
An Analytic Calculus for the Intuitionistic Logic of Proofs

Brian Hill

GREGHEC (CNRS and HEC Paris)

Paris, 1 rue de la Libération,

78351 Jouy-en-Josas, France

brian@brian-hill.org

Francesca Poggiolesi

IHPST (CNRS),

13 rue du Four,

75006 Paris, France

poggiolesi@gmail.com

Abstract

The goal of this paper is to take a step towards the resolution of the
problem of finding an analytic sequent calculus for the logic of proofs.
For this, we focus on the system Ilp, the intuitionistic version of the logic
of proofs. First we present the sequent calculus Gilp that is sound and
complete with respect to the system Ilp; we prove that Gilp is cut-free
and contraction-free, but it still does not enjoy the subformula property.
Then, we enrich the language of the logic of proofs and we formulate in
this language a second Gentzen calculus Gilp∗. We show that Gilp∗ is a
conservative extension of Gilp, and that Gilp∗ satisfies the subformula
property.

Keyword cut-elimination, logic of proofs, normalisation, proof sequents 2010
MSC: 03F05, 03B60

1 Introduction

The old question discussed by Gödel in 1933/38 concerning the intended prov-
ability semantics of the classical modal logic S4 and intuitionistic logic IPC
was finally settled by the logic of proofs introduced by Artemov [1]. The logic
of proofs Lp is a natural extension of classical propositional logic by means of
proof-carrying formulas. The operations on proofs in the logic of proofs suffice
to recover the explicit provability of modal and intuitionistic logic.

Many results have been proved for the logic of proofs Lp: e.g. the deduction
theorem, the substitution lemma and the internalisation of proofs [1]. Moreover,
Lp has been shown to be sound and complete with respect to the modal logic
S4, and with respect to Peano Arithmetic [1].

There also exists a version of Lp with an intuitionistic base, namely Ilp,
introduced in [2]. Unsurprisingly, analogous results can be obtained for the logic
of proofs with an intuitionistic base. Indeed, in Ilp too, the deduction theorem,

1

the substitution lemma and the internalisation of proofs hold. Moreover, Ilp is
sound and complete with respect to the modal logic S4 with an intuitionistic
base.

From a Gentzen-style point of view, two similar sequent calculi have been
proposed for the two systems Lp and Ilp, respectively (see [2]). Although simple
and cut-free, these sequent calculi fail to satisfy the subformula property; thus
they are not analytic calculi. The aim of this paper is to take an important step
towards developing a calculus that genuinely enjoys the subformula property.1

We proceed in the following way and only for the system Ilp.
First, we introduce the notion of proof sequent, which is a generalisation of

the standard notion of sequent. Proof sequents are the result of appending a
multiset of natural deduction derivations written in sequent style to a standard
sequent. Proof sequents carry the advantage of allowing a distinction between
two different levels - the propositional level and the proof polynomial level -
which is characteristic of the logic of proofs. By exploiting proof sequents we
construct two calculi, Gilp and Gilp∗. Gilp is a calculus for the system Ilp,
which, although it enjoys several interesting properties, does not satisfy the sub-
formula property. It plays the role of an auxiliary calculus useful for obtaining
an analytic calculus. After arguing that the lack of analyticity may be traced
to the poorness of the language for the logic of proofs, we proceed to develop a
second sequent calculus, Gilp∗, based on an enhanced language. This enhanced
language is obtained by using the functional symbols of the lambda calculus in-
stead of the proof constants that are characteristic of the logic of proofs. We
prove that Gilp∗ enjoys the subformula property and that it is a conservative
extension of Gilp; therefore Gilp∗ represents the framework where the analyt-
icity of the logic of proofs is reached. Note that calculus Gilp∗, together with
the language on which is based, not only constitute an attempted solution to
the problem of the lack of an analytic calculus, but can also be seen as a new
natural and interesting development of the logic of proofs where future research
can be carried out.

Although the analyticity of his calculi was originally proved by Gentzen to
achieve consistency, today this result has become a cornerstone of proof theory,
even beyond the concern of consistency. The reasons of its importance are both
technical and philosophical and are documented by a wide literature (e.g. see
[3, 6, 7, 17]). The importance of having an analytic calculus for the intuitionistic
logic of proofs, which is the main goal of this paper, is thus to be understood
in this direction: it does not only serve to prove the consistency of the logic
(this is also obtainable by embedding Ilp into IS4), but it serves to provide this
logic with a proof theory appealing and significant both from a technical and

1It is possible to formulate sequent systems with the subformula property by adding indexes
to standard justification logic operators à la Renne [12], or explicitly representing (potentially
non cut-free) proofs themselves à la Saveetev [13]. Beyond being somewhat artificial, these
approaches offer little insight into the question of the analyticity for the logic of proofs. For
this reason, we do not take them to provide a genuine resolution of the problem of the lack of
an analytic calculus for the logic of the proofs.

2

philosophical point of view.2

Three works are related to the present one: in the papers [10, 9] the calculus
Gilp is introduced and a rough idea of how to construct the calculus Gilp∗ is
briefly suggested. The paper [11] mainly concerns a philosophical argument in
favor of the analyticity of a sequent calculus, but exploits as a case-study the
proof theory for the logic of proofs. The present paper is the only one where both
systems Gilp and Gilp∗ are presented and the proof of their relation and of
the analyticity of the logic of proof via the system Gilp∗ is fully demonstrated.

The paper is organised as follows. Section 2. We will introduce the calculus
Gilp for the intuitionistic logic of proofs. Sections 3–4. We will show that
this calculus is contraction-free and cut-free; moreover the rules introducing
propositional connectives and proof polynomials are symmetric (see [8] and [16]
for a precise description of this property). However, Gilp does not satisfy the
subformula property. Section 5. In the light of this result, we will analyse
the logic of proofs in detail and attempt to find the reason for its “resistance”
to analyticity. We will show that the reason is linked to the language of the
logic of proofs. Section 6. We will change the language of the logic of proofs
and build the calculus Gilp∗ in this new language. We will show that Gilp∗

satisfies the same properties as Gilp, namely it is cut-free, contraction-free
and the rules introducing propositional connectives and proof polynomials are
symmetric. Section 7. We will show that Gilp∗ enjoys the subformula property,
and that - Section 8. - it can be thought of as a conservative extension of Gilp.

2 The calculus Gilp

Definition 2.1. The language Llp contains: (i) the usual language of propo-
sitional boolean logic, (ii) proof variables x0, x1, x2, ..., (iii) proof constants
c0, c1, c2, ..., (iv) the functional symbols +, !, and ·, and (v) the operator symbol
of the type “term : formula”.

We will use a, b, c, ... for proof constants, and u, v, w, ... for proof variables.

Definition 2.2. Terms are defined by the rule

t := xi | ci | !t | t+ s | t · s

We call these terms proof polynomials and denote them by q, r, s, t,

Definition 2.3. Formulas are defined by the rule

A := S | ⊥ | A ∧B | A ∨B | A→ B | t : A

where S stands for any sentence variable.
2The situation could be thought of as analogous to that of modal logic (e.g. see [8]). For

many decades the proof theory of modal logic has encountered a general skepticism because
the sequent calculi elaborated for modal logic did not enjoy the subformula property (modal
logic was however clearly consistent). As soon as this result was achieved, the proof theory
for modal logic started to blossom.

3

Definition 2.4. The set of subformulas of a formula A is the smallest set of
formulas containing A such that, if A0 ◦ A1 is in the set, where ◦ ∈ {∧,∨,→},
then so are A0 and A1; and if t : A0 is in the set, then so is A0.

The Hilbert system Ilp is composed of:

A0 Axioms of intuitionistic logic formulated in the language Llp

A1 t : (A→ B)→ (s :A→ (t · s) :B)

A2 t :A→ A

A3 t :A→!t : t :A

A4 ti :A→ (t0 + t1) :A, where i = 0, 1

R1 Modus Ponens

R2 If A is one of the axioms A0 - A4, and c is a proof constant, then c : A is
a theorem

The principal innovation of the logic of proofs consists in the use of proof
polynomials. Where in modal logic we have formulas of the form 2A, in the logic
of proofs we have formulas of the form t :A. Accordingly, from the perspective
of the sequent calculus, we want logical rules that introduce this type of formula
on the right and on the left side of the sequent, i.e. we want symmetric rules
for proof polynomials (for a discussion of the importance of having symmetric
rules see [8] and [16]). In order to reach this goal, we look at the semantic
interpretation of formulas of the form t :A, and try to reflect this interpretation
in the Gentzen framework. Following Mkrtychev [5]

t :A is true if, and only if, A is true and t is a proof of A

While it is of course easy to express in the Gentzen framework the fact that the
formulas A and t :A are true (i.e. it is enough to collocate them on the right
side of the sequent), the fact that “t is a proof of A” is more difficult to convey.
Our solution is to introduce the notion of typed natural deduction sequent, or
TND-sequent for short.

Definition 2.5. A TND-sequent is an object of the form

s1 :B1, ..., sn :Bn ` t :A

where the formulas s1 :B1, ..., sn :Bn form a multiset.

TND-sequents can be seen as natural deduction derivations, written in se-
quent style, where the only formulas that occur are of the form t :A. As will
become clear below, the idea is to put side by side a standard sequent and a
multiset of TND-sequents. This way we can intuitively interpret TND-sequents
in the following way: the formula which lies on the right side of the ` expresses

4

the fact that t is a proof of A, while the formulas that lie on the left side of the
` represent the assumptions by means of which we can construct the proof t of
A. This will become clear once we introduce the rules of the calculus Gilp.

Syntactic Notation

- M,N, ... stand for multisets of formulas,

- M,N, ... stand for multisets of formulas of the form t :A,

- M,N, ... stand for multisets of formulas that are not of the form t :A,

- T1, T2, ... stand for TND-sequents,

- Σ, Θ, ... stand for sequents, that is objects of the form M ⇒ C,

- G,H, ... stand for multisets of TND-sequents.

Definition 2.6. The notion of proof sequent is defined in the following way:

- if Σ is a sequent, then Σ is a proof sequent,

- if Σ is a sequent and G ≡ T1 | ... | Tn is a multiset of TND-sequents, then
G | Σ is a proof sequent.

Definition 2.7. The intended interpretation τ of a proof sequent is:

- (M ⇒ C)τ := (
∧
M → C),

- (M1 ` t1 :A1 | ... | Mn ` tn :An | M ⇒ C)τ := (
∧

M1 → t1 :A1) ∧ ... ∧
(
∧

Mn → tn :An) ∧ (
∧
M → C)

At first glance, proof sequents might look like hypersequents (e.g. [3]), but
in fact they are quite different for the following two reasons. Hypersequents are
multisets of sequents, while proof sequents are composed by only one sequent
plus a collection of TND-sequents; hypersequents are standardly interpreted
disjunctively, while proof sequents are interpreted conjunctively.

By exploiting proof sequents, we formulate the calculus Gilp. Gilp is com-
posed of:

Axioms

t1 :A1 ` t1 :A1 | ... | tn :An ` tn :An | S,M ⇒ S

t1 :A1 ` t1 :A1 | ... | tn :An ` tn :An |M,⊥ ⇒ C

5

Propositional Rules

G | A,B,M ⇒ C

G | A ∧B,M ⇒ C
∧A

G |M ⇒ A G |M ⇒ B

G |M ⇒ A ∧B ∧K

G | A,M ⇒ C G | B,M ⇒ C

G | A ∨B,M ⇒ C
∨A

G |M ⇒ Ai
G |M ⇒ A0 ∨A1

∨K

G | A→ B,M ⇒ A G | B,M ⇒ C

G | A→ B,M ⇒ C
→A

G | A,M ⇒ B

G |M ⇒ A→ B
→K

Proof Rules

G | t :A,A,M ⇒ C

G | t :A,M ⇒ C
PA

G | N,P ` t :A | N,Q,M⇒ A

G | N,P,Q,M⇒ t :A PK

Polynomial Rules

G |M ` ti :A | Σ
G |M ` (t0 + t1) :A | Σ +

G |M ` t :A | Σ
G |M `!t : t :A | Σ !

G |M,P ` t : (A→ F) |M,Q ` t′ :A | Σ
G |M,P,Q ` (t · t′) :F | Σ �

G | Σ
G | ` c :A | Σ ci

where in the rules ∨K and +, i = 0, 1, and in the rule ci, A is one of the
axioms A0 - A4 and c is a constant. We adopt the convention that whenever we
write M,P ` ... |M,Q ` ... then P and Q are disjoint, so that M contains all
the formulas of the form s :B which are common to these TND-sequents (and
similarly for more than two TND-sequents, or a TND-sequent and a sequent).
In the calculus Gilp, this convention applies to the rule PK and the rule �.

The rules PA and PK reflect the semantic interpretation of formulas of the
form t :A, when read top-down. Indeed the rule PA tells us that if A is false
then t : A is false. As for the rule PK, it tells us that if A is true and t is a
proof of A, then t :A is true. Note that thanks to PA and PK we have rules
that introduce the proof polynomial t on the left and right side of the sequent;
that is, we have symmetric rules.

As for the polynomial rules, we observe that they only operate on TND-
sequents. Basically, these rules tell us when we can apply the functional symbols
!, · and + on proofs. The rule ci, on the other hand, tells us that we can introduce
the fact that c is a proof of one of the axioms A0 − A4. The fact that c is a
proof of one of the axioms A0 − A4 does not depend on any assumption, since
the left side of the ` is empty.

6

Remark 2.8. Note that there is no rule which operates on formulas that occur
on the left side of the `, and so, while the formulas that occur on the right side
of the ` can be modified, those on the left side remain untouched throughout
a derivation. Moreover, in the axioms of Gilp, TND-sequents can only have
the form s :B ` s :B. Therefore, for any Gilp-derivation of the proof sequent
G | s1 :B1, ..., sn :Bn ` t :A | Σ, the axioms must contain the TND-sequents
s1 :B1 ` s1 :B1 | ... | sn :Bn ` sn :Bn. From now on we call the TND-sequents of
the form s1 :B1 ` s1 :B1 | ... | sn :Bn ` sn :Bn TND-axioms. We use M, N, ...
to denote the TND-axioms from which the TND-sequents M ` t :A, N ` t′ :A′,
... have been derived, respectively; we use G,H, ... to denote the TND-axioms
from which the proof-sequents G and H have been derived.

Definition 2.9. As is standard in the literature, we say that a formula oc-
curring in the premise of a rule R is an auxiliary formula whenever the rule
R operates on that formula. Analogously, we say that a TND-sequent is an
auxiliary TND-sequent of a rule R whenever the rule R operates on the formula
t :A occurring on the right side of the ` of the TND-sequent. (Since no rule R
operates on formulas occurring on the left side of the `, this terminology is not
misleading.) Just as a rule R may have several auxiliary formulas, it may have
several auxiliary TND-sequents.

3 Admissiblity of Structural Rules

In this section we will show which structural rules are admissible in the cal-
culus Gilp. Moreover, in order to show that the rule of contraction is height-
preserving admissible, we will show that the propositional left rules and the
proof rule PA are height-preserving invertible. In Section 4 it will be proved
that the cut-rules, cut∗ and cut, are admissible.

We will bring this section to a close with the proof that the calculus Gilp
is sound and complete with respect to the calculus Ilp.

Definition 3.1. We associate to each derivation d in Gilp a natural number
h(d), the height of d. Intuitively, the height corresponds to the length of the
longest branch in a tree-derivation d, where the length of a branch is the number
of nodes in the branch minus one. We omit the standard inductive definition.

Definition 3.2. d `n G | Σ means that d is a derivation of G | Σ in Gilp, with
h(d) ≤ n. We write 〈n〉G | Σ for: G | Σ is the conclusion of a derivation d with
height ≤ n.

Lemma 3.3. Any proof sequent of the form G | M,C ⇒ C is derivable in
Gilp, for any formula C, and any multiset of TND-sequents G derivable from
the TND-axioms and the polynomial rules.

Proof. By straightforward induction on C.

7

Figure 1: Structural Rules of Gilp

G |M ⇒ C

G | A,M ⇒ C
W

G | Σ
G | s :B ` s :B | Σ EW

G | A,A,M ⇒ C

G | A,M ⇒ C
C

G |M ` t :A | Σ
G | Σ El

G |M,P ` t :A | t :A,M,Q ` s :B | Σ
G |M,P,Q ` s :B | Σ cut∗t:A

G |M ⇒ A H | A,P ⇒ C

G | H |M,P ⇒ C
cutA

Lemma 3.4. In Gilp the following holds:

(i) the weakening rules W and EW (see Figure 1) together with the rule El
are height-preserving admissible.

(ii) The propositional left-rules and the proof rule PA are height-preserving
invertible.

(iii) The contraction rule C (see Figure 1) is height-preserving admissible.

Proof. (i) follows from a straightforward induction on the height of the deriva-
tion of the premise. Similarly for the ∧A, ∨A rules in (ii). The inverse of the
rule PA is just weakening. In case of the rule→A, the invertibility is only shown
with respect to the premise G | B,M ⇒ C.3 (iii) is proved by induction on the
height of the derivation of the premise G | A,A,M ⇒ C. If G | A,A,M ⇒ C
is an axiom, so is G | A,M ⇒ C. If G | A,A,M ⇒ C is preceded by a rule R
which does not have any of the two occurrences of the formula A as auxiliary,
we proceed by exploiting the inductive hypothesis. Finally let us consider the
case where G | A,A,M ⇒ C is preceded by a propositional or proof rule and
one of the two occurrences of the formula A is auxiliary. Then the rule which
concludes G | A,A,M ⇒ C is an A-rule and we have to analyze the following
four cases: ∧A, ∨A, → A, PA. The first three cases are dealt with in the
standard way. We just consider the case of the rule PA, which is:

〈n−1〉G | t :A, t :A,A,M ⇒ C
〈n〉G | t :A, t :A,M ′ ⇒ C

PA 4
〈n−1〉G | t :A,A,M ⇒ C
〈n〉G | t :A,M ′ ⇒ C

PA

3For further details on this rule see [15, Ch. 3]
4We use the symbol to denote that the premise on the right has been obtained from the

premise on the left by applying the inductive hypothesis.

8

Theorem 3.5. For all formulas A, and for all proof sequents G | Σ,

[i] if G | Σ is derivable in Gilp, then (G | Σ)τ is a theorem of Ilp.

[ii] If A is a theorem of Ilp, then ⇒ A is derivable in Gilp.

Proof. By induction on the height of derivations in Gilp and Ilp, respectively.
As concerns [i], we omit the proof which is easy but quite tedious. As for [ii],
the intuitionistic axioms and the modus ponens rule are proved as usual; the
derivations of the axioms A2 − A4 are straightforward. In order to familiarise
the reader with the calculus Gilp, we present the derivation of axiom A1.

Gilp `⇒ s : (A→ B)→ (t :A→ (s · t) :B)5

t :A ` t :A | t :A,A→ B,A⇒ A s : (A→ B) ` s : (A→ B) | s : (A→ B), B ⇒ B

s : (A→ B) ` s : (A→ B) | t :A ` t :A | s : (A→ B), A→ B, t :A,A⇒ B
→A

s : (A→ B) ` s : (A→ B) | t :A ` t :A | s : (A→ B), t :A,A⇒ B

s : (A→ B) ` s : (A→ B) | t :A ` t :A | s : (A→ B), t :A⇒ B

s : (A→ B), t :A ` (s · t) :B | s : (A→ B), t :A⇒ B

s : (A→ B), t :A⇒ (s · t) :B
s : (A→ B)⇒ (t :A→ (s · t) :B)
⇒ s : (A→ B)→ (t :A→ (s · t) :B) →K

→K

PK

�

PA

PA

4 Cut-admissibility

In this section we will prove that the two cut-rules, cut∗ and cut, are admissible
in the calculus Gilp. For this, we introduce the following two lemmas.

Lemma 4.1. In Gilp each of the polynomial rules +, ! and � permutes up with
any rule whose conclusion is not one of its auxiliary TND-sequents.

Proof. The proof is straightforward given that the polynomial rules and any
other rule under consideration operate in different parts of a proof sequent. To
illustrate this, we consider the case of the rule ! and the rule PK:

G |M ` t :A | N,P ` r :C | N,Q,M⇒ C

G |M ` t :A | N,P,Q,M⇒ r : C
G |M `!t : t :A | N,P,Q,M⇒ r : C !

PK

5To aid readability, we use the multiplicative version of the rule → A. This rule can be
easily derived by means of the structural rules of Gilp.

9

↓

G |M ` t :A | N,P ` r :C | N,Q,M⇒ C

G |M `!t : t :A | N,P ` r :C | N,Q,M⇒ C

G |M `!t : t :A | N,P,Q,M⇒ r : C PK

!

Lemma 4.2. The rule

G |M,Q ` t :A | t :A,P,Q ` s :B | Σ
G |M,P,Q ` s :B | Σ cut∗t:A

is admissible in the calculus Gilp.

Proof. We consider the derivation d of the premise G | M,Q ` t : A | t :
A,P,Q ` s :B | Σ. By Lemma 4.1, we can assume without loss of generality
that in d, the rules involved in the derivation of the TND-sequent M,Q ` t :A
have been applied first, then the rules involved in the derivation of the TND-
sequent t : A,P,Q ` s : B, and then all the other rules. Furthermore, by the
observation in Remark 2.8, the TND-sequent t :A ` t :A occurs in the axioms
of d and it is an auxiliary TND-sequent in the derivation of the TND-sequent
t :A,P,Q ` s :B.

We modify d to obtain a derivation d′ as follows. First, we remove the TND-
sequent t :A ` t :A from the axioms. Then we apply the first set of rules in d to
derive the TND-sequent M,Q ` t :A. Then we apply the second set of rules in
d, with the sole difference that, for any rule for which t :A ` t :A is an auxiliary
TND-sequent in d, M,Q ` t :A is the corresponding auxiliary TND-sequent in
d′. (This can be done since what counts in polynomial rules is the formula that
occurs on the right side of the `, and not the formulas that are on the left side
of the `.) At this point the TND-sequent M,P,Q ` s :B has been derived. The
rest of the rules applied in d′ are identical to the remaining rules in d. Hence d′

is the required derivation of G |M,P,Q ` s :B | Σ.

Lemma 4.3. If

... d1

G |M ⇒ A

... d2

H | A,P ⇒ C

G | H |M,P ⇒ C
cutA

and d1 and d2 do not contain any other application of the cut rule, then we can
construct a derivation of G | H | M,P ⇒ C without any application of the cut
rule.

10

Proof. The proof is developed by induction on the complexity of the cut formula,
which is the number (≥ 0) of occurrences of logical symbols (a proof polynomial
s counting as such) in the cut formula A, with subinduction on the sum of the
heights of the derivations of the premises of the cut-rule. We distinguish cases
by the last rule applied on the left premise. There are three general cases to
consider. Case 1. G | M ⇒ A is an axiom. Case 2. G | M ⇒ A is inferred
by a rule R in which A is not the auxiliary formula. Case 3. G | M ⇒ A is
inferred by a rule R in which A is the auxiliary formula. The first two cases, as
well as Case 3 where the rule R inferring the formula A is a propositional rule,
are treated in the standard way. We show in detail the subcase where R is PK
and A = s :B. We have the following situation:

G | N,Q ` s :B | P,Q,M⇒ B

G | N,P,Q,M⇒ s :B PK

...
H | s :B,P ⇒ C

G | H | N,P,Q,M, P ⇒ C
cuts:B

We have to consider the last ruleR′ of d2. If there is no ruleR′ which introduces
H | s :B,P ⇒ C because H | s :B,P ⇒ C is an axiom, then the conclusion
is also an axiom. If R′ is a rule in which s : B is not auxiliary, then we can
proceed in the standard way by induction on the height (i.e. analogously to
Case 2 above) except for the following situation:

G | N,Q ` s :B | P,Q,M⇒ B

G | N,P,Q,M⇒ s :B
PK

H | s :B,N′,Q′ ` r :C | P′,Q′,P⇒ C

H | s :B,N′,P′,Q′,P⇒ r :C
PK

G | H | N,N′,P,P′,Q,Q′,M,P⇒ r :C
cuts:B

We replace this derivation with the following one:

H | s :B,N′,Q′ ` r :C | P′,Q′,P⇒ C

G | H | N | Q | s :B,N′,Q′ ` r :C | P,P′,Q,Q′,M,P⇒ C

G | H | N,Q ` s :B | s :B,N′,Q′ ` r :C | P,P′,Q,Q′,M,P⇒ C

G | H | N,Q,N′,Q′ ` r :C | P,P′,Q,Q′,M,P⇒ C

G | H | N,N′,P,P′,Q,Q′,M,P⇒ r :C PK

Bcut

?

W∗

where W ∗ stands for: repeated application of the weakening rules W and EW ,
while with the ? we refer to those polynomial rules used in the derivation d1 to
obtain the TND-sequent N,Q ` s :B and the TND-sequents of G.

11

Note that a case analogous to the previous one is

G | N,Q ` s :B | P,Q,M⇒ B

G | N,P,Q,M⇒ s :B
PK

H | s :B,N′,Q′ ` r :C | s :B,P′,Q′,P⇒ C

H | s :B,N′,P′,Q′,P⇒ r :C
PK

G | H | N,N′,P,P′,Q,Q′,M,P⇒ r :C
cuts:B

that we replace with the following cut, which is eliminable by induction on the
sum of the heights of the derivations of the premises of cut

G | N,P,Q,M⇒ s :B H | s :B,N′,Q′ ` r :C | s :B,P′,Q′,P⇒ C

G | H | s :B,N′,Q′ ` r :C | N,P,P′,Q,Q′,M,P⇒ C
cuts:B

and then we obtain the conclusion by developing the proof in a way similar to
the one shown above.

Let us finally analyse the case whereR′ is the rule PA. We have the following
situation:

G | N,Q ` s :B | P,Q,M⇒ B

G | N,P,Q,M⇒ s :B PK
H | s :B,B, P ⇒ C

H | s :B,P ⇒ C
PA

G | H | N,P,Q,M, P ⇒ C
cuts:B

We reduce to

G | N,Q ` s :B | P,Q,M⇒ B

G | N,P,Q,M⇒ s :B H | s :B,B, P ⇒ C

G | H | B,N,P,Q,M, P ⇒ C
cuts:B

G | G | H | N,Q ` s :B | N,P,P,Q,Q,M,M, P ⇒ C

G | G | H | N,P,P,Q,Q,M,M, P ⇒ C
E

G | H | N,P,Q,M, P ⇒ C
C∗+E∗

cutB

where the first cut is eliminable by induction on the sum of the heights of the
derivations of the premises of cut and the second cut is eliminable by induction
on the complexity of the cut formula.

Theorem 4.4. Every derivation d of a proof sequent G | Σ in Gilp + cut can
be effectively transformed into a cut-free derivation d′ of G | Σ.

Proof. It follows from the previous lemma by induction on the number of cuts.

12

5 In between

We have thus introduced a new sequent calculus Gilp for the intuitionistic
logic of proofs. Despite the fact that this calculus possesses several desirable
properties, such as the admissibility of the contraction rules or the invertibility
of the left logical rules, it does not solve the problem of the lack of the subformula
property for the logic of proofs.

Consider, for example, the following theorem of Ilp

t :A ∧ s :B → (c · t · s) : (A ∧B)

Informally speaking this theorem says that, if we have a proof t of the formula
A, and a proof s of the formula B, then we can construct the proof (c · t · s) of
the formula A ∧ B. The proof (polynomial) (c · t · s) is constructed by means
of the rule ci, which introduces the formula c : (A → (B → A ∧ B)), and two
applications of the rule �, in the following way:

s :B ` s :B | t :A ` t :A
s :B ` s :B | t :A ` t :A | ` c :A→ (B → (A ∧B))

ci

s :B ` s :B | t :A ` (c · t) :B → (A ∧B)
�

s :B, t :A ` (c · t · s) : (A ∧B)
�

The construction here above involves violation of the subformula property:
the formulas c :A→ (B → (A∧B)) and (c · t) :B → (A∧B) are not subformulas
(according to Definition 2.4) of any of the formulas that occur in the conclusion.
This is due to the fact that the formula c :A→ (B → (A∧B)) is introduced into
the construction by an application of the ci rule, and the two formulas A and
B are subsequently eliminated in two applications of the � rule. The constants
followed by the two dots, in the proof polynomial c · t · s, reflect this double
violation of the subformula property.

Suppose that you want an analytic proof for the formula A ∧ B. This in-
volves two parallel things: an alternative proof polynomial r that labels the
formula A ∧ B and an analytic construction for this proof polynomial r. A
quick reflection on the proof polynomial symbols (other than the dot) of Llp
and their corresponding rules in Gilp is enough to realize that there is no way
to obtain these two things in Ilp: indeed, the only other symbols, and corre-
sponding rules, are ! and +, which are evidently inadequate for this purpose.
Thus it seems that the language of the logic of proofs, together with the asso-
ciated rules of the calculus Gilp, are too poor to formulate analytic proofs at
the proof polynomial level.

In the light of this diagnosis, the remedy to this situation and the route
towards the desired analyticity passes through a modification of the language
of the logic of proofs together with an enhancement of the rules of the calculus
Gilp. This is exactly what we shall do. More precisely, we extend the language
of the logic of proofs by means of the functional symbols of the lambda calculus
and we add to Gilp the corresponding rules.

13

In order to motivate the use of the functional symbols of the lambda calculus,
let us focus on the constants of the logic of proofs. We can think of each constant
introduced by the rule ci as being labelled by one and only one axiom of the
logic of proofs (see Section 8 for further details). The constant c in the example
above is labelled by the axiom A→ (B → A∧B). In the typed lambda calculus,
we know that each intuitionistic axiom types a (closed) lambda term in normal
form. For example, the lambda term λx.λy.p(x, y) is associated with the axiom
A → (B → A ∧ B). Therefore there seems to be the following correspondence:
constants are associated with axioms, and axioms type lambda terms in normal
form.

Suppose that we replace constants by the appropriate lambda terms in nor-
mal form. Then the formula

t :A ∧ s :B → (c · t · s) : (A ∧B)

becomes

t :A ∧ s :B → ((λx.λy.p(x, y)) · t · s) : (A ∧B)

An important difference between the constants of the logic of proofs and
lambda terms is that whilst the former have no internal structure, and so can
only be introduced in the ci rule, the latter do have internal structure, and
can themselves be constructed. Consider, for example, the proof polynomial
(λx.λy.p(x, y)) · t · s, which can be constructed in the following way:6

t :A ` t :A | s :B ` s :B | x : A ` x : A | y : B ` y : B
t :A ` t :A | s :B ` s :B | x : A, y : B ` (p(x, y)) : (A ∧B)

t :A ` t :A | s :B ` s :B | x : A ` (λy.p(x, y)) : (B → (A ∧B))
t :A ` t :A | s :B ` s :B | ` ((λx.λy.p(x, y))) : (A→ (B → (A ∧B)))

s :B ` s :B | t :A ` ((λx.λy.p(x, y)) · t) :B → (A ∧B)
t :A, s :B ` ((λx.λy.p(x, y)) · t · s) : (A ∧B)

The construction above involves the analogue of what, in natural deduction,
is an introduction rule followed by an elimination rule – or a ‘cut’ –, and it
is known that such combinations of rules yield violations of the subformula
property. Given that the construction is reflected at the proof polynomial level,
a similar point holds for the term ((λx.λy.p(x, y)) · t · s), which contains two
redexes. Thus the use of lambda terms at the place of constants makes our
problems with the loss of analyticity much clearer.

Moreover, the introduction of lambda terms allows us to rely on standard
methods for eliminating such “cuts” or redexes: by normalization. Indeed the
proof above can be reduced to this one,

6We freely use the standard rules of the lamda-calculus (e.g. [15]) to construct the following
derivation. We allow ourselves such a freedom for the sake of an explanation in intuitive terms.
The rules for constructing appropriate lambda terms will be given in the next section.

14

t :A ` t :A | s :B ` s :B
t :A, s :B ` (p(x, y)) : (A ∧B)

and correspondingly the formula t :A ∧ s :B → p(t, s) : (A ∧ B) is a reduct of
t : A ∧ s : B → ((λx.λy.p(x, y)) · t · s) : (A ∧ B). Hence, given a proof t of A
and a proof s of B, we can construct a proof, which respects the subformula
property, of a formula of the form r : A∧B. The appropriate r is p(t, s), which,
as suggested, does not belong to the standard language of the logic of proofs,
but to a language extended by the addition of lambda terms.

In what follows we exploit these intuitions. We firstly define a new language
L∗lp, obtained from the standard language for the logic of proofs Llp by replacing
constants with the functional symbols of the lambda calculus. Beyond the
functional symbols of the standard lambda calculus, which type the axioms of
intuitionistic logic, we also add the functional symbols of the lambda calculus
for the logic of proofs [2], which serve to type the specific axioms of the logic of
proofs, i.e. the axioms A1 − A4. We then construct a sequent calculus Gilp∗

that extends the calculus Gilp thanks to the addition of appropriate rules for
the new symbols of L∗lp. We show that Gilp∗ enjoys the subformula property.
Finally we prove that Gilp∗ can be thought of as the framework where the
analyticity of the logic of proofs is reached, since it is a conservative extension
of Gilp.

6 The calculus Gilp∗

In this section we will introduce the language L∗lp and we will formulate in this
new language the sequent calculus Gilp∗. Moreover we will show that Gilp∗ is
cut-free and contraction-free and that its left-side logical rules are invertible.

Definition 6.1. The language L∗lp contains: (i) the usual language of proposi-
tional boolean logic, (ii) proof variables x0, x1, x2, ..., (iii) the functional symbols
+, !, p, pi, ki, E∨x,y, E⊥S (for any atomic formula S7), λx, ·, Pt,t′ , Ut, Bt, St (for
any proof polynomials t, t′) (iv) the operator symbol of the type “term : for-
mula.” Terms, which we call proof polynomials as before, are built from the
proof-variables by the functional symbols, and formulas are built as in Defini-
tion 2.3. The arities of the functional symbols will be made clear in the lambda
and polynomial lambda rules in Figures 2 and 3. u, v, w, ... will denote proof
variables, while p, q, r, s, t, ... will denote proof polynomials.

The language L∗lp is obtained from the language Llp by dropping the proof
constants and adding the functional symbols of the typed lambda calculus for
the logic of proofs [2].8 We recall that this lambda calculus is made up of the

7We follow [15, p178] in restricting the function symbol E⊥S (and consequently applications
of the ⊥E rule - see Figure 2) to atomic conclusions. As for these authors (see eg. [15,
§6.1.8B]), this restriction is adopted in the interest of simplicity.

8Let us note that we adopt the notation used in [2].

15

Figure 2: Lambda Rules

G |M,P ` t0 :A0 |M,Q ` t1 :A1 | Σ
G |M,P,Q ` p(t0, t1) : (A0 ∧A1) | Σ ∧I

G |M ` t : (A0 ∧A1) | Σ
G |M ` pi(t) :Ai | Σ

∧E

G |M ` t :Ai | Σ
G |M ` ki(t) : (A0 ∨A1) | Σ ∨I

G |M,P,R ` t : (A0 ∨A1) |M,Q,R′, x :A0 ` q :E | P,Q,R′′, y :A1 ` q′ :E | Σ
G |M,P,Q,R,R′,R′′,` E∨x,y(t, q, q′) :E | Σ ∨E

G |M, x :A ` t(x) :F | Σ
G |M ` λx.t(x) : (A→ F) | Σ λ

G |M ` t :⊥ | Σ
G |M ` E⊥S (t) : S | Σ ⊥E

where in the rules ∧E and ∨I, i = 0, 1, while in the rule ∨E, x does not occur
in M, Q, R

′
and any occurrences in E are shifted down; similarly for y with

respect to P, Q, R and E. Finally, in the rule λ, x does not occur in M and
any occurrences in F are shifted down.

——————————————————————————————————

functional symbols of the typed lambda calculus9 (p, pi, ki, E∨x,y, E⊥S , λx) and
four other functional symbols (Pt,t′ , Ut, Bt, St) that are used for constructing
proofs of the axioms A1−A4. As will be clear from the associated rules (Figure
3), the symbols Pt,t′ , Ut, Bt, St operate on formulas with at least two levels
of proof polynomials; unlike [2], indices are used to indicate the inner proof
polynomials. Moreover, note that, just as ! ‘shifts up’ a proof polynomial (see
the rule ! in Section 2), Ut ‘shifts down’ a proof polynomial. This remark
motivates the following definition.

Definition 6.2. The occurrence of a proof polynomial t in a formula A is shifted
down if it appears in the scope of more symbols Ut than symbols !.

In order to introduce the calculus Gilp∗, it is useful to introduce the follow-
ing definition.

Definition 6.3. Define the sets PT0,PT1, . . . of proof polynomials in L∗lp in-
ductively as follows:

• PT0 = {x0, x1, x2, . . . }

• t ∈ PTi+1 if, and only if there exists a proof sequent M ` t : A | S ⇒ S
such that: (i) all proof polynomials occurring in M are variables, (ii) it has

9E.g. see [14].

16

Figure 3: Polynomial Lambda Rules

G |M ` r : t :A | Σ
G |M ` Ut(r) :A | Σ tE

G |M ` r : t :A | Σ
G |M ` Bt(r) :!t : t :A | Σ !I

G |M ` r : ti :A | Σ
G |M ` Sti(r) : (t0 + t1) :A | Σ +I

G |M,P ` r : t : (A→ F) |M,Q ` r′ : t′ :A | Σ
G |M,P,Q ` Pt,t′(r, r′) : (t · t′) :F | Σ �I

where in the rule +I, i = 0,1.

been obtained from the proof sequent M | S ⇒ S by applications of the
rules +, !, or � or of the rules in Figures 2 and 3, where all applications
of the + rule introduce proof polynomials in PTi .

PT is defined to be
⋃

PTi. FT is the set of formulas A such that all the proof
polynomials occurring in A are in PT.

So, for example, terms such as (λx.xx)(λx.xx), λx.x+ (λx.xx)(λx.xx) and
Bs(Ut(λx.x + λy.y) + λxλy.x) + (λx.xx)(λx.xx) are not in PT. By contrast,
terms such as λx.x, λx.x+λy.y and Bs(Ut(λx.x+λy.y)+!(λxλy.x+λx.x)) are
in PT (in fact, they are in PT1, PT2 and PT3 respectively).

It is straightforward to see that, now that proof polynomials are built using
new functional symbols, there is a strict correlation between proof polynomials
and lambda terms. More precisely, there is a natural mapping between a sub-
class of the proof polynomials of L∗lp, namely those where there is no ! and +,
and the terms of the typed lambda calculus for the logic of proofs. With slight
abuse of notation, we speak invariably of proof polynomials and their associated
lambda terms; for example, we say that a proof polynomial is in normal form if
the associated lambda term is in normal form (e.g. see Section 7).

However, the reader should be aware of important dissimilarities between
the role of proof polynomials and that of lambda terms in the typed lambda
calculus. Firstly, whilst there is a strict distinction between lambda terms and
typing formulas, this is not the case for proof polynomials, which may occur
inside, as well as in front of, formulas. Secondly, as will be clear from the
specification of the calculus Gilp∗, nowhere is it demanded that formulas of
the form t : A appearing in proofs are “properly typed”: no specific relation is
required between t and A when such formulas appear in the axioms, for example.

We can now introduce the calculus Gilp∗.

17

Definition 6.4. The calculus Gilp∗ is composed of: (i) axioms of the following
form

t1 :A1 ` t1 :A1 | ... | tn :An ` tn :An |M,S ⇒ S

t1 :A1 ` t1 :A1 | ... | tn :An ` tn :An |M,⊥ ⇒ C

(ii) the propositional, proof rules and polynomial rules, except the rule ci, of the
calculus Gilp (iii) the lambda rules and the polynomial lambda rules in Figures
2 and 3. Items (i)–(iii) satisfy the following restrictions: any formula occurring
in the axioms or introduced in the ∨, λ or ∨I rules belongs to the set FT, and
any proof polynomial introduced in the + or +I rules belongs to the set PT.

Let us make the following remarks about the rules of Gilp∗. While the
propositional and proof rules can be divided into left and right introduction
rules, the lambda rules together with the rule � can be divided into introduction
and elimination rules, in the standard way. The rule � that visually betrays
the analyticity property is still present in the calculus Gilp∗, nevertheless the
context in which this rule is to be evaluated has completely changed. Indeed
now � is only one of the several eliminations rules of the lambda part of the
calculus Gilp∗; all these elimination rules behave as in the natural deduction
framework: although visually they seem to betray analyticity, they only do so
when combined with certain introduction rules. This crucial point, which has
already been illustrated in the previous section, will become further evident in
what follows.

Let us note that in the elimination rules we adopt the standard distinction
between minor and major premises (e.g. see [15, p. 37]). Finally, the struc-
tural rules of Gilp∗ are the same as those of Gilp (see Figure 1) with the sole
difference that the rules W and EW carry the proviso that A and s:B are in
FT.

Given the resemblance between the calculi Gilp and Gilp∗, it is not sur-
prising that Gilp∗ inherits many of the important properties of Gilp.

Lemma 6.5. In Gilp∗, each of the polynomial, lambda and polynomial lambda
rules permutes up with any rule whose conclusion is not one of its auxiliary
TND-sequents.

Proof. Analogously to the proof of Lemma 4.1.

Lemma 6.6. In Gilp∗ the following holds:

(i) the weakening rules W and EW together with the rule El and the con-
traction rule C are height-preserving admissible.

(ii) The propositional left-rules and the proof rule PA are height-preserving
invertible.

(iii) The rule cut∗ is admissible.

18

Proof. As for (i) and (ii), the proof is developed analogously to the proof of
Lemma 3.4. As for (iii), the proof is developed analogously to the proof of
Lemma 4.2, exploiting Lemma 6.5.

Theorem 6.7. Every derivation d in Gilp∗ + cut of a proof sequent G | Σ can
be effectively transformed into a cut-free derivation d′ of G | Σ.

Proof. The proof is developed analogously to the proof of Theorem 4.4.

7 Normalisation for Gilp∗

In this section, we will prove that Gilp∗ satisfies the subformula property, i.e.
it is an analytic calculus.10 In the next section, we will show that Gilp∗ can be
thought of as an analytic calculus for the logic of proofs.

7.1 General strategy

Let us start by clarifying what it takes to prove the analyticity of Gilp∗. Gilp∗,
like Gilp, is not a standard sequent calculus: these calculi are composed by
two calculi, the sequent one (indicated by the sequent part in Figure 4) and a
TND-sequent one (indicated by the TND-sequent part in Figure 4); to get the
analyticity of the whole calculus, we will have to prove the analyticity of each
of its respective parts. Theorem 6.7 establishes the desired property for the
sequent part; so let us focus on the TND-sequent part.

In the TND-sequent part we are basically dealing with a natural deduction
calculus. Standardly, in order to prove the analyticity of a natural deduction
calculus, we prove a normalization theorem. This is exactly what we are going
to do; on the other hand, given the peculiarity of the situation, there are three
points that call for careful consideration.

The first is related to the identification of the cuts that we want to get
rid of in the normalization theorem for Gilp∗. In the intuitionistic natural
deduction calculus, certain combinations of rules - usually called cuts - give rise
to the loss of the subformula property. Thus, via the normalization theorem,
one demonstrates that anything which can be proved with these combinations
of rules can also be proved without. Such cuts also appear in Gilp∗ (we shall
call them TND-cuts to distinguish them from the cuts in the sequent part) and
can be treated by techniques akin to the standard ones. But given that Gilp∗

is composed of many rules other than the standard ones, the question arises of
whether there are new TND-cuts to be identified and treated. Let us call this
point Point1.

The resolution of Point1 presupposes a precise definition of the subformula
property for the language L∗lp. For if we have to isolate those combinations
of rules that violate this property, then we need to know what this property
amounts to in the framework of Gilp∗. A quick reflection is enough to see that

10Henceforth, we use “analytic” and “subformula property” interchangeably.

19

Figure 4: Summary of the axioms and rules of Gilp∗ (omitting side conditions)

Axioms

t1 :A1 ` t1 :A1 | ... | tn :An ` tn :An | S,M ⇒ S

t1 :A1 ` t1 :A1 | ... | tn :An ` tn :An |M,⊥ ⇒ C

Sequent Part

G | A,B,M ⇒ C

G | A ∧B,M ⇒ C
∧A

G | A,M ⇒ C G | B,M ⇒ C

G | A ∨B,M ⇒ C
∨A

G | A→ B,M ⇒ A G | B,M ⇒ C

G | A→ B,M ⇒ C
→A

G |M ⇒ A G |M ⇒ B

G |M ⇒ A ∧B ∧K
G |M ⇒ Ai

G |M ⇒ A0 ∨A1
∨K

G | A,M ⇒ B

G |M ⇒ A→ B
→K

G | t :A,A,M ⇒ C

G | t :A,M ⇒ C
PA

G | N,P ` t :A | N,Q,M⇒ A

G | N,P,Q,M⇒ t :A
PK

TND− Sequent Part

G |M,P ` t0 :A0 |M,Q ` t1 :A1 | Σ
G |M,P,Q ` p(t0, t1) : (A0 ∧A1) | Σ ∧I

G |M ` t : (A0 ∧A1) | Σ
G |M ` pi(t) :Ai | Σ

∧E

G |M ` t :Ai | Σ
G |M ` ki(t) : (A0 ∨A1) | Σ ∨I

G |M,P,R ` t : (A0 ∨A1) |M,Q,R′, x :A0 ` q :E | P,Q,R′′, y :A1 ` q′ :E | Σ
G |M,P,Q,R,R′,R′′,` E∨x,y(t, q, q′) :E | Σ ∨E

G |M, x :A ` t(x) :F | Σ
G |M ` λx.t(x) : (A→ F) | Σ λ

G |M,P ` t : (A→ F) |M,Q ` t′ :A | Σ
G |M,P,Q ` (t · t′) :F | Σ �

G |M ` t :⊥ | Σ
G |M ` E⊥S (t) : S | Σ ⊥E

G |M ` ti :A | Σ
G |M ` (t0 + t1) :A | Σ +

G |M ` t :A | Σ
G |M `!t : t :A | Σ !

G |M ` r : t :A | Σ
G |M ` U(r) :A | Σ tE

G |M ` r : t :A | Σ
G |M ` B(r) :!t : t :A | Σ !I

G |M ` r : ti :A | Σ
G |M ` Si(r) : (t0 + t1) :A | Σ +I

G |M,P ` r : t : (A→ F) |M,Q ` r′ : t′ :A | Σ
G |M,P,Q ` P(r, r′) : (t · t′) :F | Σ �I

20

the standard notion of subformula property is no longer adequate. Consider,
for example, the following derivation d

t :A ` t :A | y :B ` y :B | A,B ⇒ A

t :A, y :B ` p(t, y) : (A ∧B) | A,B ⇒ A
∧I

t :A ` λy.p(t, y) : B → (A ∧B) | A,B ⇒ A
λ

In d we only use two rules, for the introduction of conjunction and the
introduction of implication, both in the TND-sequent part. The rules for the
introduction of conjunction and implication are typically inoffensive and thus
there should be no loss of analyticity. Nevertheless, if we consider the formulas
y : B and p(t, y) : (A ∧ B) (in the second proof sequent counting from the
top) and follow the standard notion of subformula for the logic of proofs (see
Definition 2.4), we see that none of them is a subformula of one of the formulas
that compose the conclusion. Such a situation is unsatisfactory; an appropriate
notion of subformula needs to be defined for L∗lp according to which, at least,
the formulas y :B and p(t, y) : (A∧B) are counted as subformulas of the formula
λy.p(t, y) : B → (A ∧B). Let us call this point Point2.

Let us now turn to the third and final point. It is related to the fact that in
Gilp∗ any TND-cut is “reflected” at the proof polynomial level and thus may
have to be taken into account in the reduction of TND-cuts. In order to clarify
the point, consider the following derivation d

t :A ` t :A | y :B ` y :B | t :A ` t :A | y :B ` y :B | A,B ⇒ A

t :A ` t :A | y :B ` y :B | t :A, y :B ` p(t, y) : (A ∧B) | A,B ⇒ A
∧I

t :A ` t :A | y :B ` y :B | t :A, y :B ` p(t, y) : (A ∧B) | A ∧B ⇒ A

t :A ` t :A | y :B ` y :B | t :A, y :B ` p0(p(t, y)) : A | A ∧B ⇒ A
∧E

∧A

If one concentrates on the TND-sequent part, one easily sees that it con-
tains a quite standard (TND-)cut, namely the conjunction introduction rule
immediately followed by the conjunction elimination rule. Such a TND-cut is
“reflected” by the proof polynomial p0(p(t, y)), which corresponds to a lambda
term that contains a contraction.

Suppose that we want to reduce the derivation d to a normal one, which is
to say a derivation that does not contain any TND-cut. This will involve not
only a new TND-cut-free derivation d′, but also a modified conclusion. Indeed,
following what is usually done in natural deduction calculi (and in the lambda
calculus), we have the following derivation d′:

t :A ` t :A | y :B ` y :B | t :A ` t :A | A,B ⇒ A

t :A ` t :A | y :B ` y :B | t :A ` t :A | A ∧B ⇒ A
∧A

21

The conclusion of d′ is different from that of d: in the same way as the
presence of the TND-cut in d is reflected at the proof polynomial level by means
of the proof polynomial p0(p(t, y)), its absence in the derivation d′ is reflected
by means of the proof polynomial t.11 Just as a reduction of a derivation in
the natural deduction calculus corresponds to a reduction of the corresponding
lambda term, in the calculus Gilp∗ the reduction of a derivation goes hand in
hand with a corresponding modification at the proof polynomial level. Hence
the analyticity of Gilp∗ in the TND-sequent part is proved by showing that
given a derivation d of t : A, we can construct TND-cut-free derivation d′ of
s : A, where s is a “redex” of t.

The example discussed above is a particularly simple case. Since, as noted
above, there is no watertight division in Gilp∗ between proof polynomials and
formulas, proof polynomials may occur at several points in a formula. In the
reduction of the derivation of such formulas, several of the proof polynomials
occurring in it may be replaced by “redexes”. Consider for example the following
development of the derivation d.

...
t :A ` t :A | y :B ` y :B | t :A, y :B ` p0(p(t, y)) : A | A ∧B ⇒ A

t :A, y :B ` p(t, y) : (A ∧B) | t :A, y :B ` p0(p(t, y)) : A | A ∧B ⇒ A
∧I

t :A, y :B ` p0(p(t, y)) : A | t :A, y :B ` p0(p(t, y)) : A | A ∧B ⇒ A
∧E

t :A, y :B `!p0(p(t, y)) : p0(p(t, y)) : A | t :A, y :B ` p0(p(t, y)) : A | A ∧B ⇒ A
!

t :A, y :B `!p0(p(t, y)) : p0(p(t, y)) : A | t :A, y :B,A ∧B ⇒ p0(p(t, y)) : A
PK

t :A, y :B,A ∧B ⇒!p0(p(t, y)) : p0(p(t, y)) : A
PK

To reduce the derivation d to a normal one, one would construct the deriva-
tion d′′ as follows

t :A ` t :A | t :A ` t :A | A,B ⇒ A

t :A ` t :A | t :A ` t :A | A ∧B ⇒ A
∧A

t :A `!t : t :A | t :A ` t :A | A ∧B ⇒ A
!

t :A `!t : t :A | t :A,A ∧B ⇒ t :A
PK

t :A,A ∧B ⇒!t : t :A
PK

t :A, y :B,A ∧B ⇒!t : t :A
WA

11Moreover in d′ the undischarged assumption y : B is no longer available i.e. where we
had t :A, y :B ` p0(p(t, y)) : A, we now have t :A ` t :A. This is what normally happens in
the lambda calculus and in natural deduction calculi, and so was to be expected. Note that
the loss of undischarged assumptions does not jeopardise any continuation of the derivation
d where the undischarged assumption might play a role, for there are basically two uses that
can be made of such assumptions in Gilp∗. On the one hand, they could be discharged with a
lambda rule; in this case, one may apply the lambda rule with no discharge of assumptions. On
the other hand, undischarged assumptions can become part of the sequent, by the application
of a PK rule; in this case, the weakening rule can be used to add the appropriate formula to
the sequent.

22

As the reader can easily see, in this case it is not only the outermost
proof-polynomial !p0(p(t, y)) that reduces to the proof-polynomial !t, but both
!p0(p(t, y)) and p0(p(t, y)). Accordingly, we shall say that the whole formula
!p0(p(t, y)) : p0(p(t, y)) : A reduces to the formula !t : t : A. Hence, when
considering reductions of TND-cuts in the calculus Gilp∗, one must take into
account not only contractions of proof polynomials – for example, the con-
traction from p0(p(t, y)) to t – just as in the standard lambda calculus, but
also contractions of formulas, i.e. contractions of the form illustrated above.
Indeed, as reductions of TND-cuts are reflected in contractions of formulas,
and proof-sequents are composed of formulas, we will require a notion of con-
traction for proof sequents; in the example above, we will say that the proof-
sequent t : A, y : B,A ∧ B ⇒!t : t : A is a PS-reduct of the proof-sequent
t : A, y :B,A ∧ B ⇒!p0(p(t, y)) : p0(p(t, y)) : A. The third point that we will
have to settle amounts to precisely identifying and enumerating all the reduc-
tions on proof polynomials, on formulas, and on proof-sequents. Let us call this
point Point3.

In what follows, we will first treat Point1–Point3. More precisely, Defi-
nition 7.7 is the answer to Point1, Definition 7.1 the answer to Point2 and
Figure 5 together with Definitions 7.4–7.6 provide an answer to Point3. The
main results of this section are Lemma 7.8 and Theorem 7.10; the former states
that any derivation in the TND-sequent part of Gilp∗ containing a TND-cut
can be converted into a derivation that does not contain any TND-cut; and the
latter shows that such a conversion does not affect the sequent part of Gilp∗.

7.2 Preliminary definitions

Definition 7.1. The set of subformulas of a formula A of L∗lp is defined in the
following way:

• The set of m-subformulas of A is the set of Definition 2.4.

• The set of lp-subformulas of t : A is defined as the smallest set of formulas
containing t : A and satisfying the following versions of the conditions in
the standard definition:

– if p(t0, t1) : (A0 ∧A1) is in the set, then t0 : A0 and t1 : A1 are in the
set;

– if ki(t) : (A0 ∨A1) is in the set, then ti : Ai is in the set, for i = 0, 1;
– if λx.t : (A0 → A1) is in the set, then x : A0 and t : A1 are in the set;
– if Bt(r) :!t : t :A is in the set, then r : t :A is in the set;
– if s+ r : A is in the set, then s : A and r : A are in the set;
– if Sti(r) : (t0 + t1) : A is in the set, then r : ti : A is in the set, for
i = 0, 1.

• The set of subformulas of A is defined as the smallest set of formulas
containing A such that, for any A′ in the set, all m-subformulas and lp-
subformulas of A′ are in the set.

23

We will show that Gilp∗ has the subformula property in the sense of Definition
7.1.

We now introduce the notion of IN -deduction which will prove useful later.
At the intuitive level, the notion of IN -deduction can be explained as follows.
Any derivation d in Gilp∗ is composed of rules belonging to the sequent part
and rules belonging to the TND-sequent part. The IN-deductions d′ gathers
together all and only those rules belonging to the TND-sequent part that have
been used in d.

Definition 7.2. An IN-deduction d̂ is a finite sequence of multisets of TND-
sequents, whose first element is a single TND-sequent, whose last element is
a TND-axiom, and such that each multiset in the sequence is related with
its immediate successor in accordance with one of the polynomial, lambda or
polynomial lambda rules.

Since a sequence is a degenerate tree (where each node has at most one
successor), we shall continue to use the vocabulary for trees; in particular, we
use the term “node” to refer to the places in the sequence, and the multisets
occupying them.

Definition 7.3. Given a Gilp∗-derivation d of the proof sequent G |Σ, an IN-
deduction d̂ is said to be contained in d if there exists a function φ assigning to
each node in d̂ a node in d such that:

- for every node n in d̂, n is a multiset of TND-sequents in φ(n)

- for any non-terminal node n in d̂, between φ(n) and φ(n + 1), there is
only one application of a polynomial, lambda or polynomial lambda rule
on TND-sequents in n + 1, and the same rule is applied between n and
n+ 1.

- if n is a top-node, then φ(n) is a top-node.

7.3 Contractions

We now address Point3, by defining contraction of proof polynomials, formulas
and ultimately proof sequents.

The basic contraction cases for proof polynomials are given in Figure 5,
where the symbol f in 10. and 11. is an eliminating operator or one of the
operators U or P.12 The set of contraction cases 1.–13. can be thought of as an
extension of the standard cases for the simple typed lambda calculus to the logic
of proofs, and are divided into detour and permutation contractions. Moreover,
there is a rewriting convention (14.) allowing substitution of t for Ut(r) and vice
versa. As standard, we call the terms on left (of cases 1.–13.) redexes and those
on the right contracta. The relation cont of contraction on proof polynomials
is defined from cases 1.–14. in the standard way (see for example [4, 14, 15]).13

12Note that here and elsewhere we refer to [2, 4] and use the notation of the former.
13Specifically, cont is the reflexive transitive closure of the relation cont1 defined as follows:

24

Figure 5: Contractions on proof polynomials

Detour contractions

1. pi(p(t0, t1)) ti (i ∈ {0, 1})

2. (λx.t) · s t[x/s]

3. E∨x,y(ki(t), t0, t1) ti[x/t]

4. Ut(!t) t

5. Ut·t′(Pt,t′(r, r′)) Ut(r) · Ut′(r′)

6. U!t(Bt(r)) !Ut(r)

7. Pt,t′(!t, r′) !(t · Ut′(r′)) and similarly for
Pt,t′(r, !t′)

8. Pt,!s(r,Bs(r′)) !(Ut(r)·!Us(r′))

9. Pt·t′,t′′(Pt,t′(r, r′), r′′) !((Ut(r) · Ut′(r′)) ·
Ut′′(r′′))

and similarly for
Pt,t′·t′′(r,Pt′,t′′(r′, r′′))

Permutation contractions

10. f(E∨x,y(t, t0, t1)) E∨x,y(t, f(t0), f(t1))

11. f(t+ r) f(t) + f(r)

12. Ut0+t1(Sti(r)) Uti(r)

13. Pt0+t1,t′(Sti(r), r′) Sti·t′(Pti,t′(r, r′)) and similarly for
Pt,t′0+t′1(r, St′i(r

′))

Rewriting convention

14. Ut(r) ! t

We now extend the notion of contraction to formulas.

t cont1 s if s is obtained from t by the replacement of an occurrence of r in t by r′, where
r r′.

25

Definition 7.4. The relation cont of contraction on formulas is the smallest
reflexive transitive relation such that:

• t : A cont t′ : A if t cont t′

• B ∧ A cont B′ ∧ A if B cont B′; and similarly for A ∧ B, B ∨ A, A ∨ B,
B → A and A→ B

• t : B cont t : B′ if B cont B′

• B cont B′ ∨B′′ and B cont B′ ∧B′′ if B cont B′ and B cont B′′

The example given in Section 7.1 provides an instance of the first clause
of this definition: t : A is a contractum of p0(p(t, y)) : A. The contraction
of B ∧ p0(p(t, y)) : A to B ∧ t : A, and of s : p0(p(t, y)) : A to s : t : A
are examples of the second and third clauses respectively. The fourth clause
mandates considering p0(p(t, y)) : A∨ t : A as a contractum of p0(p(t, y)) : A.14

Analogous notions of reduction are straightforwardly defined for TND-sequents
and proof sequents.

Definition 7.5. We say that the TND-sequent s′1 : B′1, . . . , s
′
m : B′m ` t′ : A′ is

a TND-reduct of T = s1 : B1, . . . , sn : Bn ` t : A if t : A cont t′ : A′, and for
every 1 ≤ j ≤ m, there exists 1 ≤ i ≤ n such that si : Bi cont s′j : B′j .

Definition 7.6. Let G|Σ and (G)+|(Σ)+ be proof sequents. (G)+|(Σ)+ is a PS-
reduct of G|Σ if the former can be obtained from the latter by (i) replacing TND-
sequents in G by TND-reducts; (ii) replacing redexes in Σ by corresponding
contracta.

As per normal, we say that a TND-sequent (respectively proof sequent)
TND-reduces (PS-reduces) to another when the latter is a TND-reduct (PS-
reduct) of the former.

7.4 Conversion of IN-deductions

Finally, we turn to the reduction of derivations, for which we have the following
notions, that have been adapted from [15, p. 173].

Definition 7.7. A maximal segment, or a TND-cut, in an IN-deduction d̂ of
Gilp∗ is a sequence of consecutive occurrences of formulas of the form t1 :
A1, ..., tl : Al plus a formula s : B such that:

- either each Ai = A for some formula A, or each Ai = ri : A for proof
polynomials ri and some formula A,

14Readers wishing to appreciate the need for the fourth clause are invited to consider the
derivation of (p(t, y)) : A ∧ B) ∨ (t : A ∧ y : B), A ⇒ p0(p(t, y)) : A, and try to remove
the TND-cuts. The fourth clause in Definition 7.4 allows us to treat the formula obtained,
(p(t, y)) : A ∧ B) ∨ (t : A ∧ y : B), A ⇒ p0(p(t, y)) : A ∨ t : A as a contractum of the proof
sequent.

26

- each of the t1 : A1, ..., tl : Al, s : B occurs on the right side of the ` and
none of them occurs on the left side of the `,

- t1 : A1 is the conclusion of an introduction rule or of the rules !, !I or �I,

- tl : Al is the major premise of an elimination rule, the premise of the rule
tE or any premise of the rule �I,

- the proof polynomial s is one of the redexes 1-13.

The length of a TND-cut is the number of rules occurring in it that has as
auxiliary formulas one of the t1 : A1, ..., tl : Al. The TND-cutrank cr(X) of a
TND-cut X with formula tl : Al is the number (≥ 0) of occurrences of logical
symbols (a proof polynomial counting as such) in Al. Let d̂ be an IN-deduction
and let Ẋ denote the sequence of TND-cuts occurring in d̂. The TND-cutrank
cr(Ẋ) of Ẋ is the maximum of the TND-cutranks of cuts in Ẋ. If there is no
TND-cut, the TND-cutrank of Ẋ is zero. A critical TND-cut of Ẋ is a TND-cut
of maximal TND-cutrank among all TND-cuts in Ẋ. An IN-deduction whose
corresponding Ẋ contains no critical TND-cut is said to be normal. A derivation
d is said to be normal if it only contains normal IN-deductions.

With the notion of TND-cut we have isolated all the cases of possible vi-
olations of the subformula property at the proof polynomial level. Hence, to
show that Gilp∗ has the subformula property, one must demonstrate that all
the TND-cuts are eliminable. In order to do this, we first of all require the ap-
propriate conversions of derivations, which extend the conversions in standard
normalisation proofs (see [15]) to the case of the lambda terms of the logic of
proofs. We first show these; in the cases below, assume that i = 0, 1 and ı. =
0, 1 such that i 6= ı..

Detour conversions

We first show how to remove TND-cuts of length 1.

∧ − conversion

Consider a derivation d of the proof sequent G | N ` r : C | Σ such that
the IN-deductions d̂1, ..., d̂n of the TND-sequent N ` r :C contain steps of the
following form

...d̂0j
M,Q0 ` t0 :A0 |

...d̂1j
M,Q1 ` t1 :A1

M,Q0,Q1 ` p(t0, t1) : (A0 ∧A1)
∧I

M,Q0,Q1 ` pi(p(t0, t1)) :Ai
∧E

We consider the n IN-deductions d̂1, ..., d̂n and the derivation d and we
go up each of them to their axioms. Let us denote by Aj the TND-axioms of

27

d̂j . For each d̂j , we erase in the axioms of d the multisets M and Qı.
, which

belong to φ(Aj) (where φ is as in Definition 7.3). We continue the derivation
d as before except for the fact that we omit to apply those rules that form the
IN-deduction d̂

ı.
j . This means that now in each of the IN-deductions d̂1, ..., d̂n

the previous steps have been replaced by:

...d̂ij
M,Qi ` ti :Ai

→ −conversion

Consider a derivation d of the proof sequent G | N ` r : C | Σ such that
the IN-deductions d̂1, ..., d̂n of the TND-sequent N ` r :C contain steps of the
following form

...d̂0j
M,P ` s :A |

...d̂1j
M,Q, x :A ` t :F

M,P ` s :A |M,Q ` λx.t : (A→ F)
λ

M,P,Q ` ((λx.t) · s) :F
�

We consider the n IN-deductions d̂1, ..., d̂n and the derivation d and we go
up each of them to their axioms. Let us denote by Aj the TND-axioms of d̂j .
For each d̂j , we erase in the axioms of d the TND-sequent(s) x :A ` x :A which
belongs to φ(Aj). We apply on these new axioms the rules that belonged to
the IN-deduction d0

j to yield the TND-sequent M,P ` s :A. Note that there
can be a modification in the order of application of the lambda and polynomial
lambda rules. Such a change does not pose a problem thanks to Lemma 6.5. We
then continue the derivation d as before except for the fact that those rules of
d that were applied on the TND-sequent(s) x :A ` x :A are now applied on the
TND-sequent M,P ` s :A. In other words, now in each of the IN-deductions
d̂1, ..., d̂n the previous steps have been replaced by:

...d̂0j
M,P ` s :A |M | Q

...d̂1j
M,P,Q ` t[x/s] :F

∨ − conversion

28

The ∨-conversion can be treated analogously to the →-conversion.

!− conversion

Consider a derivation d of the proof sequent G | N ` r : C | Σ such that
the IN-deductions d̂1, ..., d̂n of the TND-sequent N ` r :C contain steps of the
following form

...d̂j
M ` t :A

M `!t : t :A
!

M ` Ut(!t) :A
tE

We go up to the axioms of the derivation d and we develop the derivation d
as before, except for the fact that we omit to apply, each time that they were
giving rise to the TND-sequent M ` Ut(!t) : A, the rules ! and tE. In other
words, now in each of the IN-deductions d̂1, ..., d̂n the previous steps have been
replaced by:

...d̂j
M ` t :A

P− conversion

Consider a derivation d of the proof sequent G | N ` r : C | Σ such that
the IN-deductions d̂1, ..., d̂n of the TND-sequent N ` r :C contain steps of the
following form

...d̂0j
M,P ` r0 : t0 : (A→ F) |

...d̂1j
M,Q ` r1 : t1 :A

M,P,Q ` Pt0,t1(r0, r1) : (t0 · t1) :F
�I

M,P,Q ` Ut0·t1(Pt0,t1(r0, r1)) :F
tE

We go up to the axioms of the derivation d and we develop the derivation d
as before, except for the fact that instead of applying the rules �I and tE, each
time they were giving rise to the TND-sequent M,P,Q ` Ut0·t1(Pt0,t1(r0, r1)) :
F , we apply the rule tE twice and then the rule �. In other words, now in each
of the IN-deductions d̂1, ..., d̂n the previous steps have been replaced by:

29

...d̂0j
M,P ` r0 : t0 : (A→ F) |

...d̂1j
M,Q ` r1 : t1 :A

M,P ` r0 : t0 : (A→ F) |M,Q ` Ut1(r1) :A
M,P ` Ut0(r0) : (A→ F) |M,Q ` Ut1(r1) :A

M,P,Q ` Ut0(r0) · Ut1(r1) :F
�

tE

tE

B− conversion,

Consider a derivation d of the proof sequent G | N ` r : C | Σ such that
the IN-deductions d̂1, ..., d̂n of the TND-sequent N ` r :C contain steps of the
following form

...d̂j
M ` r : t :A

M ` Bt(r) :!t : t :A
!I

M ` U!t(Bt(r)) : t :A
tE

We go up to the axioms of the derivation d and we develop the derivation d
as before, except for the fact that instead of applying, each time that they were
giving rise to the TND-sequent M ` U!t(Bt(r)) : t :A, the rules !I and tE, we
apply the rules tE and !. In other words, now in each of the IN-deductions d̂1,
..., d̂n the previous steps have been replaced by:

...d̂j
M ` r : t :A

M ` Ut(r) :A
tE

M `!Ut(r) :Ut(r) :A
tE

P-!− conversion

Consider a derivation d of the proof sequent G | N ` r : C | Σ such that
the IN-deductions d̂1, ..., d̂n of the TND-sequent N ` r :C contain steps of the
following form

...d̂0j
M,P ` t0 : (A→ F) |

...d̂1j
M,Q ` r1 : t1 :A

M,P `!t0 : t0 : (A→ F) |M,Q ` r1 : t1 :A
!

M,P,Q ` Pt0,t1(!t0, r1) : (t0 · t1) :F
�I

30

We go up to the axioms of the derivation d and we develop the derivation d as
before, except for the fact that instead of applying the rules ! and �I, each time
they were giving rise to the TND-sequent M,P,Q ` Pt0,t1(!t0, r1) : (t0 · t1) :F ,
we first apply tE, then � and finally !. In other words, now in each of the
IN-deductions d̂1, ..., d̂n the previous steps have been replaced by:

...d̂0j
M,P ` t0 : (A→ F) |

...d̂1j
M,Q ` r1 : t1 :A

M,P ` t0 : (A→ F) |M,Q ` Ut1(r1) :A
tE

M,P,Q ` (t0 · Ut1(r1)) :F
�

M,P,Q `!(t0 · Ut1(r1)) : (t0 · Ut1(r1)) :F
!

The case Pt0,t1(r0, !t1) can be treated similarly.

P-B− conversion

Consider a derivation d of the proof sequent G | N ` r : C | Σ such that
the IN-deductions d̂1, ..., d̂n of the TND-sequent N ` r :C contain steps of the
following form

...d̂0j
M,P ` r0 : t0 : (s :A→ F) |

...d̂1j
M,Q ` r1 :s :A

M,P ` r0 : t0 : (s :A→ F) |M,Q ` Bs(r1) :!s :s :A
!I

M,P,Q ` Pt0,!s(r0,Bs(r1)) : (t0·!s) :F
�I

We consider the n IN-deductions d̂1, ..., d̂n and the derivation d and we go up
each of them to their axioms. Let us denote by Aj the TND-axioms of d̂j . We
focus on the formulas s : A in Aj from which the formula r0 : t0 : (s :A→ F) has
been derived. (In case the formula s : A has been introduced by an application
of the rule λ without discharge of assumptions, we operate in a similar way.)
For each d̂j , we replace in the axioms of d these formulas s : A by Us(r1) : A.
Then we develop the derivation d as before, except for the fact that instead
of applying the rules !I and �I, each time they were giving rise to the TND-
sequent M,P,Q ` Pt0,!s(r0,Bs(r1)) : (t0·!s) : F , we first apply the tE and !
rules, and then the � rule and the ! rule. In other words, now in each of the
IN-deductions d̂1, ..., d̂n the previous steps have been replaced by:

31

...d̂0′j
M,P′ ` r0 : t0 : (Us(r1) :A→ F ′) |

...d̂1j
M,Q ` r1 :s :A

M,P′ ` r0 : t0 : (Us(r1) :A→ F ′) |M,Q ` Us(r1) :A
tE

M,P′ ` r0 : t0 : (Us(r1) :A→ F ′) |M,Q `!Us(r1) :Us(r1) :A
!

M,P′ ` Ut0(r0) : (Us(r1) :A→ F ′) |M,Q `!Us(r1) :Us(r1) :A
tE

M,P′,Q ` (Ut0(r0)·!Us(r1)) :F ′
�

M,P′,Q `!(Ut0(r0)·!Us(r1)) : (Ut0(r0)·!Us(r1)) :F ′
!

P-P− conversion

Consider a derivation d of the proof sequent G | N ` r : C | Σ such that
the IN-deductions d̂1, ..., d̂n of the TND-sequent N ` r :C contain steps of the
following form

...d̂0j
M,N01,N02,P1 ` r0 : t0 : (B → (A→ F)) |

...d̂1j
M,N01,N12,P1 ` r1 : t1 :B |

...d̂2j
M,N02,N12,P2 ` r2 : t2 :A

M,N01,N02,N12,P0,P1 ` Pt0,t1(r0, r1) : (t0 · t1) : (A→ F) |M,N02,N12,P2 ` r2 : t2 :A
�I

M,N01,N02,N12,P0,P1,P2 ` Pt0·t1,t2(Pt0,t1(r0, r1), r2) : ((t0 · t1) · t2) :F
�I

We go up to the axioms of the derivation d and we develop the derivation
d as before, except for the fact that instead of applying the rules �I, each
time they were giving rise to the TND-sequent M,N01,N02,N12,P0,P1,P2 `
Pt0·t1,t2(Pt0,t1(r0, r1), r2) : ((t0 · t1) · t2) :F , we first apply tE, then � and finally
!. In other words, now in each of the IN-deductions d̂1, ..., d̂n the previous steps
have been replaced by:

...d̂0j
M,N01,N02,P1 ` r0 : t0 : (B → (A→ F)) |

...d̂1j
M,N01,N12, ,P1 ` r1 : t1 :B |

...d̂2j
M,N02,N12,P2 ` r2 : t2 :A

M,N01,N02,P1 ` Ut0(r0) : (B → (A→ F)) |M,N01,N12,P1 ` r1 : t1 :B |M,N02,N12,P2 ` r2 : t2 :A
tE

M,N01,N02,P1 ` Ut0(r0) : (B → (A→ F)) |M,N01,N12,P1 ` Ut1(r1) :B |M,N02,N12,P2 ` r2 : t2 :A
tE

M,N01,N02,P1 ` Ut0(r0) : (B → (A→ F)) |M,N01,N12,P1 ` Ut1(r1) :B |M,N02,N12,P2 ` Ut2(r2) :A
tE

M,N01,N02,N12,P0,P1 ` (Ut0(r0) · Ut1(r1)) : (A→ F) |M,N02,N12,P2 ` Ut2(r2) : A
�

M,N01,N02,N12,P0,P1,P2 ` ((Ut0(r0) · Ut1(r1)) · Ut2(r2)) :F
�

M,N01,N02,N12,P0,P1,P2 `!((Ut0(r0) · Ut1(r1)) · Ut2(r2)) : ((Ut0(r0) · Ut1(r1)) · Ut2(r2)) :F
!

The case Pt0,t1·t2(r0,Pt1,t2(r1, r2)) can be treated similarly.

32

Permutation conversions

We now show how to remove TND-cuts of length > 1,

∨ − perm conversion ({X} = f(E∨x,y(ki(t), t0, t1))

We permute the elimination rules and the rules tE and �I upwards over the
minor premises of ∨E.

+− perm conversion ({X} = f(t+ r))

We only consider the case where f = ·s, so the redex is (t+ r) · s. The other
cases can be treated analogously.

Consider a derivation d of the proof sequent G | N ` r : C | Σ such that
the IN-deductions d̂1, ..., d̂n of the TND-sequent N ` r :C contain steps of the
following form

...d̂0j
M,P ` s :A |

...d̂1j
M,Q, x :A ` t :F

M,P ` s :A |M,Q ` λx.t : (A→ F)
λ

M,P ` s :A |M,Q ` ((λx.t) + r) : (A→ F)
M,P,Q ` (((λx.t) + r) · s) :F

�

+

We go up to the axioms of the derivation d and we develop the derivation d
as before, except for the fact that instead of applying the rules + and �, each
time they were giving rise to the TND-sequent M,P,Q ` (((λx.t) + r) · s) :F ,
we apply first the rule � and then the rule +. In other words, now in each of
the IN-deductions d̂1, ..., d̂n the previous steps have been replaced by:

...d̂0j
M,P ` s :A |

...d̂1j
M,Q, x :A ` t :F

M,P ` s :A |M,Q ` λx.t : (A→ F)
λ

M,P,Q ` ((λx.t) · s) :F
M,P,Q ` (((λx.t) · s) + (r · s)) :F

+

�

U-S− conversion ({X} = Ut0+t1(Sti(r))

Consider a derivation d of the proof sequent G | N ` r : C | Σ such that
the IN-deductions d̂1, ..., d̂n of the TND-sequent N ` r :C contain steps of the
following form

33

...d̂j
M ` r : ti :A

M ` Sti(r) : (t0 + t1) :A
+I

M ` Ut0+t1(Sti(r)) :A
tE

We go up to the axioms of the derivation d and we develop the derivation d
as before, except for the fact that instead of applying the rules +I and tE, each
time that they were giving rise to the TND-sequent M ` Ut0+t1(Sti(r)) :A, we
only apply the rule tE. In other words, now in each of the IN-deductions d̂1,
..., d̂n the previous steps have been replaced by:

...d̂j
M ` r : ti :A

M ` Uti(r) :A
tE

P-S− perm conversion ({X} = Pt0+t1,t′(Sti(r), r′))

The P-S−perm conversion can be treated analogously to the +-perm con-
version.

It is straightforward to check that in all of the above conversions, the con-
clusion of the IN-deduction obtained is a TND-reduct of the conclusion of the
original IN-deduction. Moreover, each of the conversions corresponds to one of
the contractions of proof polynomials 1.-13. in Figure 5.

Armed with the preceding conversions, we can prove the first important
result of this section.

Lemma 7.8. Let d be a derivation of a proof sequent M1 ` t1 :A1 | ... |Mk `
tk :Ak | Σ where the only rules applied are polynomial, lambda and polynomial
lambda rules. Then there exists a proof sequent (M1 ` t1 :A1 | ... | Mk ` tk :
Ak)+ | Σ and a TND-cut-free derivation of this proof sequent where (M1 ` t1 :
A1 | ... |Mk ` tk :Ak)+ | Σ is a PS-reduct of M1 ` t1 :A1 | ... |Mk ` tk :Ak | Σ.

Proof. Consider the IN-deduction d̂1 of M1 ` t1 :A1 and let Ẋ1 be the sequence
of TND-cuts in d̂1. If Ẋ1 is empty, then no conversions are required; suppose
henceforth that this is not the case. We eliminate all the TND-cuts of Ẋ1 by
developing the proof along the lines of the normalisation proof in [15, Ch 6].
Following them, we assume that, in the application of the elimination rules and
the �I rule, the major premise is to the left of the minor premise(s), if there
are any minor premises. We proceed by main induction on the cutrank of Ẋ1,
with subinduction on the sum of the lengths of the critical cuts in Ẋ1. Let us
call Y a t.c.c. (top critical cut) in Ẋ1 if no critical cut occurs above Y .

34

The induction step is as follows. For Y the rightmost t.c.c, apply the conver-
sion corresponding to Y . The resulting Ẋ ′1 has a lower cutrank, or has the same
cutrank, but a lower value for the sum of lengths of all critical cuts. Continue
the IN-deduction d̂1 as before. For the �, ∨E and �I rules, their application
requires that certain formulas on the right hand side of different TND-sequents
are the same. In all these cases, one of the formulas comes from an occurrence
of the formula in a TND-axiom or from an application of the λ rule without
discharge of assumptions. In the case of the ∨E, this is evident, since the for-
mulas in question (A0 and A1) are on the left hand side of the TND-sequent.
For the case of the � rule, the occurrence of A in the formula t : (A → F)
must have been derived from a TND-axiom – either from an occurrence on the
right hand side of the TND-sequent if the λ rule was not used in the derivation
of t : (A → F), or on the left hand side of the TND-sequent if the λ rule was
used – or from an application of the λ rule without discharge of assumptions.
Similarly for the �I case. If, after the application of the conversion, there is
a subsequent application of a �, ∨E and �I rule where the formulas required
for the application no longer match, one proceeds by changing the appropriate
TND-axiom or application of the λ rule (substituting the redex by the appro-
priate contractum) so that the formula matches the corresponding formula in
the other TND-sequent. One thus obtains an IN-deduction of a TND-reduct of
M1 ` t1 :A1, which has a lower cutrank or the same cutrank but a lower value
for the sum of the lengths of the critical cuts.

Repeat the induction step until the IN-deduction contains no critical cuts.
One thus obtains an IN-deduction d̂′1 without TND-cuts of a TND-sequent M′

1 `
t′1 :A′1 that is a TND-reduct of M1 ` t1 :A1. Repeating this procedure for all
other TND-sequents Mm ` tm : Am, we obtain a TND-cut-free derivation of
(M1 ` t1 :A1 | ... |Mk ` tk :Ak)+ | Σ, where this proof sequent is a PS-reduct
of M1 ` ti1 :A1 | ... |Mk ` tk :Ak | Σ, as required.

7.5 Main result

Lemma 7.8 can be thought of as an analogue of the standard natural-deduction
normalization theorem for the TND-sequent part of Gilp∗. It establishes ana-
lyticity for the TND-sequent part of Gilp∗. In this section, we show that the
whole of Gilp∗ is analytic. This does not follow immediately from Lemma 7.8
and the cut-freeness of the sequent part of Gilp∗ (Theorem 6.7): in particu-
lar, it remains to be shown that the procedure for reducing the TND-cuts in a
derivation of Gilp∗ does not jeopardize the sequent part of the derivation, either
by blocking the applicability of some of the sequent rules, or by introducing the
cut rule. In the demonstration of the main result, the following Lemma shall
prove useful.

Lemma 7.9. Given a TND-cut-free IN-deduction d of M ` t : A, there exists
a TND-cut-free derivation d′ of M ⇒ A in Gilp∗.

Proof. The proof is the development of the proof of Theorem 6.3.1 of [15, pp.

35

190-191], where the Theorem 6.3.1 states that, given a normal natural deduction
derivation d of a formula A from some premises M , one can construct a cut-free
derivation d′ of the sequent M ⇒ A.

We proceed by induction on the height of d, which corresponds to the number
of rules used in d.

h(d) = 0. Then M ` t : A is the axiom t : A ` t : A. By Lemma 3.3, we
have a derivation d′ of A ⇒ A. Applying the weakening rule to introduce the
formula t : A and the PA rule yields the required derivation d′ of t : A⇒ A.

h(d) > 0. We distinguish five subcases according to the last rule applied in
d. Case 1. The final rule R applied in d is one of the following ones ∧I, ∨I
or λ. By applying the inductive hypothesis on the premise of R and then the
corresponding right rule of the sequent part of Gilp∗ (namely, ∧K, ∨K and
→ K) one obtains the desired derivation d′. Case 2. Suppose that the final
rule R applied in d is the + rule. By simply applying the inductive hypothesis
on the premise of R, we obtain the desired derivation d′.

Case 3. The final rule R applied in d is the ! rule; let M ` t : A be the
premise of R. By the inductive hypothesis, there is a derivation d∗ of M ⇒ A.
By applying EW together with all rules forming the IN-deduction d to M ⇒ A,
one obtains the proof sequent M ` t : A | M ⇒ A. Applying PK yields the
required derivation d′ of M ⇒ t : A.

Case 4. The final rule R applied in d is either the rule +I or the rule !I;
let M ` r : t : A be the premise of this rule. By the inductive hypothesis, there
is a derivation d∗ of M ⇒ t : A; we distinguish cases according to whether d∗

involves an application of the PK rule with t : A as auxiliary formula or not.
If there is no application of the PK rule of this sort, then t : A occurs on the
right hand side of the sequent in an axiom of d∗; given the axioms of Gilp∗, it
follows that ⊥ occurs on the left hand side of the axiom. Replacing the right
hand side of the axiom in d∗ appropriately (i.e. by t+ s : A if R is +I, and by
!t : t : A if R is !I) yields the required derivation d′. Now consider the case in
which d∗ involves an application of the PK rule to a proof sequent of the form
M ′ ` t : A | M ′′ ⇒ A. If R is the rule +I, then applying the rule + before the
PK rule and continuing d∗ as previously yields the required sequent. If R is !I,
then applying the EW rule and the rules that gave the TND-sequent M ′ ` t : A
yields the proof sequent M ′ ` t : A | M ′ ` t : A | M ′′ ⇒ A. Applying the ! rule
and the PK rule twice on this proof sequent, with appropriate applications of
the weakening and PA rule if necessary, one gets the required derivation d′.

Case 5. The final rule R applied in d is one of the rules ⊥E, ∧E, ∨E,
�, tE or �I. Let τ = (τ0, . . . , τn) be a sequence of TND-sequents and Rτ =
(Rτ,1, . . . ,Rτ,n) be a sequence of rules jointly defined as follows: τ0 is the conclu-
sion of d, and for every i such that a rule in d has as conclusion the TND-sequent
τi, Rτ,i+1 is the rule which has been applied, τi+1 is the major premise of the
application of Rτ,i+1, if it is ∨E, � or �I, and (any) premise of Rτ,i+1 if not.
(τ corresponds to what [15] call a main branch of the derivation, and Rτ to the
sequence of rules applied in this branch. Note that, in the numbering used here,
τn is the top of the branch and Rτ,n is the first rule applied.) For essentially the
same reasons as those noted in [15, §6.3.1], the TND-cut-freeness of d implies

36

that: (i) the only rules in Rτ are ⊥E, ∧E, ∨E, �, tE or �E. It follows that
there is a unique sequence τ defined as above. (ii) If ∨E is a rule in Rτ , then
Rτ,1 is ∨E and Rτ,i is not ∨E, for all i 6= 1. (iii) If �I is a rule in Rτ , then
Rτ,i is �I whenever Rτ,i+1 is �I, for all 1 ≤ i ≤ n− 1.

We now essentially apply the same technique as in [15, §6.3.1], which dis-
tinguishes cases according to Rτ,n (the first rule applied in the branch). For
example, if Rτ,n is �, and τn is s : C1 → C2, then, as in [15, §6.3.1], we use the
inductive hypothesis to construct derivations of M ⇒ C1 and M,C2 ⇒ A, and
then apply weakening and → A to obtain a derivation of M,C1 → C2 ⇒ A.
Finally, adding s : C1 → C2 by weakening and applying PA yields the desired
derivation of M, s : C1 → C2 ⇒ A. The only new cases are those of the tE and
�I rules. Suppose that Rτ,n is tE, so we have an IN-deduction of the form:

r :r′ :s :B ` r :r′ :s :B
r :r′ :s :B ` Ur′(r) :s :B

tE

... d̂

r :r′ :s :B,M ` t :A

We distinguish two cases. If Ur′(r) does not occur in A, then take the IN-
deduction obtained by applying all the rules in d̂ starting from the TND-axiom
r′ : s :B ` r′ : s :B. By the inductive hypothesis applied to this IN-deduction,
there exists a derivation of r′ : s : B,M ⇒ A; applying the weakening rule
to add r : r′ : s : B and the PA rule yields the required derivation d′ of
r : r′ : s : B,M ⇒ A. On the other hand, if Ur′(r) does occur in A, then
apply the inductive hypothesis to the IN-deduction obtained by applying all
the rules in d̂ starting from the TND-axiom Ur′(r) : s : B ` Ur′(r) : s : B, to
yield an derivation of Ur′(r) : s :B,M ⇒ A. By the specification of the case,
Ur′(r) : s :B ` Ur′(r) : s :B occurs among the TND-axioms of this derivation.
Replacing each such TND-axiom by the TND-axiom r :r′ :s :B ` r :r′ :s :B and
an application of the tE rule (and any appropriate occurrences of Ur′(r) : s :B
in the axioms but not in the TND-axioms by r : r′ : s : B) yields the required
derivation d′ of r :r′ :s :B,M ⇒ A.

Now suppose that Rτ,n is �I; as noted, it follows that Rτ,i is �I for all
1 ≤ i ≤ n. Let τi (the major premise of Rτ,i) be ri : ti : Ai → Fi, where,
for all i > 1, Fi = Ai−1 → Fi−1; and let the minor premise of Rτ,i be Ni `
r′i : t′i : Ai. So τ0 (the conclusion of d) is Nn, . . . , N1, rn : tn : An → Fn `
P((tn·t′n)·...·t′2,t′1(. . . (Ptn,t′n(rn, r′n; tn, t′n), . . . , r′1) : (((tn ·t′n) ·t′n−1 · . . . ·t′1) : F1. By
the inductive hypothesis, for each 1 ≤ i ≤ n, there is a derivation ofNi ⇒ t′i : Ai.
We distinguish cases according to whether all of these derivations involve an
application of the PK rule with t′i : Ai as auxiliary formula. First consider
the case where, for some 1 ≤ j ≤ n, there is no application of the PK rule
of this sort in the derivation of Nj ⇒ t′j : Aj . In this case, t′j : Aj occurs on
the right hand side of the sequent in an axiom; given the axioms of Gilp∗, it
follows that ⊥ occurs on the left hand side of the axiom. Replacing the right
hand side of the axiom in this derivation with (((tn · t′n) · t′n−1 · . . . · t′1) : F1 yields

37

a derivation of Nj ⇒ (((tn · t′n) · t′n−1 · . . . · t′1) : F1. Suitable applications of
weakening yield the required derivation d′ of Nn, . . . , N1, rn : tn : An → Fn `
(((tn · t′n) · t′n−1 · . . . · t′1) : F1. Now consider the case in which each of the
derivations of Ni ⇒ t′i : Ai involves the application of a PK rule to a proof
sequent of the form N1

i ` t′i : Ai | N2
i ⇒ Ai. Applying repeatedly the rule E,

weakening and PA, we thus obtain derivations of Ni ⇒ Ai for each i; moreover,
focusing on the TND-sequents, we have IN-deductions of N1

i ` t′i : Ai, for each
i. Applying the → A rule repeatedly to the derivations Ni ⇒ Ai and then
weakening and PA, as in the � case considered above, we obtain a derivation
of Nn, . . . , N1, rn : tn : An → Fn ⇒ F1. Beginning from the TND-axiom
tn : An → Fn ` tn : An → Fn and the TND-axioms of the IN-deductions of
N1
i ` t′i : Ai for 1 ≤ i ≤ n, applying the rules in each of the IN-deductions

of the N1
i ` t′i : Ai, and then applying the � rule repeatedly, one obtains an

IN-deduction of N1
n, . . . , N

1
1 , tn : An → Fn ` (((tn · t′n) · t′n−1 · . . . · t′1) : F1.

Applying the EW rule repeatedly and the rules in this IN-deduction to the
derivation of Nn, . . . , N1, rn : tn : An → Fn ⇒ Fl, one obtains the proof sequent
N1
n, . . . , N

1
1 , tn : An → Fn ` (((tn · t′n) · t′n−1 · . . . · t′1) : F1 | Nn, . . . , N1, rn : tn :

An → Fn ⇒ F1. Applying the PK and PA rules yields the required derivation
d′ of Nn, . . . , N1, rn : tn : An → Fn ` (((tn · t′n) · t′n−1 · . . . · t′1) : F1.

We now state and prove the main theorem of this section.

Theorem 7.10. For each derivation d in Gilp∗ of a proof sequent G | Σ, there
exists a proof sequent G+ | Σ+ and a TND-cut-free derivation d′ of this proof
sequent such that G+ | Σ+ is a PS-reduct of G | Σ.

Proof. Let d be a derivation of the proof-sequent G | Σ. By Lemma 6.5 we can
assume that all polynomial, lambda and polynomial lambda rules have been
applied before any other rule in d. Furthermore, since each pair of proposi-
tional and proof rules with different auxiliary formulas can be permuted, we
can assume that each application of the PK rule in d has occurred before the
other rules in the following sense: the only propositional or proof rules which
have been applied before that application of the PK rule have as conclusion a
subformula of the auxiliary formula of that application of the PK rule.

There may be one or several proof sequents obtained in the derivation d
after all applications of polynomial, lambda and polynomial lambda rules and
before application of any other rules (depending on whether d begins from one
or several axioms). Let Mi

1 ` ti1 :Ai1 | ... | Mi
k ` tik :Aik | (Σ)i be these proof

sequents. By Lemma 7.8, for each i, we obtain a TND-cut-free derivation, di,
of (Mi

1 ` ti1 : Ai1 | ... | Mi
k ` tik : Aik)+ | (Σ)i, where this proof sequent is a

PS-reduct of Mi
1 ` ti1 :Ai1 | ... | Mi

k ` tik :Aik | (Σ)i. Let d̄ be the multiset of
derivations di.

We construct a sequence of multisets of derivations, d̄j , 0 ≤ j ≤ n such that
(i) d̄0 = d̄; (ii) the conclusions of each of the derivations in d̄j are PS-reducts of
proof sequents at corresponding points in d; (iii) d̄n contains a single derivation

38

of a PS-reduct of G | Σ. The sequence is defined by induction, following the
construction of d. The induction step is as follows.

Consider an application of a rule R in d whose premise(s) correspond to
conclusion(s) of derivations in d̄j . We will essentially apply the same rule to
form d̄j+1; it is necessary however to ensure that the rule can always be applied,
and that the conclusion obtained is a PS-reduct of the corresponding proof
sequent in d. If the rule R is one of the ∧A, ∨K or → K rules, then it can
always be applied to the corresponding proof sequent in d̄j ; let d̄j+1 be the
derivation obtained. If the rule R is one of the ∧K,→ A, ∨A, PA or PK rules,
and it can be directly applied to the corresponding proof sequent (or sequents)
in d̄j to yield a PS-reduct of the corresponding proof sequent in d, then d̄j+1

is the derivation obtained when the rule is applied. It may be that the rule
R is one of the ∧K, → A, ∨A, PA or PK rules but it cannot be applied to
yield a PS-reduct of the appropriate proof sequent. This happens in any of
the following cases. (a) There are two premises of the rule in d, corresponding
to conclusions of derivations d′ and d′′ in d̄j , and there is a formula D in the
sequent of each premise in d such that the application of the rule in d requires
these occurrences to be the same, but such that the corresponding formula in
the conclusion of d′ is D′, the corresponding formula in the conclusion of d′′ is
D′′, and D′ 6= D′′ (this may happen with the ∧K, → A and ∨A rules). (b)
There are auxiliary formulas of the rule in d that are of the form A and t : A,
whereas the corresponding formulas in d̄j are A′ and t′′ : A′′ with A′ 6= A′′ (this
may occur for the PA and PK rules). (c) There is a formula r : C appearing
both in an auxiliary TND-sequent and in the sequent of the premise of the rule
in d such that the specific application of the rule relies on the fact that these
occurrences are of the same formula, but in d̄j the corresponding formula in the
TND-sequent is r′ : C ′, the corresponding formula in the sequent is r′′ : C ′′ and
r′ : C ′ 6= r′′ : C ′′ (this may occur with the PK rule).

We distinguish cases according to the rule R applied at the corresponding
point in d.

∧K or → A Consider the two proof sequents in d̄j that correspond to the
premises of the rule R in d, and suppose that there exists at least one
formula D in the premises of R that has now become, in one case, the for-
mula D′ and in the other case the formula D′′. Apply the weakening rule
to each premise to introduce the formulas D′′ and D′ respectively; then
apply the rule ∧A to get formulas of the form D′ ∧D′′. Repeat the same
operation for all such D. Apply, on the two proof sequents thus obtained,
the rule R and call the derivation d̄j+1. By construction, the conclusion
is a PS-reduct of the conclusion of the application of the rule R in d.

∨A Consider the two proof sequents in d̄j that correspond to the premises of
the rule R in d, and suppose that there exists at least one formula D in
the left hand sides of the premises of R that has now become, in one case,
the formula D′ and in the other case the formula D′′. For each such D,
proceed as in the ∧K-→ A case. Moreover, suppose that in the right hand

39

sides of these proof sequents, their respective formulas C ′ and C ′′ differ.
Apply to each of them the rule ∨K to get C ′ ∨ C ′′. Then apply the rule
∨A and call the resulting derivation d̄j+1. By construction, the conclusion
is a PS-reduct of the conclusion of the corresponding application of the
rule in d. (Note that these two subcases are not exclusive.)

PA Consider the proof sequent in d̄j that corresponds to the premise of the rule
R in d, and suppose that the two auxiliary formulas A and t : A of the
rule R in d have now become the formulas A′ and t′′ : A′′, respectively.
First, add, by means of the weakening rule, the formula t′′ : A′; then
apply to it and to the formula A′ the rule PA. Finally apply ∧A to t′′ : A′

and t′′ : A′′. Let d̄j+1 be the resulting derivation. By construction, the
conclusion is a PS-reduct of the conclusion of the application of the PA
rule in d.

PK We distinguish two subcases depending on the two formulas A and t : A
that are auxiliary in the application of the rule R in d. Subcase 1. In
d̄j the formulas A and t : A do not coincide; more precisely, the formula
A has become the formula A′, while the formula t : A has become t′′ :
A′′. Let M ` t′′ : A′′ be the TND-sequent where t′′ : A′′ occurs. By
Lemma 7.9, there exists a cut-free derivation of M ⇒ A′′. By appropriate
applications of the EW rule, and of the rules involved in the (TND-cut-
free) IN-deduction of M ` t′′ : A′′, we obtain a TND-cut-free derivation of
M ` t′′ : A′′ |M ⇒ A′′; then, by an application of the PK rule and several
applications of the rule W , EW and PA, one gets the desired derivation
d̄j+1. By construction, the conclusion is a PS-reduct of the conclusion
of the corresponding application of the rule in d. Subcase 2. In d̄j the
formulas A and t : A coincide as in d. Consider the proof sequent in d̄j that
corresponds to the premise of the rule R in d and suppose that it contains
an occurrence of the formula r′ : C ′ in the auxiliary TND-sequent and an
occurrence of the formulas r′′ : C ′′ on the left hand side of the sequent,
where r′ : C ′ and r′′ : C ′′ correspond to the same formula r : C in the
premise of the rule in d. In this case, the PK rule can be applied, yielding
a proof sequent where r′ : C ′ and r′′ : C ′′ occur on the left hand side.
Apply the ∧A rule to these two formulas, and let the resulting derivation
be d̄j+1. By construction, the conclusion is a PS-reduct of the conclusion
of the corresponding application of the PK rule in d.

At the end of this induction, we obtain a TND-cut-free derivation d′ of a
proof sequent G+ | Σ+. By construction, G+ | Σ+ is a PS-reduct of G | Σ, as
required.

This result establishes the analyticity of Gilp∗, in the sense set out in Sec-
tion 7.1. As noted there, TND-cuts cannot be reduced without changes in the
proof polynomials (that in a sense “encode” the presence of these cuts in a
proof). Thus Theorem 7.10 (in tandem with Theorem 6.7) establishes the only

40

reasonable form of analyticity that can be demanded in Gilp∗: for any deriva-
tion d, containing both cuts at the sequent and the TND-sequent level, there
exists a cut- and TND-cut-free derivation d′ of a proof sequent which is a re-
duced version of the original one; that is, which it can be obtained from it by
appropriate contractions.

8 Realisation of Gilp

We have thus shown that Gilp∗ is an analytic sequent calculus on the language
L∗lp. However, to what extent can it be thought of as a sequent calculus for
the intuitionistic logic of proofs? We will answer this question in this section,
showing that Gilp∗ realises all theorems of Gilp and that to any theorem in
Gilp∗ which belongs to the image of Llp, there is an associated theorem in Gilp.
In this sense, Gilp∗ can be thought of as a conservative extension of Gilp.

Let us start with the following remark made by Artemov [1, p.9],

A constant specification (CS) is a finite set of formulas c1 :A1, ..., cn :
An such that ci is a constant and Ai is an axiom A0 − A4. (CS) is
injective if for each constant c there is at most one formula c :A ∈
(CS) (each constant denotes a proof of not more than one axiom).
Each derivation in LP naturally generates the CS consisting of all
formulas introduced in this derivation by the rule R2. [...] One
might restrict LP to injective constant specifications only without
changing the ability of LP to emulate modal logic, or the functional
and arithmetical completeness theorems for LP. [1, p.9] [Italics
ours.]

In the light of this we may assume that in Gilp each constant introduced
by the rule ci is associated with at most one axiom (that is, that all constant
specifications generated by derivations in Gilp are injective).15 Accordingly, we
have assignments of constants to proof polynomials, defined as follows.

Definition 8.1. An assignment σ is a function from the set of constants of
Llp to the set of proof polynomials in L∗lp such that, for every constant c, σ(c)
is either a proof polynomial corresponding to a lambda term in normal form
whose type is an intuitionistic axiom, or it is one of λx. Ut(x), λx. Bt(x), λx.
St(x), λx.λy. Pt,t′(x, y).

Definition 8.2. Given an assignment σ, the realizing translation δσ from the
language Llp of Gilp to the language L∗lp of Gilp∗ is defined in the following way.
Proof variables, propositional atoms, boolean connectives and the functional
symbols !, +, · are translated by their equivalents in L∗lp; and, for each constant

15The restriction to injective constant specifications is helpful but not necessary for the
general form of the results presented below: similar results can be obtained, involving an
appropriately modified notion of proper translation (see Definitions 8.1 and 8.2), in the absence
of injectivity.

41

c of Llp, (c)δσ = σ(c). The translation is extended to terms of Llp by induction
on the construction of terms, and similarly for formulas.

Different assignments of terms to constants correspond to different realizing
translations. Hence we have in fact defined a family of possible translations from
Llp to L∗lp; in what follows, we will only be concerned with translations in this
family. Each realizing translation can be thought of as yielding a “realization”
of the formulas of Llp in L∗lp, in which constants are replaced by appropriate
proof polynomials; this is analogous to the realization of formulas of modal logic
in the language of the logic of proofs [1]. We drop the subscript indicating the
assignment, unless it is specifically required.

Definition 8.3. PR is the smallest set of proof polynomials such that:

- PR contains

1. proof polynomials corresponding to lambda terms in normal form
typed by intuitionistic axioms (e.g. see [14]),

2. the proof polynomials λx. Ut(x), λx. Bt(x), λx. St(x), λx.λy. Pt,t′(x, y),

3. the proof variables x0, x1, x2, ...

- PR is closed under the operations of !, + and ·.

Moreover, FR is the set of formulas A such that all the proof polynomials
occurring in A are in PR.

Let L∗lp|lp be the fragment of the language L∗lp containing proof polynomials
in PR and formulas in FR. L∗lp|lp can be thought of as the “image” of Llp in
L∗lp in the following sense: for any formula A (respectively proof polynomial
t) in Llp, (A)δ (resp. (t)δ) is in L∗lp|lp for any realizing translation δ; and for
any formula A (respectively proof polynomial t) in L∗lp|lp, there is a formula
B (resp. proof polynomial s) in Llp and a realizing translation δ such that
(B)δ = A (resp. (s)δ = t). We say that a proof sequent G | Σ ∈ L∗lp|lp if all
formulas occurring in it are in L∗lp|lp.

We first show that for any theorem in Gilp, there is a realizing translation
under which the theorem is derivable in Gilp∗.

Theorem 8.4. For every derivation d of G | Σ in Gilp, there exists a derivation
d′ of (G)δ | (Σ)δ in Gilp∗, for some realizing translation δ.

Proof. Let CS be the constant specification generated by the derivation d (this
is defined in a way similar to that in [1]; see also the citation above), which, as
noted above, can be assumed to be injective. Take any assignment σ respecting
this constant specification in the following sense: if c is assigned to an axiom A
of the logic of proofs under CS, then σ(c) corresponds to a lambda term typed
by A. Let δ be the realizing translation generated by σ.

We now proceed by induction on the height of d.

42

h(d) = 0. G | Σ is an axiom. (G)δ | (Σ)δ is an axiom too.
h(d) > 0. If G | Σ has been derived by a propositional rule, or by a proof rule,

or by one of the rules !, + and �, then the procedure is straightforward. If G | Σ
has been derived by the rule ci, then we consider the following two examples.
The cases that are not considered here can be analysed in an analogous way.

G | Σ
` a : (A→ (B → A)) | G | Σ

ci

(G)δ | (Σ)δ

x : (A)δ ` x : (A)δ | (G)δ | (Σ)δ

x : (A)δ ` λy.x : ((B)δ → (A)δ) | (G)δ | (Σ)δ

` λx.λy.x : ((A)δ → ((B)δ → (A)δ)) | (G)δ | (Σ)δ
λ

λ

EW

G | Σ
` d : (t : (A→ B)→ (s :A→ (t · s) :B)) | G | Σ ci

(G)δ | (Σ)δ

y : (s :A)δ ` y : (s :A)δ | (G)δ | (Σ)δ

x : (t : (A→ B))δ ` x : (t : (A→ B))δ | y : (s :A)δ ` y : (s :A)δ | (G)δ | (Σ)δ
EW

x : (t : (A→ B))δ, y : (s :A)δ ` Pt,s(x, y) : ((t · s) :B)δ | (G)δ | (Σ)δ

x : (t : (A→ B))δ ` λy.Pt,s(x, y) : ((s :A)δ → ((t · s) :B)δ) | (G)δ | (Σ)δ

` λx.λy.Pt,s(x, y) : ((t : (A→ B))δ → ((s :A)δ → ((t · s) :B)δ)) | (G)δ | (Σ)δ
λ

λ

�I

EW

It is clear on inspection of the proof that the result holds for any realizing
translation which respects the constant specification generated by the derivation
d.

We have thus shown that any theorem of Gilp is realized in Gilp∗: that
for any derivable sequent in Gilp, there exists an associated sequent of Gilp∗,
differing only in that constants are replaced by appropriate proof polynomials,
which is derivable. We now prove a converse result: that for any proof sequent
in L∗lp|lp that is derivable in Gilp∗, there exists a proof sequent derivable in
Gilp and a realizing translation which maps it to the initial proof sequent (so
the latter sequent can be obtained from the former by replacing appropriate
proof polynomials by constants).

Theorem 8.5. Given a derivation d in Gilp∗ of G | Σ ∈ L∗lp|lp, there ex-
ists a derivation d′ in Gilp of G′ | Σ′ and a realizing translation δ such that
(G′)δ | (Σ′)δ = G | Σ.

Proof. Given Lemma 6.5, it can be assumed that in d all the applications of
lambda and polynomial lambda rules come first, in the following sense: there is
no application of a propositional, proof, or polynomial rule that is followed by a
lambda or polynomial lambda rule except if it applies to the same TND-sequent.

43

Recall from the discussion at the beginning of this section that any realizing
translation is determined by the assignment of proof polynomials to constants
(Definitions 8.1 and 8.2). Let a partial assignment be a partial function from
the set of constants in Llp to the set of proof polynomials in L∗lp satisfying
the conditions in Definition 8.1 – that is, a function that is only defined for
some constants. Likewise, a partial realizing translation is a realizing translation
generated by a partial assignment of constants – the translation is only defined
on a fragment of Llp; in particular, it is not defined for the constants that are not
assigned to proof polynomials, and for any proof polynomials containing them.
Since G | Σ ∈ L∗lp|lp, each proof polynomial in it belongs to PR. Consider any
partial assignment such that, for each proof polynomial of the sort specified in
Definition 8.1 occurring in G | Σ ∈ L∗lp|lp, there is a constant which is assigned
to it; and let δ0 be the partial realizing translation generated by this assignment.
Hence there is a G′ | Σ′ in Gilp such that (G′)δ0 | (Σ′)δ0 = G | Σ.

We construct sequences d1, . . . dn of trees labelled by proof sequents in Gilp,
d1, . . . , dn of derivations of G | Σ in Gilp∗, maps f1 . . . fn from di to di and
partial realizing translations δ1, . . . , δn such that, for all 1 ≤ i ≤ n, (i) the root
of di is mapped to the root of di and it is labelled by G′ | Σ′; (ii) for every
node in di, if it is labelled by G′′ | Σ′′, then its image under fi is labelled by
(G′′)δi | (Σ′′)δi , and (iii) each node in di is related to its successor nodes by a
rule in Gilp.

Let d1 be a single-noded tree labelled G′ | Σ′, d1 = d, f1 be the function
taking the node in d1 to the root of d1 and δ1 = δ0. The rest of the sequences
are defined by induction, where the induction step involves the following two
cases:

- di contains a leaf m such that fi(m) has been obtained in di by a proposi-
tional rule, a proof rule or a polynomial rule except for the � rule. In this
case, let di+1 be the result of adding the appropriate nodes to di above
m, labelled by the premises of the same rule in Gilp; let di+1 = di; let
fi+1 extend fi by mapping these new nodes to the premises of the rule in
di+1; and let δi+1 = δi.

- di contains a leaf m such that fi(m) has been obtained in di by the �
rule:

G |M,P ` t0 : (A→ F) |M,Q ` t1 :A | Σ
G |M,P,Q ` (t0 · t1) :F | Σ �

If A is in L∗lp|lp, then proceed as in the previous case, extending the partial
realizing translation δi so that A is in the image of δi+1 if necessary. Now
consider the case where A contains a subformula r : B where r is not in
L∗lp|lp. Since M,P,Q ` (t0 · t1) :F ∈ L∗lp|lp by the inductive hypothesis,
the only way this can occur is if: (i) r : B appears in the axioms of the
IN-deductions of M,Q ` t1 :A (either alone or as a subformula of another
formula) and is then discharged in a λ rule or a ∨E rule; or (ii) it is

44

introduced in an instance of the λ rule without discharge of assumptions;
or (iii) it is introduced in an instance of the ∨I rule; or (iv) r contains
a subterm ṙ + r̈, with ṙ or r̈ introduced in an instance of the + or +I
rule. Similar cases hold for the IN-deductions of M,P ` t0 : (A → F).
By (i) replacing all occurrences of r : B in the axioms, (ii) replacing
all occurrences of r : B introduced in instances of the λ rule without
discharge of assumptions, (iii) replacing all occurrences of r : B introduced
in instances of the ∨I rule, and (iv) removing appropriate instances of the
+ and +I rules or replacing occurrences of r : B introduced in them, we
obtain a derivation where, in all IN-deductions of M,P,Q ` (t0 ·t1) :F , all
occurrences of r : B are replaced by a formula r′ : B′ belonging to L∗lp|lp.
Repeating for all such subformulas of A, one obtains a derivation di+1 of
G | Σ where this instance of the � rule is replaced by an application of the
� rule on the proof sequent G |M,P ` t0 : (C → F) |M,Q ` t1 :C | Σ
with C ∈ L∗lp|lp. Let δi+1 be the result of extending δi by assigning new
constants to the proof polynomials in C. Note that there is a canonical
mapping from di+1 to di, obtained by replacing any occurrences of C (or
subformulas) by A (or appropriate subformulas). di+1 is the result of
adding the appropriate node to di above m, labelled by the premises of
the equivalent application of the � rule, and fi+1 is a mapping from di+1

to di+1 which, when composed with the canonical mapping from di+1 to
di, coincides with fi and which maps the new node to the premise of this
instance of the � rule in di+1.

The construction halts when all leaves m of di are such that either m is
an axiom of Gilp or fi(m) has been obtained in di by a lambda or polynomial
lambda rule. It is straightforward to check that d1, . . . , dn, f1, . . . , fn, d1, . . . , dn,
and δ1, . . . , δn satisfy the desired properties. Moreover, since d is finite, the
sequence stops at some dn.

We now construct a derivation d′ of G′ | Σ′ in Gilp as follows:

- if all leaves of dn are axioms of Gilp, then dn is the desired derivation of
G′ | Σ′ and any realizing translation extending δn is the required δ.

- if not, then for any leaf m in dn that is not an axiom, it must contain a
TND-sequent which is not of the form s : B ` s : B; call it M′′ ` t′′ :A′′.
For each such TND-sequent, consider its image (M′′)δn ` (t′′)δn : (A′′)δn
in fn(m). This image is in L∗lp|lp by construction. By construction of dn,
the last rule in the IN-deduction of this TND-sequent in dn is a lambda
or polynomial lambda rule, and there is no lambda or polynomial lambda
rule applied to (M′′)δn ` (t′′)δn : (A′′)δn after fn(m) in dn. Since (t′′)δn ∈
L∗lp|lp, it follows that it must be a proof variable, a proof polynomial
corresponding to a normal-form lambda term typed by an intuitionistic
axiom, or one of the following: λx. Ut(x), λx. Bt(x), λx. St(x), λx.λy.
Pt,t′(x, y). Since (M′′)δn 6= (t′′)δn : (A′′)δn by the specification of the case,
the TND-sequent (M′′)δn ` (t′′)δn : (A′′)δn must have been constructed
by a non-trivial IN-deduction (rather than being present in an axiom);

45

it follows that (t′′)δn is not a proof variable. Moreover, by inspection of
the rules, for any non-trivial IN-deduction of a TND-sequent of the form
(M′′)δn ` (t′′)δn : (A′′)δn with (t′′)δn a proof polynomial corresponding to
a normal-form lambda term typed by an intuitionistic axiom or one of λx.
Ut(x), λx. Bt(x), λx. St(x), λx.λy. Pt,t′(x, y), (M′′)δn is empty. Hence
M′′ ` t′′ :A′′ has the form ` c :A′′ for some constant c and some axiom
A′′ of Ilp.

Form the tree d′ by adding a sequence of nodes above each leaf m in dn
that is not an axiom, each of whose labels remove one TND-sequent that is
not a TND-axiom with respect to its predecessor node, and each of which
is related to its predecessor node by the rule ci. The leaves of d′ are all
axioms, and each edge is labelled by a (correctly applied) rule of Gilp;
hence d′ is a derivation. By construction, the image of conclusion of d′

under δn, (G′)δn | (Σ′)δn is G | Σ. Hence d′ is the required derivation in
Gilp, and any realizing translation extending δn is the required δ.

This theorem shows that Gilp∗ is conservative with respect to Gilp, in
the sense that it does not prove anything more than it: for any proof sequent
in the image of the language of Gilp which is derivable in Gilp∗, there is a
corresponding proof sequent derivable in Gilp, namely one which is the pre-
image of the initial proof sequent under an appropriate realizing translation.

Taken together with Theorems 6.7 and 7.10, the results of this section give
the precise sense in which Gilp∗ represents the framework where the problem of
the lack of subformula property for the logic of proofs is solved. Any derivation
in the standard language of the logic of proofs (i.e. in Gilp) can be translated
into a derivation in the extended language L∗lp (i.e. a derivation in Gilp∗) (see
Theorem 8.4). With respect to the image of the language Llp, the switch into
Gilp∗ does not allow to prove more than what we could prove in Gilp (see
Theorem 8.5). However, it does allow one to eliminate all cuts – in both the
sequent and the TND-sequent part of the calculus (Theorems 6.7 and 7.10) –
and thus obtain a derivation satisfying the subformula property. Since proof
polynomials encode certain parts of the derivation in which they are derived,
and these parts may precisely be what is modified when TND-cuts are removed,
the reduced derivation has a conclusion that is different, but related to (it is
a reduct of) the original one. The conclusion of the reduced derivation will
typically not be in the image of the language of the logic of proofs, so the
derivation itself will not be translatable back into the standard language of the
logic of proofs. This can be seen as a confirmation of the intuition with which we
started (Section 5): the subformula property cannot be obtained if one restricts
oneself to the language of the logic of proofs, but it can be obtained by enriching
the language appropriately.

46

References

[1] S. Artemov. Explicit provability and constructive semantics. Bulletin of
Symbolic Logic, 7:1–36, 2001.

[2] S. Artemov. Unified semantics for modality and λ-terms via proof polyno-
mials. In K. Vermeulen and A. Copestake, editors, Algebras, Diagrams and
Decisions in Language, Logic and Computation, pages 1–35. CSLI publica-
tions, Stanford University, 2002.

[3] A. Avron. The method of hypersequents in the proof theory of proposi-
tional non - classical logic. In W. Hodges, M. Hyland, C. Steinhorn, and
J. Strauss, editors, Logic: from Foundations to Applications, pages 1–32.
Oxford University Press, Oxford, 1996.

[4] H. Barendregt. Lambda calculi with types. In Abramsky S., Gabbay
Dov M., and Maibaum T.S.E., editors, Handbook of Logic in Computer
Science, pages 120–148. Oxford University Press, Oxford, 1993.

[5] A. Mkrtychev. Models for the logic of proofs. In S. Adian and A. Nerode,
editors, Lecture Notes In Computer Science; Proceedings of the 4th Inter-
national Symposium on Logical Foundations of Computer Science, pages
266–275. Springer, Dordrecht, 1997.

[6] F. Paoli. Substructural Logics. A Primer. Springer, Dordrecht, 2002.

[7] F. Poggiolesi. Gentzen Calculi for Modal Propositional Logic. Springer,
Dordrecht, 2010.

[8] F. Poggiolesi. Gentzen Calculi for Modal Propositional Logic. Trends in
Logic Series, Springer, 2010.

[9] F. Poggiolesi. Towards a satisfying proof analysis of the logic of proofs. In
X. Arrazola and M. Ponte, editors, Proceedings of the Second ILCLI Inter-
national Workshop on Logic and Philosophy of Knowledge, Communication
and Action, pages 371–387. University of the Basque Country Press, San
Sebastian, 2010.

[10] F. Poggiolesi. Analyticity and logic of proofs: A challenge. In P. Allo and
G. Primiero, editors, Proceedings of the Third Workshop on Philosophy of
Information, pages 55–63. Flemish Academy, Brussels, 2012.

[11] F. Poggiolesi. On the importance of being analytic. the paradigmatic case
of the logic of proofs. Logique et Analyse, 219:443–461, 2012.

[12] Bryan Renne. Evidence elimination in multi-agent justification logic. In
A. Heifetz, editor, Proceedings of the 12th Conference of Theoretical As-
pects of Rationality and Knowledge (TARK XII), pages 227–236, Stanford,
California, USA, 2009. ACM.

47

[13] Y. Savateev. Proof internalization in generalized frege systems for classical
logic. Annals of Pure and Applied Logic, 165:340–356, 2014.

[14] B. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism.
Studies in Logic and the Foundations of Mathematics. Elsevier, Amster-
dam, 2006.

[15] A. S. Troelestra and H. Schwichtenberg. Basic Proof Theory. Cambridge
University Press, Cambridge, 1996.

[16] H. Wansing. Displaying Modal Logic. Kluwer Academic Publisher, Dor-
drecht, 1998.

[17] H. Wansing. Sequent systems for modal logics. In Handbook of Philosophical
Logic, Vol 8, pages 61–145. Kluwer, Dordrecht, 2002.

48

