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STABLE AND UNSTABLE TIME QUASI PERIODIC
SOLUTIONS FOR A SYSTEM OF COUPLED NLS
EQUATIONS

BENOIT GREBERT AND VICTOR VILACA DA ROCHA

ABSTRACT. We prove that a system of coupled nonlinear Schrodinger
equations on the torus exhibits both stable and unstable small KAM tori.
In particular the unstable tori are related to a beating phenomena which
has been proved recently in [6]. This is the first example of unstable tori

for a 1d PDE.
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1. INTRODUCTION

We consider the system of coupled nonlinear Schrédinger equations on
the torus

1Ot + Oppu = 0| u, (t,z) e R x T,
(1.1)

10U 4 Oppv = \u|2 .

Key words and phrases. Small amplitude solutions, modulational instabilities, Hamil-
tonian systems, nonlinear PDE, KAM theory.
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2 BENOIT GREBERT AND VICTOR VILACA DA ROCHA

This system is Hamiltonian when considered on the phase space (u, @, v,7) €
(L*(T))* endowed with the symplectic form —idu A du — idv A dv. The
Hamiltonian of the system is given by

H::/(|um|2+|vx|2) dm—l—/|u2|v|2d:c.
T T

In section [4] we will consider a slightly more general case where we add a
higher order perturbation Rj (see ) In the introduction we prefer fo
focus on the simplest case. We also remark that all our results concern small
amplitude solutions and thus the sign in front of the linearity doesn’t affect
our results (but we need the same sign in both line of to conserve the
Hamiltonian structure).

In order to take profit of the geometry of the torus, we write the Fourier
series expansion of u, @, v and v:

= a;(t)e’”, ut,r) =Y ag(t)e 7,

JEZ JEZ
= bi(t)e”, o(t,x) =Y bj(t)e V"
JEZ JEZ

In this variables, the symplectic structure becomes
—i Y dajNda;—iy _ db; A dbj,
J J

and the Hamiltonian H of the system reads

(1.2) a a,b, b Zj ajaj + b b ) Z akblaﬁj = P+ Py,.
JEZL 2,5,k €L
it =k

In this article we are interested in the persistence of two dimensional linear
invariant tori: given p,q € Z and ay, b, € C,

{u(a:, t) = apeipme*ip%,

(1.3) o
v(z,t) :bqe’qme_zqzt,

is a solution to the linear system associated to the quadratic Hamiltonian
Py. Equivalently we can say that for any ¢ € R? and any p, ¢ € Z, the torus
Te(p,q) = {|ap|®> = c1, |bg|* = ca} is invariant under the flow of P». We
prove (see Theorem that for p # q, for p in a Cantor set of full measure
in [1,2] and for v small enough, the non linear Hamiltonian P» + P4 admits
an invariant torus close to 7,,(p, ¢). Furthermore we prove that this tori are
linearly unstable: the system linearized around 7,,(p,q) admits one
hyperbolic direction. In other words, for |ay|? = vp1, |by|? = vp2 with p in
a Cantor set and v small enough, (1.1) admits an unstable small amplitude
quasi periodic solution close to Precisely we prove in section

Theorem 1.1. Fiz p # q and s > 1/2. There exists vy > 0 and for
0 < v < vy there exists C, C [1,2]® asymptotically of full measure (i.e.
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lim,_,o meas([1,2]2\ C,) = 0) such that for p € C, there exists a quasi peri-
odic solution (u,v) of (4.1) of the form
u(x,t) = Zuj(tw)eijz,
JEZ
v(x,t) = Zvj(tw)eijx,
JEZL
where U(-) = (uj(-))jez and V(-) = (v;j(-))jez are analytic functions from

T? into £? satisfying uniformly in 6 € T?

up(0)] — Vopi|* + 3 (1 + %)% i (0) > = O(?),

J#p
|og(0)] — vopz|” + (1 + 52)%[v; (0)] = O
J#q

and where w = w(p) € R? is a nonresonant frequency vector that satisfies
3
w=(p",¢%) + Ov2).
Furthermore this solution is linearly unstable.

It is not the first time that one exhibits unstable KAM tori (see for in-
stance [3},14]) but it turns out that it is the first example in a one dimensional
context. This unstable behavior is to be compared with to the modulational
instabilities extensively studied by physicists since fifty years (see [1I [16] and
[10] for a coupled case different from ours).

We also prove (see Theorem and Corollary the persistence of the
invariant torus 7,(p,p) but, in this case, the torus in linearly stable.

We stress out that, although the existence of invariant tori requires a lot of
assumptions (and in particular we have to assume that p is in a Cantor set),
when an invariant torus exists, its stability or instability is only related to
the choice of the modes.

The result is obtained by putting H in a normal form h + f suitable to
apply a singular KAM theorem (see section which is essentially contains
in [3]. Notice that P» is totally resonant and thus is not adapted to a KAM
procedure. The general idea, coming from [I2], consists in using P; to
break the resonances. First we apply a Birkhoff procedure (see Section
to eliminate the non resonant part of Py

(P2 + Py) ot = Py + Z4 + higher order term.

Then in sections and we calculate the effective part of Z; in two
different cases. This step is highly related to the choice of the torus that we
want to perturb.

We notice that we could consider more general tori of any finite dimension
(i.e. quasi periodic solutions constructed on finitely many linear modes).
The instability of the corresponding torus will appear when one excites ini-
tially two modes a, and b, with p # ¢. To simplify the presentation we
prefer to focus on two dimensional tori.

The strategy and the proofs are inspired by [3]. The aim of this paper is to
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present these recent technics in a simpler case leading to a surprising result:
instability seems typical even in 1d context.

We end this introduction with a remark linking instability of KAM tori
and existence of a beating effect. Taking advantage of the resonances be-
tween the linear frequencies and of the coupling by the quartic term Py,
Grébert-Paturel-Thomann proved in [6] (see also [I5]) that exhibits a
beating phenomena: roughly speaking when you consider initial data of the
form

(1.4) {“@’w) — 4y (0)e™" + a ()¢,

v(0,2) = by(0)eP* + by(0)e"”

with p # g and |a,(0)] = [by(0)] = e, lag(0)] = [B,(0)] = (1= y)e for
0 < v < 1/2 and € small enough, then the four modes exchange energy
periodically, i.e. they are close to

{\aq(t)IQ = [bp(t)]* = (%),
lap(B)]* = [bg(t)]* = 1 — K (€%1),

where K, a 2T —periodic function (T" ~ |In~y|) which satisfies K,(0) = v
and K,(T) =1—+. In [6] the result is proved only for a finite but very long
time but in view of [9], we can expect that such beating solution exists for
all time.

In this work we consider the case 7 = 0 which corresponds to a two di-
mensional invariant torus, 7E N ROV for the linear system and we

prove that the KAM theory applies, i.e. that the non linear Hamiltonian
P, + P4 admits invariant tori close to 7? FROINVIOI Nevertheless, as we

have seen, the tori are linearly unstable: when linearized around the torus,
the system presents two hyperbolic directions which corresponds to the two
other modes of the beating picture above. This means that the beating
effect is related to the instability of the two tori: the one construct on the
modes ay,b, and the one constructed on the modes a4, b,. Actually the
monomial in Py which makes possible the beating effect, namely a,b,d,bq,
is also responsible for the instability of the tori.

The beating phenomena has also be exhibited for the quintic NLS (see [7])
and for cubic NLS with some special nonlinearities (see [§]). It turns out
that following the same line we could prove the existence of unstable KAM
Tori in these two other cases. The main problem in both cases will be to
verify that the hypotheses of the KAM theorem are satisfied, which will lead
to computations similar but different from those of Appendix [A]

2. AN ABSTRACT KAM THEOREM

In this section we state a KAM theorem adapted to our problem. We
consider a Hamiltonian H = hg + f, where hg is a quadratic Hamiltonian in
normal form

(2'1) hO :Q(p) T+ ZAa(p)KaP'
acZ

Here
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e p is a parameter in D, which is a compact in the space R";

r € R™ are the actions corresponding to the internal modes (r,60) €
(R™ x T™, dr A df);

L and F are respectively infinite and finite sets, Z is the disjoint
union £ U F;

¢ = (¢s)sez € CZ are the external modes endowed with the standard
complex symplectic structure —id¢ A d¢ . The external modes de-
composes in an infinite part (¢ = ({s)ser, corresponding to elliptic
directions, which means that A, € R for a € £, and a finite part
(r = ((s)ser corresponding to hyperbolic directions, which means
that SAs # 0 for s € F;

e the mappings

Q:D =R,
22 (N aez

are smooth.
o f = f(r,0,(;p) is the perturbation, small compare to the integrable
part hg.

2.1. Setting. We define precisely the spaces and norms:

Clustering structure on £. We assume that £ has a clustering structure:
L= UjeNﬁj

where £L;, j € N, are finite sets of cardinality d; < d < 4+o00. If a € L; we
denote [o] = £; and w, = j. We consider F as an extra cluster of Z = LUF
and for o € F we set w, = 1.

Ezample 2.1. In the second case of NLS systems (see Subsection , we
will set L =2 C Z x{%}, F =0 and {,, o € Z will denote all the external
modes: (j, = aj, ¢;_ =b; for j € Z\ {p} and a,, b, are the internal modes.
The clusters are given by [j£] = {j,j—, —j+, —j—} and d; = 4 for j # |p|,
and an extra cluster is given by [—p] = {—p4, —p_} and d_, = 2. Then we
set wit+ = |j|.

Ezample 2.2. In the first case of NLS systems (see Subsection , we will
set Z C Z x {£}. If ap, by (p # q) are the two internal modes then £ =
Z\A{p,q} x {£} and (,, a € L will denote all the elliptic external modes:
Gy = aj, ¢G_ =b; for j € Z\ {p,q}. As we will see we have two hyperbolic
external modes, b, and a, then F = {p_, g1 }. The clusters of £ are given by
[j:i:] = {j-‘r?j—a _j+7 _j—} with d] =4 for .7 7& ’p|7 |QI pr ?é —q, we have to
add two extra clusters given by [—p] = {—p4, —p-} and [—¢] = {—q¢+, —q_}
with d_, = d_; = 2. Then we set w;+ = |7|.

Linear space. Let s > 0, we consider the complex weighted f5-space

Zs ={C=(C €C, a € Z) ||[C]ls < oo},

where

ICIIE =D Ial?ws’.

acZ
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We provide the spaces Zsx Zs, s > 0, with the symplectic structure —id¢AdC.
Similarly we define

YVi={=(CeC, acl)|c]s <o},

endowed with the same norm and symplectic structure restricted to indices
in L.
Infinite matrices. For the elliptic variables, we denote by M the set of
infinite matrices A : £ x £ — C such that A maps linearly Y; into Y;. We
provide M with the operator norm

[Als = 1 All2evs,vs)-

We say that a matrix A € M is in normal form if it is block diagonal
and Hermitian, i.e.

(2.3) AS=0 for [o] #[8] and AS=AJ for o, B € L.
In particular, we use that if A € M is in normal form, its eigenvalues are
real.

A class of Hamiltonian functions. Let us fix any n € N. On the space
C" x C" x (Zs x Zs)
we define the norm
1(r, 0, 2)||s = max(|r[, 6], [|z]]s)-
For ¢ > 0 we denote
T2 ={0 e C":|30| < o}/2nZ".
For o, € (0,1] and s > 0 we set
O(o,p) ={r e C": |r| < p®} x T2 x {2 € Zs x Zs : ||2||s < p}.

We will denote points in O%(o, ) as © = (r,6,z). A function defined on
a domain O%(o, ), is called real if it gives real values to real arguments
x = (r,60,z) with r, 0 reals and z = ((, ().

Let

D={p} CR’

be a compact set of positive Lebesgue measure. This is the set of parameters
upon which will depend our objects. Differentiability of functions on D is
understood in the sense of Whitney. So f € CY(D) if it may be extended
to a C'l-smooth function f on RP, and | flo1(py s the infimum of | f]c1 (we,

taken over all C'-extensions f of f.
Let f: O%o,u) x D — C be a C'-function, real holomorphic in the first
variable z, such that for all p € D

(2.4) O%(o, 1) > — Vof(z,p) € Zs X Zs
and

OS(O—’ ,U) >2x — vgﬂéﬁf(xap) € Ms
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are real holomorphic function&ﬂ We denote by T°(o, u, D) this set of func-
tions. For a function f € T%(o, u, D) we define the norm

(160D
through
supmax(|4f (e, ), WV - £ (. p)ss 121052, F (2, )],
where the supremum is taken over all
j=0,1, x € O%(o, ), p€D.

When the function f does not depend on (r,6) neither on p we denote

feTs(n).

Ezample 2.3. Let Z = Z \ {k1,--- ,kn} and g an analytic function from a
neighborhood of the origin in C? into C. We define a Hamiltonian f by

O (ou) 3 2 s f(x) = / o(a(t), a(t))dt

T
with

ﬂ(t) — Z reei@geikgt + Z Caeiat’

[:17-“ N aEZ
u(t) = g roe Weemihet E Coe ot
[:17-“ N acZ

We verify that for s > 1/2 and o > 0, 1 > 0 small enough f € T°(o, u, D)
(here f does not depend on p). A precise proof is given in the Appendix A
of [3]. We can recall here the basis of the proof: we have

0 . 4
7‘](- = / alg(’&,(t)7’lj,(t))€zatdt

8<a T
and since @ and @ have their Fourier coefficients in £2, they are both functions
in the Sobolev space H® which in turns implies that ¢t — 9;g(a(t), u(t)) is
an H® function and thus its Fourier coefficients are in ¢2.

Jet-functions. For any function f € T*(o, u, D) we define its jet f7(z),
x = (r,0,z), as the following Taylor polynomial of f at r =0 and z =0

(2.5) ﬂmam+mﬂmamm+@ﬂqamm+%@ﬂmamm@

Functions of the form f7 will be called jet-functions.

Poisson brackets. The Poisson brackets of two Hamiltonian functions is
defined by

{fag} =Vuf - Vyg—V,f Vgg— 7’<vzf7 Jsz) .

n fact by Cauchy’s theorem the analyticity of V. f on O°(o, u) with value in Z, x Z
yields the analyticity of V2, f on O°(¢’, p) with values in £(Zs x Zs, Zs x Zs), and thus
the analyticity of Vgﬁgﬁf on O°(¢’, u) with values in M, for any ¢’ < o . We conserve
the two hypothesis to mimic [3] and [5] where an additional property on the Hessian of f
was required.
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Lemma 2.4. Let s > 1/2. Let f € T*(o,u, D) and g € T*(o, u, D) be two
jet functions then for any 0 < o’ < o we have {f, g} € T*(c', u, D) and

{9} pup < Clo = o) w2 [f15 p 9l
The proof follows as in [5] Lemma 4.3. This stability result is fundamental

to apply the KAM scheme.

Normal form. A quadratic Hamiltonian function is on normal form if it
reads

- 1
(2.6) h=V(p)-r+(Cc, Alp)Ce) + 5 (27, K(p)2F)
for some vector function V(p) € R™, some matrix functions A(p) € Mg on
normal form ( see (2.3))) and K(p) is a matrix F x F — gl(2,C) symmetric
in the following sens K§ = tih.
2.2. Hypothesis. The following three hypotheses concerned only the qua-
dratic Hamiltonian hg. The first one is related to the asymptotic of Ay, the

two other are non resonances conditions.
Hypothesis A0 (spectral asymptotic.) There exists C' > 0 such that

Ao — |wal’| < C, Va e L.

Hypothesis A1 (Conditions on external frequencies.)
There exists 0 > 0 such that for all p € D we have
(a) The elliptic frequencies don’t vanish:

|Ao| >0 YaeL;
and the hyperbolic frequencies have a non vanishing imaginary part
ISAL| >0 Va e F;

(b) The difference between two external frequencies doesn’t vanish ex-
cept if they are in the same cluster:

[Aa(p) = As(p)| =0 Va, B € Z with [a] # [];
(¢) The sum of two elliptic frequencies doesn’t vanish:
|Aa(p) +Ag(p)| >0 for all o, B € L.

Hypothesis A2 (Transversality conditions.)
These conditions express that the small divisors cannot stay in a resonant
position:
There exists § > 0 such that for all Q(-) é—close in C* norm from Q(-) and
for all k € 2™\ {0}:
(i) either
Qp) - k| =6 VpeD,
or there exits a unit VeCtOIﬂ5 = 3(k) € R™ such that

(Vp-3)(Qp) - k) 26 VpeD.

2This symmetry comes from the matrix representation that we chose for Hessian func-
tions and the Schwarz rule.

3The notation (V, - 3)f(p) means that we take the gradient of f at the point p in the
direction 3.
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(ii) for all @ € Z either
Qp) - k+ Aalp)| =6 VpeD,
or there exits a unit vector 3 = 3(k) € R™ such that
(Vo-3)(Qp) -k + Aalp)) 26 VpeD,
(iii) for all a, 5 € Z either

Qp) - k+Aalp) £ As(p)| 26 VpeD
or there exits a unit vector 3 = 3(k) € R™ such that
(Vo 3)(Qp) -k + Aalp) £ Ag(p)) =6 VpeD.

Hypotheses A1l and A2 are used (see Proposition to control small
denominators of the form

Q-k Vk # 0,

Q-k+ A, Va e Z, keZ™,
Q-k+ Ay + Ag Va,B8 € Z, k # 0,
Ao+ Ag Va,B € L,
Q-k+As—Ag Va,8 € Z, k # 0,

Ao — Ag Va, f € Z with [a] # [f]

which in turns are used to kill the following monomials of the jet of the
perturbation f

eih-? Vk # 0,

ek 0¢,, e*o¢, Va € Z, ke,
eik'GCagﬁl eik.egagﬁ Va,f € Z, k 7é 0,

CaCpy Calp Va, B € L,

e*0¢. (s Vo, € Z, k#0,

Calp Va, 3 € Z with [a] # [].

Remark 2.5. If f preserves some symmetries, and if these symmetries are
preserved by the KAM procedure, then some monomials will never appear
in the perturbation terms and the corresponding small denominator has
not to be control. This can be used to relax Hypotheses A1l and A2. For
instance if f commutes with the momentum M = Zjer(’ajP + |bj|?) then
Hypothesis A1l (c) has not to be satisfied for « = (p,+) and 8 = (—p, %)
(see example since {apb_p, M} = {apa_p,M} = {b,b_,,M} = 0. We
can also use the conservation of the mass L = Zj€Z(|aj|2 + [b;]?). See also
the Appendix [A] where this remark will be crucial.

2.3. Statement and comments on the proof. We recall that we consider
a Hamiltonian H = hg+ f, where hg is the quadratic Hamiltonian in normal

form given by (2.1]).

Theorem 2.6. Assume that hypothesis A0, A1, A2 are satisﬁecﬁ and that
feT(o,u,D) withs > 1/2. Let vy > 0, there exists a constant g > 0 such
that if

(2.7) lopp Scod and &= [fT]5, p < e,

4Hypotheses A1l and A2 can be partially relaxed according to Remark
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then there exists a Cantor set D' C D asymptotically of full measure (i.e.
measD \ D' — 0 when € — 0) and for all p € D' there exists a symplectic
change of variables ® : O%(c/2,1/2) — O%(o, ) such that for p € D’

(ho+ floe®=h+g

with b = (w(p), ) +{Ce, A(P)Ce) + Her, K (p)zx) om normal form (sce (Z6))
and g € T*(0/2,11/2,D') with g* = 0. Furthermore there exists C > 0 such
that for all p € D’

lw—0Q| < C¢, |A—diag(Aq, a € L)| < Ce and |JK —diag(Ay, a € F)| < Ce.

As a dynamical consequences ®({0} x T™ x {0}) is an invariant torus for
ho + f and this torus is linearly stable if and only if F = ().

Theorem is a normal form result, we can explain its dynamical con-
sequences. First, for p € D', the torus {0} x T™ x {0} is invariant by the
flow of h + g and thus the torus ®({0} x T™ x {0}) is invariant by the flow
of hg + f and the dynamics on it is the same as that of h.

Moreover, the linearized equation on this torus reads

Ce = —iAlL —i02%:9(0, 60 + wt, 0) -,

ir=—iJKzr —iJ0?%,g(0,00 + wt,0) - 1,

0 = 2,9(0,00 + wt,0) - z + 82,.9(0, 00 + wt, 0) - r,

7= 0.
Since A is on normal form the eigenvalues of the (¢-linear part in the first
line are purely imaginary (see (2.3))). Since furthermore JK is sufficiently
close to the diagonal matrix diag(A,, o € F), the eigenvalues of the (r-
linear part in the second line have a non vanishing real part. Finally, the
last term in the two first lines is a bounded term, independant on ¢ (and
on z = (¢,¢)), and thus doesn’t play a role in the linear stability. Therefore
the invariant torus is linearly stable if and only if F = ().

The proof is standard and we don’t include it in this article. Nevertheless
it is not a direct consequence of an existing KAM theorem. Essentially
Theorem 2.6]is a mix between the KAM theorem proved in [12] (see also [13])
and the one proved in [3] (see also [5] for a proof in Sobolev regularity or [2]
for a 1d version). In Theorem and in the KAM theorem proved in [12]
or [13], we have the same asymptotics of the frequencies (Hypothesis A0)
which simplifies the proof and doesn’t require regularizing perturbation as
in [3]. Nevertheless in [12] or [13] the frequencies are non resonant and thus
there is no clustering. So we need [3] and the clustering structure to prove
Theorem [2.6]

Let us explain why Hypothesis A0, A1, A2 allow to control the so called
small divisors. The KAM proof is based on an iterative procedure that
requires to solve a homological equation at each step. Roughly speaking,
it consists in inverting an infinite dimensional matrix whose eigenvalues are
the so-called small divisors:

w-k kezt\ {0},
w-k+X keZA aceZ,
w-k+dtrs keZA a,8eZ
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where w = w(p) and A, = Ay(p) are small perturbations (changing at each
KAM step) of the original frequencies Q(p) and Ay(p),a € L.

The transversality condition (Hypothesis A2) ensures that for most values
of p, all these eigenvalues are far away from zero (at least at the first step):

Proposition 2.7. Let N > 1 and 0 < k < §. Assume Hypothesis A0, Al,
A2. Then there exists a closed subset D' = D'(k,N) C D satisfying

meas D\ D' < C65 kN2,
such that for all p € D', for all |k| < N and for all a, 3 € Z

(2.8) |Q(p) - k| > K, except if k=0,
(2.9) 1909) - £+ Aalp)] = 5,

(2.10) 1900) -k + Aalp) + As(0)] = 5,
(2.11) 1900) -k + Aalp) — As(p)] > .

Let us recall the following classical result

Lemma 2.8. (see for instance [4] appendice A) Let I be an open interval
and let f : I — R be a C'-function satisfying
F@)] =6 Veel

Then,

€

5

Proof of Proposition[2.7. Let us prove the estimates (2.10) and (2.11]), the
other two being similar but easier. Let us begin with (2.10). Let us fix
k#0, o, 8 € Z, by Hypothesis A2 we have, either

Q) - k+ Aalp) + As(p)| = 5 VpeD,

meas{z € I : |f(x)] <e} <C

or
(V- 3)(Qp) -k + Aalp) + As(p)) =5 VpeD.
Then we have using Lemma |2.§
meas{p | 12(p) - k + Aa(p) + Ag(p)| < K} < Creo"
where C' does not depend on k,«, 3. On the other hand, in view of Hy-

pothesis A0, we remark that Q(p) - k + Aa(p) + Ag(p) can be small only if
lal, |8] < C|k|'/?. Therefore

meas{p | |2p) - k + Aa(p) + Ag(p)| < K, for some |k| < N and o, 3 € Z}
< CZN"NiIN‘.

The proof of (2.11)) is similar except that, since |52 — ¢2| > 2|j| — 1 for any
integers j, ¢, we deduce that Q(p) - k + Aq(p) — Ag(p) can be small only if
lal, 8] < Clkl. 0

Remark 2.9. In the multidimensional case, the transversality condition is not
enough to ensure and we have to add the so called second Melnikov
condition in the list of hypothesis (see for instance [3]). The problem comes
from the fact that in Z¢ with d > 2, ||j|? — |¢|?| can be small even for large
j and /.
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3. BIRKHOFF NORMAL FORM

In this section we apply a Birkhoff procedure to the Hamiltonian P, 4+ P,
(see (1.2))) in order to eliminate the non resonant monomials.

3.1. The framework of the study. For s > 0 we define
02 = {z = (zk)rez € C” | ||z]|s < +00},
where
[]12 =Y (1 + [k[*)* |
keZ
We denote z x y the convolution of sequences in £2: (zxy), = Zz’Jrj:Z il

and recall that for s > 1/2, ¢? is a Hilbert algebra with respect to the
convolution product and

(3.1) |z ylls < esllz]]s]|yl]s-

For a proof of this classic property, see [12], Appendix A for a = 0.

We consider the phase space Py = £2 x 2 x £2 x {2 > (a,a,b,b) endowed
with the canonical symplectic structure

—iy dag Aday —i» _ dbg Adb.

Finally, we introduce Bs(r), the ball of radius r centered at the origin in Ps.
An interesting feature of the space P; is the behavior of the Hamiltonian vec-
torfields of homogeneous bounded polynomials of Ps, as we can see through
the following lemma:

Lemma 3.1. Let s > 1/2. Let P be a homogeneous polynomial of order 4
on Ps of the form

(3.2) P(a, b, a, l_)) = Z Ci jk,b aibj&kgg
0,5,k lEZ
itj=k+l

with |c; jrel < M for all (i,5,k,0) € J = {i,j,k,l € Z|i+j=k+1}.
Then the Hamiltonian vectorfield Xp is analytic from Bs(1), the unit ball
in Ps, into Ps, with

HXP(%b?&?B)HS < 4M||(a,b,d,5)\|§’.
In particular P € T*(1). Furthermore P commutes with I and M.

Of course this lemma extends to polynomials of any order with bounded
coefficients and zero momentum (the generalization to any order of the con-
dition i4j = k+¢). In particular this lemma shows that Xp,, Xz, and X,
introduced in lemma below are vectorfields on P;. Notice that the linear
vectorfield X p, is unbounded on Ps, since it takes values in Py_s.

Proof. As the coefficients of P are bounded by M we get

oP
— | <M Z |aibj&k|.
(i7j7k7£)ej

by
Therefore writing

Z |a,~bjdk| = (a*b*a)g,
(i,3,k,0)eT
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where & denotes the sequence defined by &; = x_;, we deduce using (3.1

HabgH < M||(a,b,a,B)|[?.

We control the other partial derivatives of P in the same way and we con-
clude that

1Xp(a,b,a,b)l|s < 4M||(a,b,a,b)][2.

2. The Birkhoff normal form result. We recall that
H=P+ P

is defined by (1.2). We also introduce the mass and momentum Hamiltoni-
ans:

L= (la;]* + [b;[*), and M= j(la;|*+[b;]°).
JET JET
We notice that H commutes with both . and M:
{H,L} ={H,M} =0

which means that the Hamiltonian flow generated by H preserves the mass
and the momentum.

Proposition 3.2. For ¢ small enough, there exists a symplectic change of
variables T from the ball Bs(g) of Ps into U- a neighborhood of the origin in
Ps included in Bs(2¢) such that:

(3.3) HB :=Hor =P+ Z, + Rg,

where :

(i) Py depends only on the actions:

»(a, @, b, b) Z] (Jaj* + |b;]%).
JEZ

(i) Zy is the 4" order homogeneous polynomial:

Z4(a,a, b, B) = Z akblaﬁbij = Z akblaﬁ»bij.
k-Hl=itj {k,1}={i,j}
k‘2+l2=’i2+j2

In particular, Zy is resonant in the following sense: { Py, Zy} = 0.
(11i) Rg is a Hamiltonian function in T*(1) which satisfies

| X g (a,a,b,8)|, < C||(a,ab,b)|” forall (a,ab,b) € Bye).

Furthermore Rg commutes with I and M.

(i) T preserves the class T*(p) for any s > 1/2 and p > 0 and it also
conserves the mass and the momentum. Furthermore T is close to the
identity: there exists Cs such that

HT(a,E, b,b) — (a,a, b,B)Hs < Cy H(a,ﬁ, b,B)Hi for all (a,a,b,b) € Bs(e).
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Proof. The idea is to search 7 as the time 1 flow 1 of x4 where x4 is a
Hamiltonian polynomial of order 4. We write

x4(a,a,b,b) := Z m(p, q, 7, 8)ayagbybs.
p’q7r7s€Z

For F' a Hamiltonian, the Taylor expansion of F'oy; between the times ¢t = 0
and ¢t = 1 gives:

1
For:=Fogp =F+{F,><4}+/ (1) {{F, xa} , xa} o pudt.
0

Applying this formula to F' = H = P, + P4 we obtain
(3.4)

1

Hort = P2 +P4+{P27X4}+{P47X4}+/ (1_t){{H7X4}7X4}OSOtdt
~N ~—,—,—,———— 0

Py Zy

Rs

Thus defined, the first point of the proposition is already checked. We have
now to choose the polynomial x4 such as 7, Z; and Rg satisfy the hypothesis
of Proposition According to the equation (3.4)), we want to solve the so
called homological equation

(3.5) x4, Po} = Py — Zy,

where P, Py are given by equation (|1.2)) and Z4 is given by Proposition
For the right hand-side polynomial term, we have

(Py — Zy)(a,a,b,b) = > ayTgbyDs.
p—q+r—s=0
p27q2+r2732750

The left hand-side Poisson bracket term gives

{X4E}:—4§:(a“831_3m332 3m834_&m83>
) = Oa; Oa;  Oaj Oa;  Ob; (‘95]. 85j b,

= —q Z (p2 — P +r?— sz)m(p, q,, s)apaquES.
p,q,7,SEL

Therefore, in order to solve the homological equation (3.5)), it suffices to
choose

i (p—q+r—5=0,
m(p,q,r,s) =4 (P —¢* +1r? — 5?) PP+t —s2£0,
0 else.

Thanks to the choice of x4, we have constructed the polynomial Z4. It
remains to prove that 7, is resonant, i.e

{P,Z4} =0.

With the same computations as in the y4 construction, we have:

(P, Zs} =i Y (P*— ¢+ —5%)z(p, q,7, s)aplgbybs,

D,q,7,SEL
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where

1 if —qg+r—5=0 and p*—¢>+1r2—-52=0,
Z(p,qu):{ 0 else. b e
Therefore,

Y(p,q,7,8) € Z*, (p* — > +1r? — sH)z(p,q,7,8) =0,

and we have {P», Z,} = 0. The proof of the second point of the proposition
is completed. By construction, the coefficients of x4 are bounded. Thus, by
Lemma |3.1] we have

(3.6) Xy, (@, b,0), = O||(a,a,b,B)]| .

We now want to prove that 7 is well defined, i.e. we want to prove that the
flow ¢ is defined at least up to ¢ = 1. For that purpose, the idea here is to
use a bootstrap argument. We introduce T' = T'(a, @, b,b) > 0 the existence
time of the flow y(a,@,b,b), and we consider a smaller time 0 < s < 7.
Writing the fundamental theorem of calculus for ¢;, the flow of x4, between
the times ¢t = 0 and ¢t = s, we obtain

vs(a,a,b,b) — po(a,a,b,b) = / G(a,a,b,b)dt = / Xy ((pt(a,a, b,g)) dt.
0 0

By definition, we have ¢y = Id. Thus, the equation (3.6) implies (with
C > 0 a constant):

(3.7) lps(a,@,b,b) — (a,a,b,b)|ls < 0/8 lioe(a,a,b,5)|| at.
0

Let us choose (a,d,b,b) € B,(e). As long as

000, @,5,8) — (a,@,b,B)lls < 20l(a,,b, B,
we have (using that (a,a,b,b) € B,(¢)),

lps(a,@,b,b) — (a,a,b,b)||s < Cs(2|/(a,a,b,b)|s)°
< (80523) |(a,@,b,b)|s
For € small enough, we have 8Ce2? < 1. Thus we obtain
0@, @,5,B)lls < (1+ )l (,3,5,5) .
This bound is satisfied as soon as
l¢s(a, @, b,b) — (a,a,b,b)||s < 2|[(a,a,b,b)||ls and s < T(a,a,b,b).

Therefore, by continuity, we have T'(a, @, b,b) > 1 and
(3.8) Vs €[0,1], lps(a,a,b,b)]s < 2[(a,a,b,b)|s.

The fact that T(a,a,b,b) > 1 implies that 7 = ¢ is well defined. Thus,
writing the equation (3.7]) for s = 1 and using the bound (3.8]), we obtain

I7(a,a@,b,b) — (a,a@b,b)|ls < || (a,a@b,0)| .

Moreover 7 preserves the class 7°(u) for any p < 1 as a consequence of the
formula V,(fo7)(z) = (D7(2))*Vfo7(z) and the fact that D7(z) maps Z;
into Zs. On the other hand {x4, M} = {x4,L} = 0, therefore the flow 7 = ¢
of x4 conserves the mass and the momentum: M(7(a, @, b, b)) = M(a, a, b, b)
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and L(7(a,a,b,b)) = L(a,a,b,b). We have thus proved the forth point of
the proposition.
We recall that by construction, the remainder term Rg is

1
Re = { Py, x4} +/0 (1 —=t){{H, x4}, xa} 0 pedt.

The polynomials Py, x4 and Z4 have bounded coefficients and have the
prescribed form (3.2)). Therefore, using the homological equation (3.5)), the
same is true for the polynomials ()1 and ()5 defined by

Q1= {Pys, xa},

Q2 = {{H, x4}, xa} = {Zs, xa} — {Ps, xa} + {{Ps, x4}, xa}.
Thus using Lemma |[3.1| we conclude that Rg € T°(1).
Moreover, the polynomials Py, x4 and Z4 are of order 4. Thus, the poly-

nomials ()1 and Q5 are of order at least 6. Therefore, the computations of
Lemma [3.1] give

X0, (a,a@,b,0)|, S ||(a,a,b,5)|| and ||Xo,(a,a,b,8)||, < ||(aab,b)|.
Finally, for € small enough and (a,@, b, b) € Bs(¢), the estimate implies
| Xro(a,abB)], < (a3 6,5).

On the other hand since 7 conserves the mass and the momentum, Rg =
H ot — Py — Z4 commutes with . and M. The proof of the point (éii) and
thus the proof of the proposition is completed. O

4. TwWO APPLICATIONS OF KAM FOR THE COUPLED NLS SYSTEM

We aim to use Theorem [2.6] in order to study the extended coupled
Schrodinger systems:

dg, _  _

1Ot + Opeu = 0[P u + == (u, T, v, ), (t,z) e Rx T,
(4.1) gv
1040 + O = \U\Q v+ Fg(u,ﬂ, v,7),
U

where g is a realﬂ analytic function on a neighborhood of the origin in C*
and g is of order at least 5 in (u,u,v,v). We set

Rs(a,a,b,b) = /Tg(z ajeijw’ Z aje—ijr’ Z bjeijx’ Z Bje—ijm)dx
Z v/ 7 7

and we note that, in view of example , Rs € T°(u) for some p > 0. We
also notice that R5 commutes with I. and M. With the notations introduced
in (1.2, the Hamiltonian of the system is thus given by

(4.2) H=PFP,+ P, + Rs.

After the application of the Birkhoff normal form of Proposition we
have

(4.3) HB —=Hor=Py+ Z,+ Rs 07+ Rg,

5Here real means that g(z1,71, 22,22) € R.
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where we recall that
Z4(a,6, b, B) = Z akb@@j.
{k,1}={i.j}

In order to apply the KAM result, the goal is to study the resonant term Z,4
to determine which part of Z4 is an effective part, and which part can be
treated as a remainder term. Due to the assumptions of Theorem the
idea is to put the jetless part of Z, in the remainder term and to consider
the jet part as the effective part of the Hamiltonian.

The idea is to consider the following solution of the linear system:

(4.4) u(x’ t) = apeipﬂce—ip2t7 U(J}, t) _ bqeiqoce—iq%.

We introduce the constants p;, the variables z; and 6;, the actions I; (i = 1,2)
and the variables (,, a € Z defined by

ap(t) = (vp1 + 21(t)) 2O = /T

) =
(4.5) by(t) = (vpa + 22() 261 = /T ")
ap(t) = CGe+ (1), Kk #p,
br(t) = Gr-(t), K #4q,
where (p1,p2) € [1,2]? and v is a small parameter which controls the size

of the solution. The canonical symplectic structure —i(du A du + dv A dv)
becomes

I
W

—dI Adf —id¢ AdC = —dz A df — id( A dC.

We want to study the linear stability of the torus Tlpm defined by the
solution (4.4)) of the linear system with » = 0, 6 real and z = 0 (where we
recall that z = ((,()). This torus can be written as

Tlpm = {(1,6,2)| I =vp=(vp1,vp2),0 € R? /2772, 2 = 0}.
For that purpose, we introduce a toroidal neighborhood of the torus Tij” by
(4.6) T, (v,0.11,8) == {(I,G,z) || = vp| < w2, |30] < o, |25 < V%M}.
Thanks to a translation in actions between x and I = vp + x, we make an

analogy between the toroidal neighborhood T, (v, o, 11, s) of the torus Tif"
and the neighborhood O*(o, I/%,U,) of the origin. Indeed we have

T,(v, 0,1, 5) ~ O%(0,v7 1) = {(:c,ﬁ,z) x| < vp?, |S60] < o, ||2]s < V%M}-

As a remark, we see that T,(v, 0, i, s) is a small neighborhood of Ti,m in
the following sense:

. _ mlin
0,1/1}30 (Tp(ya o, W, 3)) - Tp .

Through the two following subsections, we study two examples of applica-
tion of the KAM theorem. For that purpose, we highlight in Subsection
some unstable linear tori (corresponding to the case p # ¢q), whereas we high-
light in Subsection some stable ones (corresponding to the case p = q).
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4.1. 1st case: emphasizing an unstable linear torus. We consider the
case p # ¢ and thus the following solution of the linear system:

u(x,t) = apeipxe_ip%, vz, t) = bqeiqme_iq%, with p #q.

We use the clustering defined in Example The goal of this section is to
prove the following;:

Theorem 4.1. There exist vy > 0, o9 > 0 and ug > 0 such that, for s > %,
O<v<y,0<o0<0p, 0<u<L g and pe ™D
(i) There exist

1
P, : O%(3,52) = Tp(r,1,1,8)
(r,0,z) — (1,6,2)

real holomorphic transformations, analytically depending on p, which
_ _1

transform the symplectic structure —dr Adf —id{ Ad( on (’)s(%, £ 27 ) to

the symplectic structure —vdI A df — ivd¢’ AdC on T,(v,1,1,s). The

change of variables ®, is close to the scaling by the factor V3 on the
L-modes but not on the F-modes, where it is close to a certain affine
transformation depending on 6.

(i) ®, puts the Hamiltonian H = P> + Py + Rs in normal form in the

following sense:
7= % (Ho®,—C)(r,0,z) = ho(r,z) + f(r,0, 2),

where C' = v2p1pa + vp?p1 + vg?pa is a constant and the effective part
ho of the Hamiltonian reads

“ 1
ho = Qo)+ Y (AF(Dlasl® + Ab) b ) + 5 (25 K (0)2):
J#pa
The frequencies €1, are given by
2
p°tvp2
) =
0= (nt).
the eigenvalues A and A? are defined by

A(p) = j* +vp2 and Ap) = j* +vp1,
and the symmetric real matriz K(p), acting on the four external modes
by
q
by
aq

zf =@, , 1S given by

0  vypipz p*—¢ 0
K= |y 0 0 ¢ —p
P —¢ 0 0 vypip2

0 ¢ —p* vypipz 0

(i1i) The remainder term f belongs to T*(o, u, D) and satisfies

3
[f]i,u,D 5 v and [fT]i,u,D S vz,
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4.1.1. Set up of the change of variables ®,. The construction of the change
of variables ®, is decomposed in two steps. First we eliminate the angles
and then we rescale the variables.

4.1.1.1. Structure of the Hamiltonian and elimination of the angles. We
study the Hamiltonian H?, defined in equation , obtained after the
Birkhoff normal form iteration:

HP =Hor =P+ Z4+ Rs07+ Rg.

Here, the term P, already contributes to the desired effective Hamiltonian
hg and the constant term C of Theorem whereas the terms Rs o 7 and
Rg contribute to the remainder term f. Therefore, we just have to deal
with the resonant term Z,, separating the constant, the effective and the
remainder parts. We split the polynomial Z; according to the number of
inner modes a, and b;. The term of order 4 in a,, b, from Z, is given by

Zya = |ap|?|by)® = (vp1 + 1) (vpa + 22)
2
=V p1p2 +VpP2x1 +VP1T2 + 1T
P1P2 P21 P12 122
constant effective part remainder
Due to the structure of the resonant set, there is no term of order 3 in a,,
by in Z4. The terms of order 2 in ay, b, from Z4 are
2y = ’ap|2 Z ‘bk|2 + ’bq|2 Z |ak|2 + apbqaqu + a105qaqbp-
k#q k#p
For the first term (the same goes for the second one), we write

lapl® > 10kl = vpr > bkl + a1 > (bl

k#q k#q k#q

effective part remainder

The study of the two last terms is trickier because in each term there is four
different modes and thus there are angles. In order to split these terms be-
tween effective and remainder terms, we recall that we want in Theorem
the remainder term f to be small and to have a jet smaller. Therefore, the
idea is to keep the jet part of these terms in the effective part and to put
the other part (without jet) in the remainder part. We obtain for example
for the term apbqaqu:

vy/pipae’ 110G b, + (\/(Vpl + 1) (vp2 + 22) — V\//?1P2> e Ort0)G, b, .

effective part

remainder (jetless part)

The effective part of Z4 2 is thus given by

Z5q =v(p Z bk |? + p2 Z lag|? + /prp2 (e H92)g,b, + e_i(61+92)aqbp)).
k#q k#p

Then, in order to kill the angles, we introduce the symplectic change of
variables

Uong (2,0,2 = (a,b)) = (y, 0,2 = (c, d)) ,
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where the new variables ¢, d and y are defined by

Cq = aqe_wl, ck = ak, kK #Dp,q,
(410) dp = bpe—wz’ dk = bka k 75 b, q,
Y1 :$1+|aq’27 Y2 =$2+|bp|2-

This change of variables W, is the reason why the change of variable ®,
of Theorem is not close to a scaling for the F-modes a, and b,. Finally,
the terms Z41 and Z4 of order 1 and 0 in a,, b, from Z; are remainder
terms. We can thus write the Hamiltonian H = HB o Yang as

(4.11) H=HPoW,,,=C+H°+R,
where the constant part C' is given by

C = VPpips +vp’pr + vqpa,
the remainder term R is defined by

R =240 0 Wang + Z11© Yang + (41— legl?) Y ldil* + (y2 = |dp]*) D _ lex]?
k#q k#p

+ (Vor o = Do+ i = 14) ~ vy5irm ) @y + andy)

+ (yl - |Cq|2)(y2 - ‘dp|2) + Rso07o0 \Ij(mg + Rg o \I/cmgv

and the effective Hamiltonian H€¢ reads
H = (p* +vp2)yr + (¢ +vp)y2 + (07 — ¢)ldp* + (% — p*) g
+ uy/pipa(Cody + cody) + > (K 4 vpa)lexl” + (K + vpr)|di .
k#p,q
The new frequencies are thus given by

2

+ vp2
Qp)=(? .
(P) (q2+1/p1>

This expression of the Hamiltonian H is really close to the desired one of

Theorem In order to control the size of the remainder term, the idea is

now to rescale the variables ¢, d and y.

4.1.1.2. Rescaling of the variables and introduction of ®,. In order to study
1

the initial Hamiltonian H on the torus T,(v, %, e_Tg,s), we introduce the

rescaling of the variables y and z by the change of variables

Xp (y,@, z') = (r,0,z),
where

(r,0,2) = (vy,0, I/%Z/).
The symplectic structure becomes

—vdr A df — ivd¢ A dC.

By definition, the change of variables x, sends the neighborhood O%(o, 1)
of the origin into a toroidal neighborhood of Ti)m:

Xp (O%(o, 1)) = Tp(v,0,1,8), Vo,u,v,s>0.
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We can now define the change of variable ®, of Theorem by:

(4.12) Q, =70 W4ng 0 Xy

Thanks to this definition, we are now able to prove Theorem

4.1.2. Proof of Theorem[{.1 First, we can check the first point of the theo-
rem by proving that ®, <(’)s(;, 6_2% )> C T,(v,1,1,s). By definition of the

rescaling ,, we have
1 1
1 e 2 1 e 2
S
= =T = .
X/J <O (27 2 )) P(V727 2 78)

Applying the change of variable W,,, (see (4.10))), we obtain

o1 e 2
\II‘WQOXP 0(5, 9 ) CTP(”?

Thus, applying the Birkhoff change of variables 7 which is close to the
identity (see Theorem , we obtain

s 1 6_% s 1 e_%
70 Wang 0 Xp (9(5,7) =0, (9(5,7) CTp(I/,l,l,s).

Then, we have to check the structure of the Hamiltonian H o ®,. For that

purpose, we start from the Hamiltonian H = H o 70 W, defined in ([@.11),
and we write

—_

7578)'

N

Ho<1>p:}~IoXp:C—|—1/ho—|—1/f,
where hg and f are defined by

1 1
ho:=—-H0x, and f:=—-Rox,.
v v

By construction, hg satisfies the properties of the point (ii) of the theorem.

For the study of f, we first need to show that for ¢ and p small enough,
we have f € T*%(o,u, D). We recall that R is defined in the previous sub-
subsection. From the definition of R, we write

(4.13) f=Ffz+fe+ f5+ fe,

where f7 is the part of f that contains the terms Zyo and Zy4 1, fe is the
explicit part of f and f5 (respectively fg) is the part with the term Rj
(respectively Rg). We remark that for all these terms, the explicit changes
of variables ¥, and %Xp don’t play a role here. Applying Lemma H’ we
first have fz € 7°(1,1,D). For the explicit part fe, it is straightforward
to check that V,f(r,0,z,p) € Zs x Zs as soon as z € Zs x Zs. Therefore,
we have f. € T°(1,1,D) too. Now, by the third point of the Birkhoff
normal form Propositon we also have fg € T%(1,1,D). Using once again
Propositon 3.2 for the behavior of the change of variable 7 (forth point) and
Example here exists o9 > 0 and pg > 0 such that f5 € T°(o, u, D) for
0 <o <o0pand 0 < p < ug. Finally, we obtain

feT’(o,u,D) for 0<o<op and 0<p< pp.
We fix now 0 < 0 < gp and 0 < g < pp.
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Then, for the estimates on the norms of f, we remark that Roy/, contains
only terms of order at least 2 in v (for example, Z4 o0 W4png 0 X, and all the
other terms, except those with Rj or Rg which are smaller, are of order 1?),
thus we do have

[.f]g,,u,D 5 v.
Finally, for the estimate on the jet part of f, we first remark that by
construction

1 1
fT = ;(RS 0T 0Wgpng 0 Xp)T + ;(RG 0 Wypg © Xp)T.
Therefore, using that R5 and Rg are of order 5 and 6, we have

3
[fT]j,u,D S ve.
]

4.1.3. Study of the F-modes. Assume that the hypothesis A0, A1 and A2 are
satisfied (see Appendix , we can apply Theorem To study the linear
stability of the torus ®(T""), with ® defined in Theorem we thus have
to check whether there exists hyperbolic directions or not. In the effective
Hamiltonian hy defined in Theorem the modes a; and b; (j # p,q)
are elliptic modes and thus don’t have influence on this linear stability.
Therefore, in order to study the linear stability of the torus ®(T""), we have
to study the semi-external modes (d,, ¢;) to determine if they are elliptic or
hyperbolic modes. The variables (d, c,, dp, ¢;) satisfy

: Ohg
dy ad, dy
¢ 9ho c
;q = —9 85% =M -4
d _0ho d, |’
tp ad, -P
Cq _9hg Cq
Ocq

where we denote by M = —iJK(p) the matrix

P — ¢ 0 0 vypip2
Moe 0 =P vpip 0
0 —v\/pip2 ¢* —p? 0
—Vy/pP1p2 0 0 P —q
A straightforward computation shows that the characteristic polynomial x s
is

xu(A) = (A =i(p* = ¢*)* = v?pipa) (A +i(p* — ¢%))* = VP p1pa) -
Thus, the eigenvalues of M are
(4.14)  Ma=i(p* —¢*) £ vy/pip2, A34 = —i(p* — ¢*) £ v\/p1p2.
Therefore, we have four eigenvalues \;, ¢ = 1..4 which satisfy
R(N\)#£0, for i=1...4.

For p # —q, we have four different eigenvalues and we can diagonalize the
matrix M. For p = —¢q, we have two double eigenvalues: +v,/p1p2 but

6Here we use that the Hamiltonian G = (v (p1 +y1 — |ca®)(p2 + y2 — |dp]?) —
/P1p2)cqdy satisfies GT = 0.
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the matrix M is still diagonalizable (we can check by example that the
two vectors ¥(1,0,0,4) and (0,1, —i,0) are eigenvectors associated to the
eigenvalue v,/p1p2, another way to prove this is to use the fact that all real
skew matrix is diagonalizable with purely imaginary eigenvalues). Therefore,
in both cases, we have two hyperbolic directions, this implies the linear
instability of the torus 7 := {y = 0} x T? x {z = 0}.

Remark 4.2. The real part of the eigenvalues of M does not depend on the
choice of the modes p # q. Moreover, the case p = —q gives real eigenvalues.

4.1.4. Structure of hg. In order to apply the KAM theorem, let us see that
we can write the Hamiltonian hy with the normal structure (2.1). By equa-

tion (4.9), we have

a 1
ho = p)r+ Y (A3(0la? + ASp)Iby ) + 5 (27 K (p) ).
J#p.q

We use the notations introduced in Example First we remark for the
elliptic part that

> (A5 las 2+ M) bs) = 3 Aalp)lCal?,
J#Dp.q aEL

where
Aji(p) = j° + vp+ with py = py and p_ = p1.

For the part related to the matrix K (p), the study of the matrix M in the
previous subsection and the eigenvectors associated to the eigenvalues com-
puted in suggest the introduction of the following symplectic change
of variables

1 - - 1
Ce = ﬁ(cq + idp)a Ce = ﬁ(éq + idp)a
(4.15) 1 B 1
(r = —=(dp +icy), ¢ = (dp + icq),

V2 V2
where the variables (dp, c;) are defined in (4.10). We remark here that (.

and ¢ ¢ are not the complex conjugates of (. and (¢, but the Hamiltonian
dual variables of (. and (¢ in the following sense (for example for ¢.):

8 0 3h0

8t<6 - = Ce , 615(6 =1 Ce

In the new variables, we have

1 _
{2, K(p)zy) : = (p2 - q2)(|dp|2 - |Cq|2) + vy/p1p2(Cqdp + cqdp)

2
= (¢® — p? —ivypip2)|C 2+ (0% — & — ivy/pipa) G2

Finally, we can write

(4.16) ho=Q(p) v+ > Aalp)lCal?,

a€EZ=LUF
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2
where Q(p) = <ZQ i ng) (o is defined by ([@.5) for a € £ = Z\{p, ¢} x {+},

(o is defined by (4.15) for a € F = {e, f}, and
Ao(p) =%+ vps for a = (j,%) € £ with p, = py and p_ = p1,

Ap) @ —p* —ivypips fora =e € F,
WP = PP — ¢ —ivypipgfora=feF.

4.1.5. Application of our KAM result. To apply Theorem [2.6] to the Hamil-
tonian H given by (4.8) it remains to verify Hypothesis A0, A1l and A2
for hg given by . This is done in Appendix |A| where we prove that
Hypothesis Al and A2 are satisfied for § = (v/2 — 1)v. Therefore, we obtain

Theorem 4.3. Fiz p # q. There exists vg > 0 and for 0 < v < vy there
exists C, C [1,2]2 asymptotically of full measure (i.e. lim,_,omeas([1,2]?\
C,) = 0) such that for p € C, the torus Top, = {lap|® = vp1, [bg|* =
vpa, all other modes vanishing}, which is invariant for the Hamiltonian flow
associated to Py, persists in slightly deformed way under the perturbation
Py + Rs. Furthermore this invariant torus is linearly unstable.

We can formulate our result in terms of small amplitude quasi periodic

solutions. We notice that, in view of Theorem |4.1|we have e = [f7]* =

_1
2D

le 2
2' 2

O(v3/?) therefore Theorem [1.1]is a corollary of Theorem

4.2. 2nd case: emphasizing a stable linear torus. Here, we study the
missing case of the previous subsection: the case p = q. Therefore, we start
with the following solution of the linear system:

(4.17) u(x,t) — apeipxefip%’ U(.%',t) _ bpeipxefip%.

This time, we use the clustering defined in Example The goal of this
section is to prove the following:

Theorem 4.4. There exist vy > 0, o9 > 0 and ug > 0 such that, for s > %,
O<v<y,0<0<00, 0<u<L g and pe ™D

(i) There exist

_1
P - OS(%,GQQ) - T,(v,1,1,s)
p (r,0,2) (1,0,

real holomorphic transformations, analytically depending on p, which
1

transform the symplectic structure —dr A df —id¢{ A dC on (’)s(%, 6_;)

to the symplectic structure —vdI A df — ivd(’ A d¢’ on T,(v,1,1,s).
The change of variables ®, is close to a certain affine transformation
depending on 0.

(i) ®, puts the Hamiltonian H = P> + Py + Rs in normal form in the
following sense:

(4.18) % (Ho®,—C)(r,0,2) = ho(r,2) + f(r,0, ),
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where C' = v2p1ps + vp®(p1 + p2) is a constant and the effective part
ho of the Hamiltonian reads

ho2| (4.19) ho = Qp) -7+ > (A§(0)las 2 + A5 (p)Ib 2)
J#p
The frequencies €2, are given by

2
p*+vp2
Qp) =
(:0> <p2 + Vpl) )

the eigenvalues A and A? are defined by

A (p) =35> —p* +vypipz and A(p) = j* — p* — vy/pip2.
(i1i) The remainder term f belongs to T*(o, p, D) and satisfies

)
[f]g,,u,D S v and [fT]Z,,u,D 5 ve.

4.2.1. Set up of the change of variables ®,. As in the previous subsection,
we have to eliminate the angles, and then to perform a rescaling of the
variables.

4.2.1.1. Structure of the Hamiltonian and elimination of the angles. As the
linear term P» contributes already to the constant part C' and to the effective
Hamiltonian hg, the main difference with the study of two different modes is
the behavior of the resonant term Z4. We split the polynomial Z4 according
to the number of inner modes a, and b,. The term of order 4 in a,, b, from
Z, is given by

Njw

Zyy = ’ap\szp P = (p1+z1)(p2 + 22) = V2p1p2 +vpext +vp1oe + w129
~—_——— ~— ~—~—

constant effective part remainder
The terms of order 2 in a,, b, from Z, are
2 2 2 2 7 — — 7
Z472 = |ap\ Z‘bﬂ + |bp| Z|ak| +apbp2akbk+apbp2akbk.
k#p k#p k#p k#p

Separating the effective part (with jet) from the remainder part (without
jet), we show that the effective part of Z, o is given by

Z5 o =vpr Y _|bk? +vp2 > |ag?

k#p k#p

+uypipz | €D N Gy + 7O N g p,

k#p k#p

Then, in order to kill the angles, we introduce the symplectic change of
variables

Uong (2,0, 2 = (a,b)) = (y,0,2" = (¢, d)) ,
where the new variables ¢, d and y are defined by

—if —if
cy, =age ", di =bge™"?, k#p,

620 Ly e Sl e X

k#p k#p



defhtilde2

26 BENOIT GREBERT AND VICTOR VILACA DA ROCHA

Finally, the term Z, o of order 0 in ay, b, from Zj is still a remainder term.
We can thus write the Hamiltonian H = HZ o Vang as

(4.21) H=HPoW,,,=C+H°+R,
where the constant part C' is given by

C = v’p1p2 + vp*(p1 + p2),
the remainder term R is defined by

R=Z100Wang + (y1 = > |exl) D1kl + (g2 = D |di*) D lewl?

k#p k#q k#p k#p
+a(v,p, 7)Y @di + dier) + (g1 — > ) (2 = > [dil)
k#p k#p k#p

+ Rs070Wgpng + R0 Wypg,

with

a(v,p,z') = \/(Vpl tur =Ll wpa +y2 — Y ldil?) — vy/pipa,

k#p k#p

and the effective Hamiltonian H€¢ reads

He =(p* + vpa)yr + (0> + vpr)ya + (K = p*)(Jexl® + |di )
k#p

e | e+ Y endi

k#p k#p
The new frequencies are thus given by

2
pT+vp2

Q(p) = .

(p) <p2 Vp1>

The last term in H® is not a diagonal term (i.e in |cx|? and |dj|?). Neverthe-
less, due to its symmetries, the good idea is to introduce a new symplectic
change of variables

Uoym (I’,O,z/ = (e, d)) = (I/,H, 2" = (e, f)) ,
where
ek:Ck+dk szck—dk‘
V2 V2
A good way to see how this change of variables appears is to look at the
equations satisfied by (¢, ¢k, di, di) (for k # p). We have

oH*®

fk I k2 — p? 0 /P1p2 0 Ck
N N dcy, . 0 p2 — k2 0 —\/P1p2 Ci
7% I G

¢ A \/P1P2 0 k? — p? 0 dg,
i ) 0  —ypz 0 pP-k) \d
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The diagonalization of the matrix M, defined by

k2 — p? 0 N 0
N
\/m 0 ]{72 _p2 0 )
0 —\/P1p2 0 p? — k?

allows to introduce the variables e, = % and f, = %. In these new
variables, we obtain

HE o Wy =(p* + vp2)ys + (0> +vp1)y2 + 3 (K = p* + v/pip2)lex]?
k#p

+) (k= p? — vy/pip) | fl
k#p

To finish the construction of the change of variables ®,, we just have now
to rescale the variables e, f and y.

4.2.1.2. Rescaling of the variables and introduction of ®,. As in the previous
case, we introduce the rescaling by the change of variables

Xp (r,@,z”) = (z,6,2),
where

(,0,z2) := (I/T,Q,V%ZH).
The symplectic structure becomes

—vdr A df — ivd{ A dC.
By definition of x, we have

Xp (O%(0, 1)) = Tp(v, 0,11, 5).

We can now define the change of variable ®, of Theorem @ by:
(4.22) D, =70 Wg50 Ugym 0 Xp.
Thanks to this definition, we are now able to prove Theorem

4.2.2. Proof of Theorem[].4] The only difference with the proof of Theorem

lies in the construction of the change of variables ®,. First, we can

remark that the change of variables ¥,,,, doesn’t change the norm. Indeed,
writing Wy, (I',0, 2" = (¢,d)) = (I',0,2" = (e, f)), we remark that

lckl® + |di|* = lex|® + | ful®, VK #p.

Thus, we have

1 1
1 e 2 1 e 2
Ysym © Xp <05<2’ 5 )) :Tp(y’i’ 5 ,S).

The change of variables W, (see -) is constructed as in (4.10)), and

the change of variables 7 from the Birkhoff normal form is the same as in
the proof of Theorem Therefore, we have

1
(OS( >

5 )> C T,(v,1,1,s).

[\3\*—‘

o1 e 2
7—O‘I/ango\IjsymoXp 0(5 9 )
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Therefore, to conclude the proof of Theorem it suffices to write
HO(I)p:I;rO\IszmOXp:C+VhO+Vf7
with hg and f defined by

1 1
hg := —Heo\llsymoxp and f:= fRO‘I’symOXp‘
v 1%

Thus defined, hg satisfies the point (ii) of the theorem. For the third point
of the theorem about the term f, the same study as in previous case (thanks
to a decomposition as in equation (4.13])) shows that there exists oy > 0 and
o > 0 such that

feT(o,u,D) for 0<o<op and 0< pu < up,
and for 0 < o < g and 0 < p < g, we also have

[f]zsr,,u,D S v and [fT]sz',,u,D S vz.

(NI

O

4.2.3. Structure of hg. As F = (), it’s easy to write the Hamiltonian hg with
the normal structure (2.1). By equation (4.19), we have

(4.23) ho=9Qp)-r+ > Aa(p)lCal?,
acZ=L

2
where Q(p) <£ 9 _—:: Z’Z i), Co is defined by (4.5) (we recall that we have

here p=gq) fora € L =7\ {p} x {£}, and
Aalp) = 3> =" £vypipr for a=(j,+)€L.

4.2.4. Application of our KAM result. We see in Appendix [A] that the hy-
potheses A0, Al and A2 are satisfied for the Hamiltonian (4.18) for the
paramter § = (/2 — 1)v. Thus we can apply Theorem and we obtain

Theorem 4.5. Fiz p. There exists vyg > 0 and for 0 < v < vy there ex-
ists C, C [1,2]% asymptotically of full measure (i.e. lim,_,omeas([1,2]%\
C,) = 0) such that for p € C, the torus T,, := {|ap|* = vp1, |b|? =
vpa, all other modes vanishing}, which is invariant for the Hamiltonian flow
associated to Py, persists in slightly deformed way under the perturbation Py.
Furthermore this invariant torus is linearly stable.

In terms of small amplitude quasi periodic solutions, Theorem reads

Corollary 4.6. Fiz p and integer and s > 1/2. There exists vy > 0 and
for 0 < v < v there exists C, C [1,2]% asymptotically of full measure (i.e.
lim, o meas([1,2]2 \ C,) = 0) such that for p € C, there erists a quasi
periodic solution (u,v) of of the form

u(x,t) = Z wj(tw)e”,

JET

v(z,t) = Z v;(tw)e”,

JEZ
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where U(-) = (uj(-))jez and V(-) = (v;j(-))jez are analytic functions from
T? into ¢2 satisfying uniformly in 6 € T?

up(0)] — Vopi|* + 3 (1 + %)% i (0) > = O,

J#p
10p(0)] — vop2]” + (1 + 52)%[v; (0)] = O
J#p

and where w = w(p) € R? is a nonresonant frequency vector that satisfies

).

3
2

w=(p*,p*) +O(v

Furthermore this solution is linearly stable.

APPENDIX A. VERIFICATION OF THE NON RESONANCE HYPOTHESES
pp

In this appendix, the goal is to check that the hypotheses A0, Al and A2
are satisfied for the Hamiltonians hg given by (4.16]) and (4.23]). The first
one, Hypothesis A0, is trivially satisfied and we focus on Al and A2.

In this process we will use the conservation of the mass and of the momen-
tum (see Remark . The expression of . and M depends on the change
of variable ®, so we have to distinguish between the two examples studied
in section 4. We recall that we have initially

L= (la;]* + [b;[*), and M= j(la;|*+[b;]°).
jez =

The first case corresponding to (4.16]).

In the new variables, we have for the mass and momentum:

L= (> + 1d;*) + lag|* + [bp|* + vp1 + 21 + vp2 + 22
J#p.q

=Y (el + [ds*) + v(pr + p2) + y1 + y2
J#p.q

=v > (e + £ +vlpr+ pa+ 11+ 12)
J#p.q

= VZ Cal? + v(p1 + p2 + 71 +12)
acl

and

M= Y j(lej|” + |d;[*) + plagl® + albp|* + p(vpr + 21 + vp2 + 22)
J#p.q

= v( Y olCal® + p(r1 + p1) + alr2 + p2)).
acl

So the perturbation f of (4.8) commutes with

(A1) Ly=ri+ro+ Z |Ca|2 and M = pry +qro + Z 041|Ca|2-

a€eLl ael
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The second case corresponding to (4.23)).

In the new variables we have for the mass and momentum:
L= Z lc;|? + |dj*) + vp1 + z1 4+ vp2 + 29
J#p
=v(p1 +p2) +y1 +y2 = v(p1 + p2 + 71+ 12),

and
M= j(leil® +1dil?) +p(vpr + @1+ vp2 + x2)
J#p
= VZ (G — )& + £ ) + vp(r1i + rapy + p2)
J#p
=v( D (1 =p)lGal® +p(r + 72+ p1 + p2)).
acZ

So the perturbation f of (4.18]) commutes with
(A.2) Ly=ri+ry, and M=) (a1 —p)l¢al’

acZ

A.1. Verification of Hypothesis Al. Conditions (a) and (b) trivially
hold true with § < v < 1/5 for hg given by (4.16) or by (4.23)). For (4.16))

condition (c) also holds trivially true with § < 1/2 as soon as v < 1/4.
Nevertheless condition (c) is not always true for (4.23]), for instance we have

Ayt +A_p_ =vp1p2 —vy/p1p2 = 0.

More generally Aj y + Ay = j2 + k? — 2p? can vanish for some values of

(4, k,p) and these are the only problems in order to verify the condition (c).

The small divisor A; + Ay _ corresponds to the quadratic term ¢ 4k, —.

As we know that the perturbation f commutes with My we have to consider

only the case {My, (j 4+(k,—} = 0. This yields the two conditions on (j, k, p)
P2+ k2—2p°=0 and j4+k—2p=0

whose only solution is £ = j = p which is not possible since (p,+) ¢ Z.

A.2. Verification of Hypothesis A2. In both cases, (4.16) or (4.23)), we
have for k € Z%*\ 0 and 3 = |k| ! (ko, k1)

(Vo 3)(Qp) - k) = vk|.
Therefore, since in both case |(V, - 3)Aq(p)| < v for all @ € Z, we get
choosing § < v:

e the second part of alternative A2 (i) is always satisfied for k # 0,
e the second part of alternative A2 (ii) is always satisfied for |k| > 2,
e the second part of alternative A2 (iii) is always satisfied for |k| > 3.

So it remains to verify alternative A2 (ii)-(iii) for a finite number of choice
of k: 0 < |k|] < 2 for (ii) and 0 < |k| < 3 for (iii). The condition 0 < |k| < 2
implies that

(A.3) ke Ky :={£(0,1),£(1,0), (£1,£1)},
and the condition 0 < |k| < 3 implies that
(Ad)  k€Ksi=KyU{E(0,2), £(2,0), (£1,42), (£2, +1), (£2, £2)} .
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As in the previous section we will use the conservation of the mass and
momenta. The strategy is to to show that for each small divisor, either
the small divisor corresponds to a term that doesn’t exists (we use the
conservation of the mass and momenta to show this) and we don’t need to
estimate it, either the small divisor satisfies one of the two alternatives of
the hypotheses A2 (ii) and (iii).

Let us first consider the case of (4.16]).

The small divisor © - k + A, corresponds to the monomial €%, with
k € Ky defined in (A.3)), in the following sense:

{eik%, hg} —i(Q k+ Ag).
The conservation of the mass LL; defined in (A.1) gives
{6“9950” H—‘l} - ieikﬂia(kjl + ko + 1) =0.

Therefore, we just have to study the cases k € {(0,—1),(—1,0)}. Moreover,
the conservation of the momentum M; defined in (A.1)) gives

{0, M1 } = ie™Ca(phy + gz + ) = 0.

For k € {(0,—1),(—1,0)}, the conservation of the momentum M) implies
j € {p, q}, which implies that o € F. But for o € F, thanks to the imaginary
part of the eigenvalue A, we have for all p € D:

9(p) -k + Aa(p)| = [k1p? + kaq® £ (¢ — p°) + v(k1p2 + kap1 —iv/pip2)| > v.

We consider the small divisor Q- k + A, + Ag in the same way and we
notice that it corresponds to the monomial ei’“"’éa@g with k£ € K3 defined
in (A.4). The conservation of the mass L; implies k1 + k2 = —2. Thus, we
just have to consider the cases k£ € {(0,—2),(—2,0),(—1,—1)}. For these
three cases, we show that the second part of alternative A2 (iii) is always
satisfied. We have

Qp) - k+ Aal(p) + Ag(p) = f(p,q,a, B, k) + v(k1p2 + kap1 +n(p)),

where 1(p) € {2p1,2p2, p1 + p2}. Using that the coordinates of V,n(p) and
those of k are positives, we have for 3 = |k|~!(ko, k1):
v

(V) 3HE2p) - b+ Ralp) + Aolp) = vIk| + 1 (ks bo) - V(o) > V2

The last small divisor to study here is €2 - k + A, — Ag, corresponding to
the monomial eik'efaCB, with k € K3. This time, the conservation of the
mass L gives the equation ki 4+ ko = 0. Therefore we have to study in g
the four cases k € {(—1,1),(—-1,1),(-2,2),(—2,2)}. First, if « € F and
B € F, we have for 3 = |k| = (ko, k1)

(V- 3)(Qp) -k + Aalp) — Ap(p)) = vlk| > Vav.

Then, ifa € Fand § € L (or a € L and B € F), we have just one eigenvalue
with a nonzero imaginary part. We conclude, as in the study of the small
divisor 2 - k + A, that we have

p) -k + Aa(p) — Ag(p)| = v.
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Finally, for o = (j,+1) € £ and 8 = (¢,+2) € L, we split the study with
respect to the values of k € {(—1,1),(-1,1),(-2,2),(—2,2)}. On the one
hand, if k& € {(=2,2),(=2,2)}, for 3 = |k|~(ko, k1), we have

|k1 ‘;| k2|) = \/51/.

On the other hand, for k € {(—1,1),(—1,1)}, the previous method doesn’t
‘]“l;']”') = 0. The idea is to show that the part without
a factor v of Q(p) - k + Aa(p) — Ag(p) is an nonzero integer. We have

(Vo -3)(Qp) - k4 Aa(p) — As(p)) = v([k| -

work because (|k| —

Qp)-k+Aa(p) = Ap(p) = k1p® + kag” + 5% = P+ v(k1pa + kapi + piy — p,)-

For that purpose, we use the conservation of the moment Mj:
{eik'efaCﬂle} =0=j—1+pki+qks=0.

This leads to the equations

(A.5) kip® 4+ kog® + 52 — > =0 and kip+ kog +j — £ = 0.

For example, for k = (1, —1), this implies (j —1)(j+1) = (j —1)(p+¢q). But,

with the equation (A.5)), we have j = [ = p = ¢ which is impossible. Thus

we can conclude that j +1 = p + ¢, and using once again equation (A.5)),

we obtain j = ¢ and [ = p, which is excluded as @ = (j,+1) € £ and

B = (¢,£2) € L. With the same computations, the case k = (—1,1) leads

to the solution j = p and | = ¢ which is also excluded for the same reason.

Therefore, we have |kip? + kaq® + 52 — £2| > 1 (it is an nonzero integer).
Thus, using that v is small enough (v < % is enough), we obtain

Q) - k+ Aalp) — As(p)| = 5 > v,

DN

Now we consider the case of (4.23)).
First we _remark that the mass Lo = r{ 479 doesn’t depend on the external
modes (y, (n. Therefore, the conservation of the mass

{eik'efa,]Lg} _ {eik'efafg,ﬂaz} _ {e"’““)fagg,l[a} —0

implies for the three cases the relation k1 4+ ko = 0. Thus, we can reduce the
sets o and K3 to

Ko :={x(1,-1)} and Ks:=KyU{£(2,-2)}.

For the Hypothesis A2 (ii), we have k = (1, —1) and (using that k; +
ko =0):

Qp) - k+ Aj+(p) = 5% — p* + v(k1p2 + kap1 £ /p1p2)-

Therefore, once again for 3 = |k| ™! (kg, k1), and using that

| /pzk N / _ e - sz_L
VP1P2
we have

(V5 5)(O0) k+ Malp) = VB = 2 \fw\fk )= 2y
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The small divisor Q- k + Ay + Ag, for a = (j,£) and f = (¢, £) in L,
corresponding to the monomial eik'efafﬁ with & € K3, is given by (using
that k1 + ko = 0)

Qp) -k + Ajx(p) + Mo (p) = 5° + 02 = 2p° + v(k1p2 + kapr +1(p)),

where n(p) € {—2,/p1p2,0,2,/p1pz}. Here, we use the conservation of the
moment My (it implies j 41 = 2p) to show that the integer part of the small

divisor Q - k 4+ Ay + Ag never vanishes. Indeed, we have
G2+ +—2p*=0andj+1—-2p=0)=j=1=p,

which is impossible because a = (j, %) and § = (¢, %) are in L.

Finally, we have to study the small divisor Q- k+ Ay, — Ag, for a = (j, %)
and f = (¢,%) in L, corresponding to the monomial eik'ec_agg with k € Ks.
We have

Qp) -k + Njx(p) — Mo (p) = §° = 2+ v(kipa + k2pr +1(p)),
where 7(p) € {—2/p1p2,0,2,/p1pz}. The conservation of the moment My

gives 7 = [, thus we can write
Qp) -k + Ajx(p) = Aex(p) = v(ki(p2 — p1) + 1(p))-

Always with the choice 3 = |k|™ (ka, k1) = (vV2|k1]) "' (—k1, k1), we obtain
here

(V)-3)(Qp) k-t Ast () — Aps () > urklm—r\/f —\/’ZD > (Va1

where we use in the last inequality that [, /62 — /04| = % < 1 and
k1| € {1,2}.

Conclusion. In order to show that the spectrum of hy satisfies the hy-
potheses Al and A2, it suffices to choose the minimum of the explicit values

we obtain for both cases (ho defined by (4.16)) or (4.23)), which is
§=(W2-1).

Therefore, the hypotheses of Theorem [2.6] are satisfied, and we can apply
this theorem to obtain Theorem for the linear instability of the torus

Top = {lap|® = vp1, |by|* = vp2,all other modes vanishing} where p # g,
and to obtain Theorem [£.4] for the linear stability of
Top = {lap|* = vp1, |bp|* = vpa,all other modes vanishing}
for the extended cubic coupled Schrédinger systems (4. 1]).
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