
HAL Id: hal-01621492
https://hal.science/hal-01621492

Submitted on 23 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computation of the normal vector to a digital plane by
sampling signicant points

Jacques-Olivier Lachaud, Xavier Provençal, Tristan Roussillon

To cite this version:
Jacques-Olivier Lachaud, Xavier Provençal, Tristan Roussillon. Computation of the normal vector
to a digital plane by sampling signicant points. 19th IAPR International Conference on Discrete
Geometry for Computer Imagery, Apr 2016, Nantes, France. pp.194-205, �10.1007/978-3-319-32360-
2_15�. �hal-01621492�

https://hal.science/hal-01621492
https://hal.archives-ouvertes.fr

Computation of the normal vector to a digital

plane by sampling signi�cant points ?

Jacques-Olivier Lachaud1, Xavier Provençal1, Tristan Roussillon2

1 Université Savoie Mont Blanc, LAMA, UMR5127, F-73376, France
{jacques-olivier.lachaud|xavier.provencal}@univ-smb.fr

2 Université de Lyon, CNRS
INSA-Lyon, LIRIS, UMR5205, F-69622, France

tristan.roussillon@liris.cnrs.fr

Abstract. Digital planes are sets of integer points located between two
parallel planes. We present a new algorithm that computes the normal
vector of a digital plane given only a predicate �is a point x in the digital
plane or not�. In opposition with the algorithm presented in [7], the
algorithm is fully local and does not explore the plane. Furthermore its
worst-case complexity bound is O(ω), where ω is the arithmetic thickness
of the digital plane. Its only restriction is that the algorithm must start
just below a Bezout point of the plane in order to return the exact
normal vector. In practice, our algorithm performs much better than
the theoretical bound, with an average behavior close to O(logω). We
show further how this algorithm can be used to analyze the geometry of
arbitrary digital surfaces, by computing normals and identifying convex,
concave or saddle parts of the surface.

Keywords: Digital geometry, digital plane, recognition, normal vector estima-
tion, lattice reduction.

1 Introduction

The study of the linear geometry of digital sets has raised a considerable amount
of work in the digital geometry community. In 2D, digital straightness has been
extremely fruitful. Indeed, properties of digital straight lines have impacted the
practical analysis of 2D shapes, especially through the notion of maximal seg-
ments [4,3], which are unextensible pieces of digital straight lines along digital
contours.

In 3D, the main problem is that there is no more an implication between
�being a maximal plane� and �being a tangent plane� as it is in 2D. This was
highlighted in [2], where maximal planes were then de�ned as planar extension
of maximal disks. To sum up, the problem is not so much to recognize a piece of
plane, but more to group together the pertinent points onto the digital shape.

? This work has been partly funded by DigitalSnow ANR-11-BS02-009 research
grant

A �rst algorithm was proposed by the authors in [7]. Given only a predicate
�is point x in plane P ?� and a starting point in P, this algorithm extracts
the exact characteristics of P. The idea is to deform an initial unit tetrahedron
based at the starting point with only unimodular transformations. Each trans-
formation is decided by looking only at a few points around the tetrahedron.
This step is mostly local but may induce sometimes a dichotomic exploration.
At the end of this iterative process, one face of the tetrahedron is parallel to
P, and thus determines its normal. The remarkable idea is that the algorithm
decides itself on-the-�y which points have to be considered for computing the lo-
cal plane geometry, in opposition to usual plane recognition algorithms [6,8,5,1].
This approach was thus also interesting for analysing 3D shape boundaries.

This paper proposes another algorithm that extracts the characteristics of
plane P given only this predicate and a starting con�guration. This new algo-
rithm is also an iterative process that deforms an initial tetrahedron and stops
when one face is parallel to P. However, this new algorithm both complements
and enhances the former approach. It complements it since it extracts triangular
facets onto the plane whose Bezout point is above the facet, while the former
algorithm extracts the ones whose Bezout point is not above the facet. See �g. 2
for an example of execution of both algorithms with the same input. It is also
a geometrical algorithm using convex hull and Delaunay circumsphere property,
while the former was mostly arithmetic. It enhances it for several reasons. First,
its theoretical complexity is slightly better (it drops a log factor) and it is faster
also in practice. Second, we control the position of the evolving tetrahedron,
which always stays around the starting point. Third, each step is purely local
and tests the predicate on only six points. Fourth, it can detect planarity defects
onto digital surfaces that are not digital planes. Last, a variant of the proposed
algorithm almost always produce directly a reduced basis of the lattice of upper
leaning points, without lattice reduction. Of course, this algorithm presents one
disadvantage with respect to the former one: the starting con�guration must lie
at a reentrant corner of the plane, more precisely below the Bezout point of the
plane. If it starts at another corner, then the algorithm will stop sooner and
outputs only an approximation of the normal of P.

The paper is organized as follows. First, we give basic de�nitions and present
our new algorithm. Second we show its correctness and exhibit worst-case upper-
bound for its time complexity. Third we study how often this algorithm extracts
a reduced basis of the lattice of upper leaning points and present a variant �
with the same properties � that returns almost always a reduced basis. Af-
terwards we exploit this algorithm to determine the linear geometry of digital
surfaces, and we show how to deal with starting con�gurations that are not un-
der the Bezout point. Finally the pros and cons of this algorithm are discussed
and several research directions are outlined.

Algorithm 1: Extracts a triangle aligned with the digital plane P by
successive convex hull computations.

Input: a predicate �x ∈ P ?�, an initial triangle T(0)

1 T← T(0) ;
2 while ΣT ∩P 6= ∅ do
3 Compute the convex hull of T ∪ (ΣT ∩P) ;
4 Find T′, de�ned as the upper triangular facet intersected by [pq] ;
5 T← T′ ;

6 return T;

2 Notations and algorithm

In this section, we introduce a few notations before presenting our new algorithm.
A digital plane is de�ned as the set

P = {x ∈ Z3|µ ≤ x ·N < µ+ s ·N},
where N ∈ Z3 is the normal vector whose components (a, b, c) are relatively
prime, µ ∈ Z is the intercept, s is the shift vector, equal to (±1,±1,±1) in the
standard case.

By translation, we assume w.l.o.g. that µ = 0. Moreover, by symmetry, we
assume w.l.o.g. that the normal of the plane lies in the �rst octant, i.e. its
components are positive. We also exclude cases where a component is null since
then it falls back to a 2D algorithm. Thus, a, b, c > 0 and s = (1, 1, 1). Finally,
we denote by ω := s ·N = a+ b+ c the thickness of the standard digital plane
P.

The above de�nition of digital plane suggest to see the space as partitionned
into layers of coplanar points, orthogonal to N. The value x ·N, called height, is
a way of sorting these layers in directionN. Points of height 0 (resp. ω−1), which
are extreme in P, are called lower leaning points (resp. upper leaning points).
Points of height ω, the closest ones above P, are called Bezout points.

Algorithm 1 �nds N given a predicate �is x ∈ P ?�. The algorithm starts
at any reentrant corner as follows: the corner point p is in P; the shifted point
q := p + s is not in P since s ·N is the thickness of P; the initial triangle

T(0) := (v
(0)
k)k ∈{0,1,2} is such that ∀k,v(0)

k := p + ek + ek+1 (�g. 1.c). It is

easy to check that T(0) ⊂ P for any p such that 0 ≤ p ·N < min{a, b, c},
which corresponds exactly to reentrant corners onto a standard digital plane.
The algorithm then updates this initial triangle and iteratively aligns it with the
plane by calling the above predicate for well-chosen points, until the solution
equals N.

At step i ∈ N, the solution is described by a triangle denoted by T(i). Algo-
rithm 1 is designed so that ∀i,T(i) is included in P and is intersected by segment
[pq]. Segment [pq] thus forces the exploration to be local.

Let k be an integer taken modulo 3, i.e. k ∈ Z/3Z. The three counterclockwise
oriented vertices of T(i) are denoted by v

(i)
k (�g. 1.a). For sake of clarity, we will

p

q

v0

v1

v2
d1

d2

d0

m0

m1

m2

(a) triangle

p

q

v0

v1

v2
d1

d2

d0

(b) neighborhood

•
p

e0

e1

e2

◦
q

•
v00

•
v01

•
v02

(c) step 0

Fig. 1. Main notations are illustrated in (a) and (b) (iteration number as exponent (i)
is dropped for sake of clarity). The starting triangle is illustrated in (c).

write ∀k instead of ∀k ∈ Z/3Z. We also introduce the following vectors (�g. 1.a):

∀k, m(i)
k := q − v

(i)
k (1)

∀k, d(i)
k := v

(i)
k+1 − v

(i)
k = m

(i)
k −m

(i)
k+1. (2)

The normal of T(i), denoted by N̂(T(i)), is merely de�ned by the cross product

between two consecutive edge vectors of T(i), i.e. N̂(T(i)) = d
(i)
0 × d

(i)
1 .

In order to improve the guess at step i, the algorithm checks if the points
of a small neighborhood around q, parallel and above T(i), belong to P or not.
This neighborhood is de�ned as follows (�g. 1.b):

ΣT(i) :=
{
q ± d

(i)
k

}
k ∈{0,1,2}

. (3)

The algorithm then computes ΣT(i) ∩P by making six calls to the predicate.
In algorithm 1, the new triangle T(i+1) is simply de�ned as the other triangular
facet of the convex hull of T(i)∪(ΣT(i)∩P) which intersects [pq]. See �g. 2 for an
example. The algorithm stops when ΣT(n) ∩P is empty. We show in theorem 2
that, when p is a lower leaning point (its height is 0), the vertices of the last
triangle T(n) are upper leaning points of P (their height is ω − 1). Corollary 1
implies that the normal to T(n) is the normal to P and corollary 2 implies that
triangle edges form a basis of the lattice of upper leaning points to P.

3 Validity and complexity

In this section, we �rst prove the two invariants of algorithm 1 and fully charac-
terize its main operation (lines 3-5 of algorithm 1). Then we prove that if p is a
lower leaning point, algorithm 1 retrieves the true normal N in less than ω − 3
steps.

Let us assume that the algorithm always terminate in a �nite number of steps
whatever the starting point and let n be the last step (the proof is postponed,
see theorem 1).

•
•

•

•
•

•
•

•

•
•

•

•
• •

•
•

• •
•

•

•

•
•

•

•
• •

•

•
•

•

• •

•

•

•

•
•

•

•
•

•
• •

•

•

•

•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

• •

•

•

•

•

•

•

•

•
•

• •
•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•
•

••
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•
◦•

•

•

•

◦

◦◦

•

•

(a) i = 0

•
•

•

•
•

•
•

•

•
•

•

•
• •

•
•

• •
•

•

•

•
•

•

•
• •

•

•
•

•

• •

•

•

•

•
•

•

•
•

•
• •

•

•

•

•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

• •

•

•

•

•

•

•

•

•
•

• •
•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•
•

••
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•
◦

•

•
•

◦
◦

◦
•

•

◦

(b) i = 1

•
•

•

•
•

•
•

•

•
•

•

•
• •

•
•

• •
•

•

•

•
•

•

•
• •

•

•
•

•

• •

•

•

•

•
•

•

•
•

•
• •

•

•

•

•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

• •

•

•

•

•

•

•

•

•
•

• •
•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•
•

••
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•
◦• •

•
•

◦◦
◦

◦ •

(c) i = 2

•
•

•

•
•

•
•

•

•
•

•

•
• •

•
•

• •
•

•

•

•
•

•

•
• •

•

•
•

•

• •

•

•

•

•
•

•

•
•

•
• •

•

•

•

•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

• •

•

•

•

•

•

•

•

•
•

• •
•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•
•

••
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•
◦

•

•
•

◦
◦

◦
◦

◦

◦

(d) i = 3

(e) i = 0 (f) i = 2 (g) i = 5 (h) i = 7

Fig. 2. Illustration of the running of algorithm 1 and algorithm from [7] on a digital
plane of normal vector (1, 2, 5). Images (a) to (d) shows the four iterations of algo-
rithm 1 starting from the origin. For i ∈ {0, 1, 2, 3}, triangles T(i) are in blue, whereas
neighborhood points are depicted with red disks (resp. circles) if they belong (resp.
do not belong) to P. In (d), the normal of the last triangle is (1, 2, 5). Images (e) to
(h) shows iterations 0 (initial), 2, 5 and 7 (�nal) of the algorithm from [7]. The initial
tetrahedron (a) is placed at the origin and the �nal one (h) has an upper triangle with
normal vector (1, 2, 5).

3.1 Algorithm invariants

The following two invariants are easy to prove by induction since by construction,
each new triangle is chosen as a triangular facet of the convex hull of some subset
of P, which is intersected by]pq].

Invariant 1 ∀i ∈ {0, . . . , n}, ∀k, v
(i)
k ∈ P.

Invariant 2 ∀i ∈ {0, . . . , n}, the interior of T(i) is intersected by]pq].

The only di�culty in invariant 2 is to show that the triangle boundary is never
intersected by]pq]. Below, for lack of space, we only show by contradiction that
]pq] does not intersect any edge of T(i+1), if invariant 2 is assumed to be true
for i ∈ {0, . . . , n− 1}.

Proof. If]pq] and some edge [xy] of T(i+1) intersect, points p, q,x and y are
coplanar. But, since the boundary of T(i) is not intersected by]pq] and since
points of ΣT(i) are located on lines that are parallel to the sides of T(i), x and

y must be opposite points in ΣT(i) , i.e. x := q + d
(i)
l for some l ∈ {0, 1, 2} and

y = q − d
(i)
l .

However, since q /∈ P, x and y cannot be both in P by linearity and thus
cannot be the ends of an edge of T(i+1), which is included in P by invariant 1.

ut

3.2 Operation characterization

The two following lemmas characterize the operation that transforms a triangle
into the next one (lines 3-5 of algorithm 1).

Lemma 1. ∀i ∈ {0, . . . , n− 1}, T(i) and T(i+1) share exactly one or two ver-
tices.

Proof. Let γ be the number of common vertices between T(i) and T(i+1). Since
T(i) and T(i+1) have three vertices each, 0 ≤ γ ≤ 3, but we prove below that (i)
γ 6= 3 and (ii) γ 6= 0.

Inequality (i) is trivial. Indeed, since the volume of the convex hull of T(i) ∪
(ΣT(i) ∩P) is not empty for i ∈ {0, . . . , n− 1} (see algorithm 1, l. 2), we neces-
sarily have T(i) 6= T(i+1), which implies that γ 6= 3.

In order to prove inequality (ii), let P be the plane passing by the points of
ΣT(i) (points of ΣT(i) are coplanar by (2) and (3)). Note that q ∈ P by (3).

Let us assume that T(i+1) is included in P. By invariant 1, T(i+1) ⊂ P.
However, q /∈ P by de�nition of q. As a consequence, the upper leaning plane of
P, i.e. {x ∈ R3|x ·N = ω − 1}, strictly separates T(i+1) from q in the plane P.
In addition, p is located strictly below T(i) by invariant 2 and is thus also below
P, which is parallel and above T(i) by de�nition. As a consequence, T(i+1) is
clearly not intersected by]pq], which contradicts invariant 2. We conclude that
T(i+1) is not included in P, which means that γ 6= 0. ut

The following lemma fully characterizes the main operation of algorithm 1:

Lemma 2. ∀i ∈ {0, . . . , n− 1}, ∀k,
{
either v

(i+1)
k = v

(i)
k ,

or v
(i+1)
k = v

(i)
k +m

(i)
l , l 6= k.

We know by lemma 1 that T(i) and T(i+1) share one or two vertices. The
proof is thus in two parts. In each part however, we use in�nite cones of apex q
to check whether invariant 2 is true or not. Let us de�ne ∀i ∈ {0, . . . , n}, T∞(i)

as the set of in�nite rays emanating from q and intersecting the triangular facet
T(i). Invariant 2 is equivalent to the following

invariant 2': ∀i ∈ {0, . . . , n}, the interior of T∞(i) contains p.

v0

v1v2

1.1

1.3

q

1.1

1.21.2

1.3

(a)](T(i) ∩T(i+1)) = 2

v0

v1v2
2.1

2.2

2.3

2.2

q

(b)](T(i) ∩T(i+1)) = 1

Fig. 3. Illustration of the proof of lemma 2. Case where T(i) and T(i+1) share v
(i)
1 and

v
(i)
2 in (a), but only v

(i)
2 in (b) (exponent (i) is omitted in the �gures).

Proof. We �rst assume that T(i) and T(i+1) share two vertices. Let us assume
w.l.o.g. that the index of the vertex of T(i) that is not in T(i+1) is 0.

Since v
(i+1)
0 ∈ ΣT(i) ∩ P, there are six cases for v

(i+1)
0 , which are grouped

below two by two (see �g. 3.a). Invariant 1 is true for all cases. We show however
by contradition that the �rst four cases (items 1.1 and 1.2) are not possible
because otherwise, invariant 2' is not true:

1.1 Let us assume that v
(i+1)
0 = v

(i)
l +m

(i)
0 , l ∈ {1, 2}. In these cases, T∞(i+1)

is adjacent to T∞(i) along facet (q,v
(i)
1 ,v

(i)
2). We conclude that the interior

of T∞(i+1) and T∞(i) are disjoint and cannot both contains p, which raises
a contradiction.

1.2 If we assume now that v
(i+1)
0 = v

(i)
1 +m

(i)
2 or v

(i+1)
0 = v

(i)
2 +m

(i)
1 . In these

cases, v
(i+1)
0 lies on the plane passing by q, v

(i)
1 and v

(i)
2 . We conclude that

the interior of T∞(i+1) is empty and cannot contains p, a contradiction.

1.3 Hence, v
(i+1)
0 = v

(i)
0 +m

(i)
l , l ∈ {1, 2}. In this case, T∞(i+1), which contains

T∞(i), contains p.

We now assume that T(i) and T(i+1) share one vertex. Let us assume w.l.o.g.
that its index is 2.

By de�nition, v
(i+1)
0 ,v

(i+1)
1 ∈ ΣT(i) ∩P. There are

(
6
2

)
= 15 cases to consider

for v
(i+1)
0 and v

(i+1)
1 , which are grouped below into four di�erent items. See

�g. 3.b for the last three items. Invariant 1 is true for all cases. We show however
that invariant 2 is true for only the three cases described at item 2.3:

2.0 (3 cases) Let us assume that v
(i+1)
0 and v

(i+1)
1 are opposite with respect to

q, i.e. one is equal to q + d
(i+1)
k , k ∈ {0, 1, 2}, whereas the other is equal to

q − d
(i+1)
k . Since q /∈ P, q + d

(i+1)
k and q − d

(i+1)
k cannot be both in P by

linearity, which raises a contradiction.

2.1 (7 cases) Let us assume that v
(i+1)
0 = v

(i)
2 + m

(i)
l , l ∈ {1, 2} or v

(i+1)
1 =

v
(i)
2 + m

(i)
l , l ∈ {1, 2}. In all cases, T∞(i+1) is adjacent to T∞(i) by edge

(q,v
(i)
2), by facet (q,v

(i)
0 ,v

(i)
2) or by facet (q,v

(i)
1 ,v

(i)
2). As a consequence,

the interior of T∞(i+1) cannot contains p.

2.2 (2 cases) Let us assume that v
(i+1)
0 = v

(i)
l +m

(i)
l+1 and v

(i+1)
1 = v

(i)
l +m

(i)
l+2,

for l ∈ {0, 1}. In both cases, T∞(i+1) is adjacent to T∞(i) by edge (q,v
(i)
l).

As a consequence, the previous argument also applies.
2.3 (3 cases) T∞(i+1) contains T∞(i) and thus contains p in the following cases:

v
(i+1)
0 = v

(i)
0 + m

(i)
l0
, l0 ∈ {1, 2} and v

(i+1)
1 = v

(i)
1 + m

(i)
l1
, l1 ∈ {0, 2}, with

(l0, l1) 6= (1, 0).
ut

Lemma 3. Let M(i) be the 3 × 3 matrix that consists of the three row vectors

(m
(i)
k)k ∈{0,1,2}. Then, ∀i ∈ {0, . . . , n}, det (M(i)) = 1.

Proof. We can easily check that det (M(0)) = 1.
We now prove that if det (M(i)) = 1 for i ∈ {0, . . . , n− 1}, then det (M(i+1)) =

1. By lemma 1 and lemma 2, we have v
(i+1)
k = v

(i)
k + m

(i)
l ⇔ m

(i+1)
k =

m
(i)
k −m

(i)
l , l 6= k for at most two rows over three, while the remaining one

or two rows correspond to identity. Such matrix operations do not change the
determinant, which concludes. ut

3.3 Termination

In the following proofs, we compare the position of the points along direction
N. For the sake of simplicity, we use the bar notation · above any vector x to
denote its height relative to N. Otherwise said, x := x · N. Even if N is not
known, q ≥ ω by de�nition and for all x ∈ P, 0 ≤ x < ω.

Theorem 1. The number of steps in algorithm 1 is bounded from above by ω−3.

Proof. First, it is easy to see that ∀k,m(0)
k = ek+2. Thus,

∑
k m

(0)
k = ω.

Let us recall that ∀i ∈ {0, . . . , n}, ∀k, m
(i)
k = q − v

(i)
k . We have q ≥ ω by

de�nition of q and ∀i ∈ {0, . . . , n}, ∀k, 0 ≤ v
(i)
k < ω by invariant 1 and by

de�nition of P. As a consequence, ∀i ∈ {0, . . . , n}, ∀k, m(i)
k > 0 and

∑
k m

(i)
k ≥

3.
Moverover, by lemma 2 and since anym

(i)
k is strictly positive ∀i ∈ {0, . . . , n},

we clearly have ∀i ∈ {0, . . . , n− 1}, ∑k m
(i)
k >

∑
k m

(i+1)
k .

The sequence (
∑

k m
(i)
k)i=0,...,n is thus a strictly decreasing sequence of in-

tegers between ω and 3. ut

Remark that this bound is reached when running the algorithm on a plane
with normal N(1, 1, r). We now give the main result when the starting point p
is a lower leaning point, i.e. p = 0. Note that in this case q = ω. Since we focus
below on the last step n, we omit the exponent (n) in the proofs to improve their
readability.

Theorem 2. If p is a lower leaning point (i.e. p = 0 and thus q = ω), the

vertices of the last triangle are upper leaning points, i.e. ∀k,v(n)
k = ω − 1.

Proof. If there exists k ∈ {0, 1, 2} such that dk 6= 0, then either (i) dk < 0 or (ii)
dk > 0. Since q = ω and |dk| < ω, either (i) q+dk ∈ P or (ii) q−dk ∈ P. This
implies that ΣT ∩ P 6= ∅, which is a contradiction because ΣT ∩ P = ∅ at the
last step (see algorithm 1, l. 2). As a consequence, ∀k,dk = 0 and ∀k,mk = α,
a strictly positive integer.

Let us denote by 1 the vector (1, 1, 1)T . We can write the last system as
MN = α1. Since M is invertible (because det (M) = 1 by lemma 3), N =
M−1α1 and as a consequence α = 1 (because the components of N are relatively
prime and M−1 is unimodular).

We conclude that ∀k,mk = 1 and, straightforwardly, vk = ω − 1. ut

The following two corollaries are easily derived from lemma 3 and theorem 2.

Corollary 1. If p is a lower leaning point, the normal of the last triangle is
equal to N, i.e. N̂(T(n)) = N.

Corollary 2. If p is a lower leaning point, (d
(n)
0 ,d

(n)
1) is a basis of the lattice

of upper leaning points {x ∈ P|x = ω − 1}.

4 Lattice reduction and Delaunay condition

Corollary 2 implies that the edge vectors of the last triangle form a basis of the
lattice of upper leaning points to P.

Let us recall that a basis (x,y) is reduced if and only if ‖x‖, ‖y‖ ≤ ‖x−y‖ ≤
‖x + y‖. Given (x,y) a basis of a two dimensional lattice, there is an iterative
algorithm to compute a reduced basis from (x,y). This algorithm consists in
replacing the longest vector among (x,y) by the shortest one among x+ y and
x− y, if it is smaller.

We have found many examples for which the basis returned by algorithm 1

is not reduced, even if we take the two shortest vectors in {d(n)
k }k ∈{0,1,2} (see

�g. 4.a for an example). To cope with this problem, we can either apply the above
reduction algorithm to the returned basis, or keep triangles as �small� as possible
so that the last triangle leads to a reduced basis, without any extra reduction
steps. To achieve this aim, we use a variant of algorithm 1; see algorithm 2.

Note that in algorithm 2, we compute the convex hull of T ∪ S?, but since
S? ⊂ ΣT ∩ P and since ΣT ∩ P 6= ∅ ⇒ S? 6= ∅, all the results of sec. 3 remain
valid.

In �g. 4, the results of the two algorithms for the digital plane of normal
(2, 3, 9) are compared. The triangles returned by algorithm 2 are more compact
and closer to segment [pq]. The last triangle returned by algorithm 2 leads to a
reduced basis, but this is not true for algorithm 1.

Algorithm 2: Variant of algorithm 1 based on a Delaunay condition.

Input: a predicate �x ∈ P ?�, an initial triangle T(0)

1 T← T(0) ;
2 while ΣT ∩P 6= ∅ do
3 Compute the set S? of points s? ∈ (ΣT ∩P) such that the circumsphere of

T ∪ {s?} does not include any point s ∈ (ΣT ∩P) in its interior ;
4 Compute the convex hull of T ∪ S? ;
5 Find T′, de�ned as the upper triangular facet intersected by [pq] ;
6 T← T′ ;

7 return T;

•
•

•

•
•

•
•

•

•
•

•

•
• •

•
•

•
•

•

•

•
•

•

•
• •

•

•
•

• •
•

•
•

•

•

•
•

•

•

•

•

•
• •

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•
•

•
•

•
•

•
• •

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•
•

•
•

•

•

•
•

•
•

•
•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•

•

•
•

•

•

•
•

•
•

•

•

•
•

•
•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•

•
•

•
•

•
•

•

•
•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•

•
•

•

•

•
•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•
•

•
•

•
•

•

•

•

•
•

•
•

•
•

•

•

•

•

•
•

•
•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•

•
•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•

•

•

•

•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•

•
•

•
•

•

•

•

•

•
•

•

•
•

•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•

•

•

•
•

•

•
•

•

•
•

•

•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•

•
•

•
•

•
•

•
•

•

•

•

•
•

•
•

•
•

•

•

•

•
•

•

•
•

•

•
•

•

•

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•
•

•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•
•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•

•
•

•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•
•

•
•

•

•
•

•
•

•
•

•

•

•
•

•
•

•

•

•
•

•

•
•

•

•

•
•

•
•

•

•

•
•

•
•

•

•

•
•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•

•

•
•

•

•
•

•

•

•

•

•
•

•
•

•
•

•

•

•
•

•

•

•

•
•

•
•

•
•

•
•

•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•

•

•
•

•

•

•
•

•
•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•

•

•

•
•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•

•
•

•

•

•
•

•

•
◦•

•

•

•

•
•

•

•

•

•
•

•

• •

•

• •

•

(a) alg. 1

•
•

•

•
•

•
•

•

•
•

•

•
• •

•
•

•
•

•

•

•
•

•

•
• •

•

•
•

• •
•

•
•

•

•

•
•

•

•

•

•

•
• •

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•
•

•
•

•
•

•
• •

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•
•

•
•

•

•

•
•

•
•

•
•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•

•

•
•

•

•

•
•

•
•

•

•

•
•

•
•

•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•

•
•

•
•

•
•

•

•
•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•

•
•

•

•

•
•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

• •

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•
•

•
•

•
•

•

•

•

•
•

•
•

•
•

•

•

•

•

•
•

•
•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•

•
•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•

•

•

•

•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•

•
•

•
•

•

•

•

•

•
•

•

•
•

•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•

•

•

•
•

•

•
•

•

•
•

•

•

•
•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•

•
•

•
•

•
•

•
•

•

•

•

•
•

•
•

•
•

•

•

•

•
•

•

•
•

•

•
•

•

•

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•
•

•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•

•
•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•

•
•

•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•
•

•
•

•

•
•

•
•

•
•

•

•

•
•

•
•

•

•

•
•

•

•
•

•

•

•
•

•
•

•

•

•
•

•
•

•

•

•
•

•

•
•

•
•

•

•

•

•
•

•
•

•
•

•

•

•
•

•

•
•

•

•

•

•

•
•

•
•

•
•

•

•

•
•

•

•

•

•
•

•
•

•
•

•
•

•

•
•

•
•

•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•
•

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•
•

•

•

•
•

•

•

•
•

•
•

•

•

•
•

•
•

•

•

•

•
•

•
•

•

•

•

•

•
•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•

•
•

•

•

•
•

•

•
◦•

•

•
•

•

••
•

••

•
••

•

• •

•

•

(b) alg. 2

Fig. 4. Triangles returned by algorithm 1 in (a) and algorithm 2 in (b) for a digital
plane with normal (2, 3, 9) (the corner point p is set to the origin). In (b), triangles
returned by algorithm 2 are smaller and the last one de�nes a reduced basis.

algorithm algorithm 1 algorithm 2

avg. nb. steps 21.8 20.9
nb. non-reduced 4803115 (73%) 924 (0.01%)

avg. nb. reductions 5.5 1

In practice, algorithm 2
drastically reduces the cases
of non-reduced basis. We have
compared the two variants for
normal vectors ranging from
(1, 1, 1) to (200, 200, 200). There are 6578833 vectors with relatively prime com-
ponents in this range. It turns out that less than 0.01% of the basis returned by
algorithm 2 are non-reduced against about 73% for algorithm 1.

5 Applications to digital surfaces

In this section, we consider a set of voxels, Z, where voxels are seen as unit cubes
whose vertices are in Z3. The digital boundary, BdZ, is de�ned as the topological
boundary of Z. Since a digital boundary looks locally like a digital plane, it is
natural to run our algorithm at each reentrant corner of the digital boundary
with predicate �Is x in BdZ� in order to estimate the local normal vector to the
volume Z (see �g. 5).

Although we do not go into details here due to space limitations, we can
mention the following points:

� Our algorithm works well on digitally convex shapes Z. The set of points
x ∈ BdZ located below some facet F of Conv(BdZ) whose normal vector

Fig. 5. Our algorithm has been runned at each reentrant corner of a digital plane (left)
and an ellipse (right). The last triangle of each run is printed.

is in the �rst octant and such that points x + s are strictly above F , is a
piece of a digital plane, P. If the starting reentrant corner is a lower leaning
point of P, the last triangle computed by our algorithm is included in F (see
�g. 5). We call such triangles patterns of P.

� When starting from a corner that is not a lower leaning point of a facet
of Conv(BdZ), the algorithm returns a triangle called reduced pattern of P
which is approximately aligned with the plane.

� It is possible to detect and remove reduced patterns with a simple algorithm.
Put in queue every point q of all computed triangles, together with their
three vectors mk. Loop on the queue while it is not empty by popping them
in sequence. For each popped point q and vectors mk, check if q translated
by any of mk is a shifted point q′ of another triangle. In this case, mark q′

as reduced pattern and put it back in queue but now with the vectors mk.
Otherwise, do nothing. When the algorithm stops, since reduced patterns
have shifted points above the shifted point of the lower leaning point, all
reduced patterns are marked.

� If the shape is not convex, the algorithm can be adapted to detect planarity
defects. The idea is that ΣT ∩ BdZ should contain at most three elements
if it is locally a piece of plane. Moreover these elements must always be
consecutive neighbors around q in ΣT. We thus stop the algorithm whenever
at least one of the two previous conditions fails, meaning that the surface is
locally non convex. We also check that each new triangle is separating onto
the digital boundary: for any point x ∈ BdZ below a triangle of shift s, the
point x+ s must be above the triangle.

6 Conclusion and perspectives

In this paper, we proposed a new algorithm that computes the parameters of a
digital plane. In opposition to usual plane recognition algorithms, this algorithm
greedily decides on-the-�y which points have to be considered like in [7]. Com-
pared to [7], this algorithm is however simpler because it consists in iterating one
geometrical operation, which is fully characterized in lemma 2. In addition, the

returned solution, which is described by a triangle parallel to the sought plane,
is close to the starting point. On one hand, the starting point must projects onto
the triangle and on the other hand, the two shortest edge vectors of the triangle
almost always form a reduced basis (in the second version of our algorithm).

For the future, we would like to �nd a theoretically sound way of always
getting a reduced basis, without any extra reduction operation. Moreover, we
would like to �nd a variant of our algorithm in order to retrieve complement
triangles whose Bezout point is not above the triangle. For sake of completeness,
we are also interested in degenerate cases, where at least one component is null.
After having achieved these goals, we would have a complete working tool for
the analysis of digitally convex surfaces. In order to correctly process concave or
saddle parts however, we must precisely associate to a given triangle a piece of
digital plane containing the triangle vertices and having the same normal vector
than the triangle one. Although there are many such pieces of digital plane for
a given triangle, we hope that this work will provide a canonical hierarchy of
pieces of digital plane.

References

1. E. Charrier and L. Buzer. An e�cient and quasi linear worst-case time algo-
rithm for digital plane recognition. In Discrete Geometry for Computer Imagery
(DGCI'2008), volume 4992 of LNCS, pages 346�357. Springer, 2008.

2. E. Charrier and J.-O. Lachaud. Maximal planes and multiscale tangential cover
of 3d digital objects. In Proc. Int. Workshop Combinatorial Image Analysis (IW-
CIA'2011), volume 6636 of Lecture Notes in Computer Science, pages 132�143.
Springer Berlin / Heidelberg, 2011.

3. F. de Vieilleville, J.-O. Lachaud, and F. Feschet. Maximal digital straight segments
and convergence of discrete geometric estimators. Journal of Mathematical Image
and Vision, 27(2):471�502, February 2007.

4. H. Doerksen-Reiter and I. Debled-Rennesson. Convex and concave parts of digital
curves. In R. Klette, R. Kozera, L. Noakes, and J. Weickert, editors, Geometric
Properties for Incomplete Data, volume 31 of Computational Imaging and Vision,
pages 145�160. Springer, 2006.

5. Y. Gérard, I. Debled-Rennesson, and P. Zimmermann. An elementary digital plane
recognition algorithm. Discrete Applied Mathematics, 151(1):169�183, 2005.

6. C. E. Kim and I. Stojmenovi¢. On the recognition of digital planes in three-
dimensional space. Pattern Recognition Letters, 12(11):665�669, 1991.

7. J.-O. Lachaud, X. Provençal, and T. Roussillon. An output-sensitive algorithm to
compute the normal vector of a digital plane. Theoretical Computer Science, 2015.
Accepted. To appear.

8. P. Veelaert. Digital planarity of rectangular surface segments. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 16(6):647�652, 1994.

