a time partition, either including

this partition between the model parameters or adopting a data driven choice (as done by

Matias et al., 2015, for a dynamic SBM-like model). Alternatively, the dSTBM model could

be extended to deal with overlapping clusters, allowing individuals to belong to multiple

groups. In this context, a starting point could be the mixed memberships SBM (MMSBM,

Airoldi et al., 2008).
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(a) Time cluster C1. (b) Time cluster C2.

(c) Time cluster C3. (d) Time cluster C4.

Cl. 1

Cl. 2

Cl. 3

Cl. 4

Cl. 5

Cl. 6

Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

Topic 6

Topic 7

Topic 8

Topic 9

(e) Legend.

Figure 5: Summary of the interaction intensities (Λ, edge widths), group proportions (ρ,

node size) and main topic for group interactions (edge colors) during each time cluster.
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(a) Time cluster C1.

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

   

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 
 

 
   

 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

(b) Time cluster C2.

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

   

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 
 

 
   

 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

(c) Time cluster C3.

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

   

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 
 

 
   

 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

(d) Time cluster C4.

Figure 6: Clustering results with dSTBM on the Enron data set (Sept. 2001 - Jan. 2002).

Each graph corresponds to a time cluster.
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A Proofs

A.1 Proof of Proposition 1

Proof. The VEM update step for the distribution R(Zijun ), for all i, j, u and n, is given by

logR(Zijun ) = ER(Zri,j,u,n,θ)[log p(W |Z,D, β) + log p(Z|D,Y,X, θ)] + C

=

K∑
k=1

Zijunk

V∑
v=1

W iju
nv log βkv +

Q∑
q,r

L∑
l=1

YiqYjrXul

K∑
k=1

Zijunk Eθqrl [log θqrl] + C

=

K∑
k=1

Zijunk

(
V∑
v=1

W iju
nv log βkv +

Q∑
q,r

L∑
l=1

YiqYjrXul

(
ψ(γqrlk)− ψ(

K∑
k=1

γqrlk)

))
+ C,

(18)

where the expectation is taken with respect to the distribution R(Z, θ) conditional on Zijun to be fixed, C

includes all the terms not depending on Zijun and ψ(·) denotes the digamma function. The functional form

of a multinomial distribution can be recognised

R(Zijun ) =M
(
Zijun ; 1, φijun = {φijun1 , . . . , φ

iju
nK}

)
,

where

φijunk ∝

(
V∏
v=1

β
W iju

nv

kv

)
Q∏
q,r

L∏
l=1

exp

(
ψ(γqrlk)− ψ(

K∑
k=1

γqrlk)

)YiqYjrXul

.

A.2 Proof of Proposition 2

Proof. The VEM update step for distribution the distribution R(θ) is given by

logR(θ) = ER(Z)[log p(Z|D,Y,X, θ)] + C

=

M∑
j 6=i

U∑
u=1

Niju∑
n=1

Q∑
q,r

L∑
l=1

YiqYjrXul

K∑
k=1

ER(Z)[Z
iju
nk ] log θqrlk +

Q∑
q,r

L∑
l=1

K∑
k=1

(αk − 1) log θqrlk + C

=

Q∑
q,r

L∑
l=1

K∑
k=1

αk +

M∑
j 6=i

U∑
u=1

Niju∑
n=1

YiqYjrXulφ
iju
nk − 1

 log θqrlk + C,

(19)
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where C contains the terms not depending on θ. The functional form of a Dirichlet distribution can be

recognized

R(θ) =

Q∏
q,r

L∏
l=1

Dir(θqrl; γqrl = {γqrl1, . . . , γqrlK}),

with

γqrlk = αk +

M∑
j 6=i

U∑
u=1

Niju∑
n=1

YiqYjrXulφ
iju
nk .

A.3 Derivation of the lower bound

The functional L̃(R(·);D,Y,X,W, β) in (12) given in Proposition 2 and Proposition 3, is given by

L̃(R(·);D,Y,X,W, β) =
M∑
j 6=i

U∑
u=1

Niju∑
n=1

K∑
k=1

V∑
v=1

W iju
nv φ

iju
nk log(βkv)

+

M∑
j 6=i

U∑
u=1

Niju∑
n=1

K∑
k=1

φijunk

(
Q∑
q,r

L∑
l

YiqYjrXul

(
ψ(γqrlk)− ψ(

K∑
k=1

γqrlk)

))

+

Q∑
q,r

L∑
l

(
log Γ(

K∑
k=1

αk)−
K∑
k=1

log Γ(αk) +

K∑
k=1

(αk − 1)

(
ψ(γqrlk)− ψ(

K∑
k=1

γqrlk)

))

−
M∑
j 6=i

U∑
u=1

Niju∑
n=1

K∑
k=1

φijunk log(φijunk )

−
Q∑
q,r

L∑
l

(
log Γ(

K∑
k=1

γqrlk)−
K∑
k=1

log Γ(γqrlk) +

K∑
k=1

(γqrlk − 1)

(
ψ(γqrlk)− ψ(

K∑
k=1

γqrlk)

))
.

A.4 Proof of Proposition 3

Proof. The maximization of the functional in (12) with respect to β is considered at first. By isolating the

terms depending on β and introducing K Lagrange multipliers accounting for the constraints
∑V
v=1 βkv = 1,

∀k, we obtain the following objective function

f(β) :=

M∑
j 6=i

U∑
u=1

Niju∑
n=1

K∑
k=1

V∑
v=1

φijunk log βkv +

K∑
k=1

λk

(
K∑
k=1

βkv − 1

)
,

whose gradient can be easily computed and set equal to zero to find the βkv in (13).
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In a similar fashion, when optimizing with respect to ρ, the following objective function is introduced

f(ρ) :=

M∑
i=1

Q∑
q=1

Yiq log ρq + λ

(
Q∑
q=1

ρq − 1

)
, (20)

and its first derivative with respect to ρq is set equal to zero to obtain the stationary point in equation

(15). The optimization with respect to δ is analogous and (14) is a consequence of the likelihood in (4).

A.5 Proof of Proposition 4

Proof. A factorizing prior distribution being attached to the model parameters, (Λ, ρ, δ, β), the integrated

complete-data log-likelihood log p(W,D, Y,X|Q,L,K) can easily be written as

log p(W,D, Y,X|Q,L,K) = log

∫
β

p(W |D,Y,X, β,Q,L,K)p(β|K)dβ

+ log

∫
Λ

p(D|Y,X,Λ, Q, L)p(Λ|Q,L)dΛ

+ log

∫
ρ

p(Y |ρ,Q)p(ρ|Q)dρ

+ log

∫
δ

p(X|δ, L)p(δ|L)dδ,

(21)

where the dependency on (Q,L,K) is made explicit and the pair (Z, θ) is integrated out as in Section 3.1.

Following the derivation of the ICL criterion (Biernacki et al., 2000) we rely on a BIC-like approximation

of the second term on the right hand side of the above equation to obtain

log

∫
Λ

p(D|Y,X,Λ, Q, L)p(Λ|Q,L)dΛ ≈ max
Λ

log p(D|Y,X,Λ, Q, L)− Q2L

2
log(MU(M − 1)).

Similarly the last two terms can be approximated as

log

∫
ρ

p(Y |ρ,Q)p(ρ|Q)dρ ≈ max
ρ

log p(Y |ρ,Q)− Q− 1

2
log(M)

and

log

∫
δ

p(X|δ, L)p(δ|L)dδ ≈ max
δ

log p(X|δ, L)− L− 1

2
log(U).

Notice that the last three approximations lead to the ICL criterion for the dSBM model

ICLdSBM := max
Λ

log p(D|Y,X,Λ, Q, L)− Q2L

2
log(MU(M − 1))

+ max
ρ

log p(Y |ρ,Q)− Q− 1

2
log(M)

+ max
δ

log p(X|δ, L)− L− 1

2
log(U).
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The exact version of this criterion is maximized relying on a greedy search approach in Corneli et al.

(2016b).

Consider now the first term on the right hand side of (A.5). Recalling that the documents W can

be organized as W = (W̃qrl)q,r,l such that all words in W̃qrl follow the same mixture distribution over

topics, we adopt the BIC-like approximation obtained in Bouveyron et al. (2016) corrected by the number

of documents in dSTBM

log

∫
β

p(W |D,Y,X, β,Q,L,K)p(β|K)dβ ≈ max
β

log p(W |D,Y,X, β,Q,L,K)

− K(V − 1)

2
log(Q2L).

Since the first term on the right hand side of the above approximation is not tractable, it is replaced by

its variational approximation L̃(R(·);D,Y,X,W, β), defined in (12), and the proposition is proven.
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Côme, E. and Latouche, P. (2015). Model selection and clustering in stochastic block

models based on the exact integrated complete data likelihood. Statistical Modelling,

15(6):564–589.

Corneli, M., Latouche, P., and Rossi, F. (2015). Modelling time evolving interactions in net-

works through a non stationary extension of stochastic block models. In Pei, J., Silvestri,

F., and Tang, J., editors, International Conference on Advances in Social Networks Anal-

ysis and Mining ASONAM 2015, pages 1590–1591, Paris, France. IEEE/ACM, ACM.

Corneli, M., Latouche, P., and Rossi, F. (2016a). Block modelling in dynamic networks

with non-homogeneous poisson processes and exact ICL. Social Network Analysis and

Mining, 6(1):1–14.

Corneli, M., Latouche, P., and Rossi, F. (2016b). Exact ICL maximization in a non-

stationary temporal extension of the stochastic block model for dynamic networks. Neu-

rocomputing, 192:81 – 91.

Corneli, M., Latouche, P., and Rossi, F. (2017). Multiple change points detection and

clustering in dynamic networks. Statistics and Computing, In press.

Daudin, J.-J., Picard, F., and Robin, S. (2008). A mixture model for random graphs.

Statistics and Computing, 18(2):173–183.

41



Durante, D., Dunson, D. B., et al. (2016). Locally adaptive dynamic networks. The Annals

of Applied Statistics, 10(4):2203–2232.

Friel, N., Rastelli, R., Wyse, J., and Raftery, A. E. (2016). Interlocking directorates in irish

companies using a latent space model for bipartite networks. Proceedings of the National

Academy of Sciences, 113(24):6629–6634.

Grün, B. and Hornik, K. (2011). topicmodels: An R package for fitting topic models.

Journal of Statistical Software, 40(13):1–30.
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