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Abstract. Nowadays, many NLP problems are tackled as supervised
machine learning tasks. Consequently, the cost of the expertise needed
to annotate the examples is a widespread issue. Active learning offers a
framework to that issue, allowing to control the annotation cost while
maximizing the classifier performance, but it relies on the key step of
choosing which example will be proposed to the expert. In this paper,
we examine and propose such selection strategies in the specific case of
Conditional Random Fields (CRF) which are largely used in NLP. On
the one hand, we propose a simple method to correct a bias of some state-
of-the-art selection techniques. On the other hand, we detail an original
approach to select the examples, based on the respect of proportions
in the datasets. These contributions are validated over a large range of
experiments implying several datasets and tasks, including named entity
recognition, chunking, phonetization, word sense disambiguation.

Keywords: CRF, conditional random fields, active learning, semi-
supervised learning, statistical test of proportion

1 Introduction

Many NLP tasks rely on supervised machine learning. Among the commonly
used techniques, Conditional Random Fields (CRF) exhibit excellent perfor-
mance for tasks related to the sequences annotation (tagging, named entity
recognition and information extraction, transliteration...). However, as with all
supervised approaches, the cost of the sequence annotation needed to train the
models is an important criterion to consider. For simple problems, such as la-
beling parts-of-speech, some studies show that this cost is relatively low [7], but
most of the problems mentioned above rather require a very large number of
annotations (see Section 5.2).

To reduce, or at least control, this cost, semi-supervised approaches exploit,
in addition to annotated examples, non-annotated examples that are more read-
ily available. Among these approaches, Active Learning allows the expert to
annotate additional examples iteratively, thereby controlling the compromise
between annotation cost vs. performance of the classifier. Thus, a classifier can
be learned or improved at each iteration, and can be used to guide the selection
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of future examples to annotate. In this article, we are interested in this active
learning process, and more specifically in the issue of the selection of examples
which are provided to the expert, in the particular case of CRF.

Many methods of selection, either generic to any machine learning algorithm
or specific to the CRF (Section 2) have already been developed. In this article,
we show that some very conventional methods of the state of the art comprise
a bias tending to favor the choice of long examples, that is examples that are
expensive to annotate. The first contribution of the paper is to propose a simple
technique to remove this bias (Section 3). Another contribution is to propose
an original selection technique, relying on the data representations used by the
CRF, and based on a criterion balancing the proportions of the attributes in the
datasets (Section 4). These different proposals are experimentally evaluated on
several datasets and traditional tasks of CRF (Section 5).

2 Context and related work

2.1 Basic notions

Conditional Random Fields [9] are undirected graphical models that represent
the probability distribution of annotation y on observations x. They are widely
used in NLP thanks to their ability to take into account the sequential aspect
and rich descriptions of text sequences. They have been successfully used in
many tasks casted as annotation problems, and have become standard tools for
information extraction, named entity recognition, tagging, etc. [26, 17, 4, 18, inter
alia]. In such cases, x is a sequence of letters or words and y the corresponding
sequence of labels. In this context, the conditional probability P (y|x) is defined
through a weighted sum of so-called feature functions fj :

P (y|x, θ) =
1

Zλ(x)
exp

∑
j

∑
t

λjfj(x, yt, yt−1, t)


where Zλ(x) is a normalization factor and θ is the vector of λj weights. The
feature functions are often binary, returning 1 when a certain combination of
labels and observations attributes is satisfied, 0 otherwise. They are applied to
each position t of the sequence and the weight λj reflects their importance to
determine the label. It is important to note that in practice the vector x is not
considered as a whole, but only some combinations of attributes on observations
around the position t in x are considered. These combinations are user-defined,
usually indirectly through a set of patterns {Pati}. They are applied at each
position t of each sequence x (Pati(x, t)), and with the information of the labels
(yt−1 and yt), they define all the possible feature functions.

The learning step for a CRF consists in estimating the weights λj from
data with known labels. The weights are those that maximize the model log-
likelihood on the training (labeled) sequences, for instance with quasi-Newton
type algorithms such as L-BFGS [20]. Once learned, applying the CRF model
to the new data consists in finding, for a sequence of observations x, the most
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probable sequence of labels (denoted y∗ in the rest of this article), for example
with a Viterbi algorithm.

2.2 Semi-supervised learning and active learning

Semi-supervised learning consists in using annotated data (noted T hereafter)
and non-annotated data (N ). Its purpose is to reduce the number of annota-
tions and therefore the cost of the annotation, and/or to yield the best classi-
fier performance for a given annotation cost. Different semi-supervised learning
approaches have been explored in the context of CRF. Several studies use unla-
beled data directly in training the model by modifying the expression of entropy.
This change makes the objective function non-concave and therefore requires to
adapt the learning process. Another family of approaches consists in adapting
the learning and decoding procedures of CRF so that they are able to handle
some other knowledge about the sequences rather than completely annotated se-
quences. For example, this knowledge may be partial annotation of the sequences
(labels are known only for a few words [19]). It can also be a priori knowledge
on the distribution of labels knowing certain attributes [12]. Although this is not
strictly semi-supervised learning, let us mention the work using close techniques
exploiting non-annotated data to improve learning on annotated data. For in-
stance, [13] and [6] propose to cluster non-annotated data to build new feature
– in this case, word classes – then used to better describe the (labeled) data. In
this vein, it is also worth mentioning the work of [2] and those of [23]. They
exploit the proximity of an annotated sequence with other sequences to biase
the estimation of the CRF parameters. Although the framework of these studies
is different from the work presented in this paper, they nonetheless share the
idea of exploiting similarity between sequences seen as sets of features.

In this paper, the specific semi-supervised learning framework considered is
known as active learning. Its principle is that supervision is carried out by an
expert (or oracle) iteratively and interactively [22]. This is often set out in an
algorithm whose main steps are as follows:
1) infer a classifier from T ;
2) apply the classifier to N ;
3) select examples from N ;
4) make an expert label these examples and add them to T ;
5) go to step 1.
This process is repeated until a stopping criterion is reached (e.g. maximal cost
of annotation, minimum classifier performance, or N is empty).

The crux of these active learning algorithms is step 3, that is the selection of
examples to be labeled by the expert. One wants to choose the most beneficial
examples for learning, in order to get the best classification performance. This
selection problem is often based on the results of the current classifier (Step 2).
Much work has been proposed in this regard, particularly in the field of NLP [14]
where these labeling problems are common. Regardless of the classifiers used,
several families of selection strategies were proposed. The most common one is
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the uncertainty-based selection: the results from Step 2 are used to select exam-
ples for which the current classifier is less confident (see Section 3). A known
drawback of this approach is that, at the beginning of the process, when there
are few examples annotated, the classifier uncertainty measurements are unreli-
able. Another very common selection strategy is the selection by committee. Its
principle is to learn not one but several classifiers in Step 1, then apply them
to N , and finally select examples on which they disagree the most. This ap-
proach is often implemented by techniques such as bagging and/or boosting [1],
or by learning different classifiers from different representations of the data [16].
Beside the important computational cost generated by these multiple learning,
these techniques also suffer from the same problem as uncertainty-based selec-
tion: classifiers are unreliable in the early rounds of iteration when |T | is small.
Another family of selection techniques relies on the expected change in the model
caused by adding new examples. The principle here is to select the sample that
would impact most the model, assuming that this impact would result in im-
proved performance. The underlying intuition is that the examples chosen in
N will cover cases that are not covered by the examples of T . Practical imple-
mentation of this approach heavily depends on the classifier used. [21] proposed
several variants of this approach for CRF; only one, named Information Density,
gave some positive results. It works by selecting the most different sequence in
N with respect to those of T . To assess this difference, the authors represent the
sequences by a vector representing the combination of the sequence attributes,
as captured by the feature functions. Since the labels of the sequences of N are
unknown, only the features concerning x are considered. The most dissimilar
sequence is simply defined as the one having the smallest average cosine with
the sequences of T .

This latter approach is close to those presented in this article: we also make
use of sequence representation as sets of attributes, although the criteria we
propose is more efficient than [21]’s one (Section 4). Furthermore, the evaluation
method used in their study does not properly account for the annotation effort at
each iteration: the authors evaluate performance based on the number of labeled
sequences, without considering that some can be much longer than others. For
our part, a more realistic setting is adopted: the annotation effort is measured
in terms of annotated words (or sequence elements), which has implications for
selection strategies tested by these authors (next section).

2.3 Experimental context

In the remainder of this article, we will validate our proposals for sequence
selection on different tasks for which the CRF are conventionally used. We briefly
describe these tasks and data below; for details, the interested reader can refer
to the provided references.

We use the dataset of the entity recognition task named the ESTER cam-
paign [8]. It contains 55,000 breath groups from transcripts of radio broadcasts in
French; the named entities are annotated into 8 classes (person, place, time...).
The CoNLL2002 dataset was proposed for the named entity recognition task
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in Dutch proposed at CoNLL 2002 [24]. It contains 4 different entity types;
14,000 sequences (sentences) are used in the experiments reported in the fol-
lowing section. The CoNLL2000 dataset contains English newspapers annotated
with chunks [25], totalizing about 11,000 sentences and 4 classes (3 types of
chunks and a label ’other’). We also experiment with the Sense Disambiguation
dataset from Senseval-2 [5]: disambiguation of hard, line, serve, interest, each of
their senses being represented by a different label in about 16,000 sentences. A
somewhat different task is the phonetic transcription of isolated words in English
provided by Nettalk dataset. The goal is to transcribe these words in a specific
phonetic alphabet. This task is seen as a letter-by-letter annotation task. It has
18,000 words and 52 different labels corresponding to the phonetic alphabet. A
preliminary step of data was to align words with their phonetic transcription
(and thus to introduce the appropriate symbols ’empty’ when needed).

The data are described with usual attributes and patterns for these tasks,
with the parts-of-speech, lemmas, capital presence/absence, etc., and the BIO
annotation scheme is adopted when necessary (ESTER, CONLL2002, CONLL-
2000). Nine tenths is used for training (set T and N ) and the remaining tenth is
used for performance evaluation. In most cases, the performance measure used is
the word accuracy (rate of correctly labeled words), except for the phonetization
task, which is evaluated by the sequence accuracy rate (a word must be com-
pletely and correctly phonetized). This evaluation is performed at each iteration
and related to the annotation effort ie. the number of words (or symbols) to
which the expert added a label.

The CRF implementation used is wapiti [10], with its default settings unless
stated otherwise. It should be noted that tests with other settings (optimization
algorithms, normalization ...), not reported in the article, do not change the
conclusions presented.

3 Uncertainty-based selection

As we have seen, a common solution for the selection of examples to annotate
at each iteration is to propose to the oracle those for which the classifier learned
at the previous iteration is less certain. With CRF, this means choosing the
sequence x by looking at the probabilities P (y|x; θ).

3.1 Minimal confidence and sequence entropy

Among the different ways to proceed, [21] shows that two strategies in this family
perform well in most cases: (i) the selection with minimal confidence, and (ii)
selection from sequence entropy. The first simply consists in choosing in N the
(automatically labeled) sequence whose probability is minimal with the current
model: x = argminx∈N P (y∗|x, θ). The entropy method selects the sequence x
with the greatest entropy over all the possible labels y of this sequence:

x = argmax
x∈N

(
−
∑
y

P (y|x, θ) logP (y|x, θ)

)
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3.2 Length bias

One of the problems of these state-of-the-art approaches is that they tend to
choose the longest sequences, as they often have lower probabilities than short
sequences. However, the annotation cost is proportional to the sequence length.
If one seeks to maximize performance for a minimal cost annotation, it is then
potentially an undesirable behavior. To illustrate this, we report in Table 1
correlation between the sequence lengths in the ESTER dataset and their prob-
abilities given by two models respectively trained on 20 and 10,000 randomly
chosen sequences.

Size of training set Pearson r (p-value) Spearman ρ (p-value) Kendall τ (p-value)

20 seq. -0.52 (< 1010) -0.59 (< 1010) -0.44 (< 1010)
10,000 seq. -0.47 (< 1010) -0.56 (< 1010) -0.40 (< 1010)

Table 1: Correlation (Pearson r, Spearman ρ, Kendall τ) with their p-value
between the sequence lengths and their probabilities according to two models
respectively trained on 20 and 10,000 sequences.

The length bias can be observed in both cases: in average, the sequence
probability given by a CRF model is correlated to its length. This is particularly
more pronounced when the model is trained on few sequences, which is precisely
characteristic of the first iterations of active learning. Thus, this selection crite-
rion is particularly unsuited at the beginning of active learning. Conversely, a
simple normalization of the probabilities by the length of the sequences tends
to favor very short sequences which does not provide enough useful information
for learning.

3.3 Normalization

Based on the above findings, it seems important to normalize with respect to the
sequence length. We propose a local, adaptive method of normalization based
on the average probability of sequences for a given length. For this, we propose a
method of normalization inspired by the Parzen window estimation method [15,
27]. The underlying idea is that for a fixed sequence length (plus or minus ε),
the normalized probability scores should be distributed uniformly between 0 and
1. For a sequence x of N of length l, we estimate the average µ̂l and standard
deviation σ̂l probabilities on all sequences of N of length l ± ε, i.e. the set
{P (y′∗|x′) | x′ ∈ N , |x′| = |x| ± ε}. These values are estimated at each iteration,
and then used to center and reduce the probabilities used in the previous selection
strategies. For example, the selection by minimal confidence is now:

x = argmin
x∈N

(
P (y∗|x, θ)− µ̂l

σ̂l

)
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For each considered close length, it should modify the probability dispersion for
sequences of this length, and thus cancel the bias of sequence length previously
observed. In practice, in the experiments reported in Section 5, same length
sequences are not found using a fixed ε but by neighborhood: µ̂l is calculated
over a fixed number of sequences whose lengths are closest to the one considered.
This k-nearest-neighbor approach can better handle cases of outlier sequences
with very different lengths for which a neighborhood defined with a small ε would
not cover any other sequence.

4 Representativity of feature functions

The main proposal of this article is to consider that the distribution of attributes,
such as captured by the feature functions, can guide the selection of examples
to be annotated during an active learning iteration. To support this intuition,
we first study how these attributes are distributed in terms of frequency and
in terms of use in the models (Subsection 4.1). Based on these considerations,
Subsection 4.2 proposes an original method to select sequences to annotate.

4.1 Preliminary study

The feature functions encode the relationship between the description of se-
quences and labels, as expressed by the patterns {Pati}. It is interesting to
observe their frequencies in the data, in order to see which ones among them
are actually used for the prediction. CRF are known to produce large models in
the sense that many parts of the data, as seen through the feature functions, are
kept in the model [3, 28, for elements of discussion].

In order to study which functions are actually used in the model for the
prediction, we first calculate the distribution of the occurrences of all possible
feature functions fj on ESTER data:

occ(fj) = |{fj(x(m), y
(m)
t−1 , y

(m)
t , t) = 1|∀ example m, ∀ position t}|

We then extract from a model trained on the data the feature functions whose
weight |λj | > 0. Among the learning settings for CRF, L1 or L2 normalization
greatly influences the number of feature functions with non-zero weight. So, a
model with a standard L1 and another with a normalization elastic-net (mixing
equally L1 and L2) are trained on the whole ESTER dataset (full supervision).
Figure 1 reports these three distributions.

As expected, we observe that these three distributions are very similar except
for the rarest feature functions, especially with the L1 model. Most combinations
of attributes/labels from the data therefore appear useful (i.e. their weight |λj | >
0) for predictions in our two models. It means that the CRF models exploit a vast
majority of attributes/labels combinations present in the data, in proportion to
their frequency in the data: the fact that combinations are very common or rare
does not intervene (except for the rarest configurations with L1 model). Thus,
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Fig. 1: Distribution of feature functions
(number of functions according to their
occurrence; log-scale on both axes) and
distribution of the functions used in two
CRF models; ESTER dataset.

Fig. 2: Distribution of feature functions
without label information (number of
functions according to their occurrence
number; log-scale on both axes) and
distribution of the functions used in two
CRF models; ESTER dataset.

to build a smaller training set leading to models with similar characteristics, it
seems important to offer the maximum variety of combinations accordingly with
these proportions, i.e. respecting the distribution of attribute/label combinations
of the whole dataset. This result is not specific to the ESTER dataset: the same
distributions are observed for every tested dataset (see Sect. 2.3).

In our semi-supervised case, most of the data are not annotated. It is there-
fore important to check whether these earlier findings are still true without con-
sidering the labels. We therefore examine the distribution of feature functions
regardless of labels , i.e. only by looking at the attributes concerning x in {fj}.
These incomplete feature functions (without label information) are notedf∗j . For-
mally, we count in the data:
occ(f∗j ) = |{fj(x(m), y1, y2, t) = 1|∀ example m,∀ position t,∀ labels y1, y2}|.
Figure 2 thus illustrates again the occurrences of feature functions, but regard-
less of the label. The same trends as before can be observed. These experiments
suggest the importance of a varied and representative training set of all combi-
nations of attributes (with no information on the label) defined by the feature
functions.

4.2 Test of proportion

We build on the previous observation to propose a new selection strategy. At
each iteration of the active learning algorithm, we want the training set which
is the most representative of the whole dataset. In other words, we want the
sequence distribution, as seen by CRF via feature functions, to be as close as
possible to those of T ∪N . As before, each sequence is seen as the set of feature
functions that can be generated from it, not including labels.

To select the sequence x to add to the training set at each iteration (once
annotated by the oracle), we need to evaluate how the resulting training set
T ∪ {x} compares with the whole data at our disposal (annotated or not, ie
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T ∪ N ). For each feature function, we propose to simply examine whether the
proportion of this function observed in the sample T ∪ {x} is comparable to
that of the sample T ∪ N . These two samples are not independent, but can be
considered as such when |N | � |T |, which is ensured in the first iterations of
active learning.

More specifically, we perform a statistical test of proportion between the two
samples T ∪ {x} and T ∪ N , respectively denoted 1 and 2, with size n1 and
n2. Let p̂j1 = rj1/n1 be the estimator of the proportion of occurrences of a given

feature function fj appearing rj1 times in sample 1, and p̂j2 = rj2/n2 be the one
for sample 2. We can then calculate the z-score:

zj,x =
p̂j1(fj)−p̂

j
2(fj)√

p̂j×(1−p̂j)×(1/n1+1/n2)
with p̂j =

rj1+r
j
2

n1+n2

The z-score follows a standard normal distribution, allowing us to calculate
the probability P (zj,x) to observe such a difference in proportion between the
two samples. A high probability intuitively means that sample 1 contains a
proportion of the feature function fj comparable to that of sample 2.

It is necessary to combine these probabilities for all feature functions. In order
to do so, we make a simplifying assumption by considering that the observations
of feature functions are independent. Although this assumption is invalid in most
cases, it allows us to propose a simple estimate of the overall probability of the
sample x as the product of P (zj,x) for every feature function fj . Finally, the
choice of the sequence to add to the training set is the one maximizing this
probability: x∗ = argmaxx∈N

∏
j P (zj,x)

5 Experiments

In this section, we compare experimentally the different selection strategies for
active learning previously discussed. The experimental framework is detailed
below, and learning curves are presented in Subsection 5.2.

5.1 Settings

Several selection strategies are experimented: on the one hand, for comparison
purposes, we implemented state-of-the-art strategies, namely, selection by mini-
mal confidence, entropy and information density. We also added a simple baseline
in which the sequences are selected at random. On the other hand, we tested
the normalization process for the minimal confidence selection (cf. Sec. 3.3) and
the approach based on proportion (cf. Sec. 4). We do not report results based
on selection by committee as they yield lower results than the previous ones in
almost every case [21].

All these methods are tested under the same conditions (CRF parameters,
patterns...). For initialization, a sequence is randomly chosen to serve as the first
example (the same for all selection methods). At each iteration, a single example
is selected to be annotated by the oracle and the classifier is re-trained on all
annotated data (therefore, this is not an update of the previous CRF model).
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5.2 Results

Figures 3 to 7 give the learning curves on our different datasets. The perfor-
mance of the classifiers learned at each iteration is expressed in function of the
cost of accumulated annotation of the set calT (i.e. total number of words or
symbols seen, according to the task). In the figures, the cost is reported on a
logarithmic scale, so one can appreciate the different cases (few annotations vs.
many annotations). Several observations stand in. First, these curves have very
different appearance from a dataset to another. This is explained by the char-
acteristics of tasks and data, implying that some are more readily feasible with
good performance with few annotations (CoNLL2000) or not (CoNLL2002). For
all datasets except Nettalk, differences, especially when the annotation cost is
small, are sensitive. Regarding Nettalk, it is more difficult to bring out a selection
method better than the other. This can certainly be explained by the difficulty
of the task and, more precisely, by the huge number of possible labels. Indeed,
there are a very large number of possible attributes/labels configurations; there-
fore, in all cases, it requires an extremely large number of examples to cover all
these configurations.

Second, we observe that the three strategies from literature offer an average
performance sometimes not far from the random strategy. Strategies by minimal
confidence and entropy are even sometimes well below random (SenseEval-2),
obviously penalized by their biases discussed in Section 3. This is important to
note; it is often overshadowed by evaluations taking into account the number of
sequences, as we have already pointed in the work of [21].

Third, our normalization approach, applied to the minimal confidence strat-
egy, gives satisfying results since it allows to get better or similar results to the
non normalized version. It especially performs best when the number of anno-
tation is important (ESTER, CoNLL2002, Senseval-2) even if the logarithmic
scale in the figures hides a little this long domination.

Finally, our selection proposal based on proportion tests obtains very good
results overall. It behaves generally better than other selection techniques, in-
cluding information density, from which it is conceptually close. It may be noted
that our strategy brings a significant gain when dealing with few annotations.
This outcome is explained by the fact that the method does not rely on the
predictions, unreliable at this stage, of the current classifier. However, this gain
is less or even absent compared to other methods when the amount of annotated
data becomes very important. This shows the limits of our approach, which
does not exploit any information from the classifier, but it also allows to devise
joint strategies in which the classification information would also be used when
a minimal number of annotations is reached.

6 Conclusive remarks

At a time when most NLP problems are tackled as supervised learning tasks, the
cost of annotations by expert is a significant problem. Active learning provides a
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Fig. 3: Learning curve (precision rate
vs. annotation cost expressed in words);
ESTER dataset; log-scale

Fig. 4: Learning curve (precision rate
vs. annotation cost expressed in words);
CoNLL2002 dataset; log-scale

Fig. 5: Learning curve (precision rate
vs. annotation cost expressed in words);
CoNLL2000 dataset; log-scale

Fig. 6: Learning curve (precision rate
vs. annotation cost expressed in words);
SensEval-2 dataset; log-scale

Fig. 7: Learning curve (precision rate
in terms of correctly phonetized vs.
annotation cost expressed in letters);
Nettalk dataset; log-scale
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framework to control this cost while maximizing, hopefully, the classifier perfor-
mance. As we have seen, it is in fact largely dependent on the example selection
strategy implemented. In this article, we looked at some of these strategies and
we have demonstrated a bias lowering their annotation cost/performance ra-
tio. The normalization that we have proposed can solve this problem in a very
simple manner while providing a significant performance gain. And when the
annotation costs are limited, our strategy based on an original criterion of pro-
portionality, appears the most advantageous on the several NLP taks examined.
Of course, these gains are only appreciable in a real semi-supervised context in
which one wants to get the best performance from a few annotated data; when a
large amount of data is available, all the strategies tends to give similar results.

Many variations, improvements and research avenues can be explored. Among
them, we would try to take into account the dependence between feature func-
tions. In our current proposal, they are considered to be independent for sim-
plification purpose, which is never the case in practice. These dependencies may
even be very important because the patterns used to build these feature func-
tions often exploit several times to the same elements (lemma of the current
word, PoS the current word ...), and that these elements are themselves in a
dependency relationship. This can strongly impact the estimate of the overall
proportion probabilities, and ultimately distort the choice of the best example.

Another promising approach is to mix these different selection techniques
to combine their benefits. They can obviously be simply merged (vote, prod-
uct of scores or ranks ...), but it seems more interesting to aim more complex
combinations, which could be achieved with learning to rank approaches [11].

Finally, in our current framework, the selected sequences are fully annotated.
It would be interesting to study the case of partial annotations, under the same
constraints to optimize the cost/performance ratio, taking inspiration for exam-
ple from [19].
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