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). Numerical results in dimension one and two illustrate the feasibility of the method.

Introduction

The motion of incompressible inviscid fluids inside a bounded domain D ⊂ R d (or, as we shall often consider the periodic in space case, D = T d := R d /2πZ d is the flat torus) without the action of external forces is governed by the equations introduced by Euler in 1755 [START_REF] Euler | Principes généraux du mouvement des fluides[END_REF]:

     ∂ t u + (u • ∇)u + ∇p = 0 in (0, T ) × D div(u) = 0 in (0, T ) × D u • n = 0 on (0, T ) × ∂D, (1.1) 
where n denotes the unit normal to ∂D, u denotes the velocity field and p is the pressure. As was first emphasized by Arnold [START_REF] Arnold | Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits[END_REF], also see Arnold and Khesin [START_REF] Arnold | Topological methods in hydrodynamics[END_REF], (1.1) can be seen, at least formally, in Lagrangian coordinates as the Euler-Lagrange for the minimization of the action

A(X) := T 0 Ẋ 2 L 2 (D) dt (1.2)
subject to the constraint that t → X(t, .) is a path in Sdiff, the group of Lebesgue-measure preserving diffeomorphisms of D. Indeed, the incompressibility constraint translates in Eulerian terms as the requirement that the velocity field u associated with X, through ∂ t X(t, x) = u(t, X(t, x)) is divergence-free. The pressure p acts as a Lagrange multiplier for this constraint and the optimality equation for the minimization of A on paths constrained to remain in Sdiff leads to (1.1).

From now on, we shall consider Brenier's relaxed formulation [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF], [START_REF] Brenier | The dual least action problem for an ideal, incompressible fluid[END_REF], [START_REF] Brenier | Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations[END_REF], [START_REF] Brenier | Generalized solutions and hydrostatic approximation of the Euler equations[END_REF] of the minimizing geodesic problem between an initial and terminal configuration of the fluid. This formulation which allows splitting and crossing of particles, is based on the notion of generalized incompressible flow (GIF). Denoting by L the Lebesgue measure on D (normalized so as to be a probability measure on D), by Ω the path space Ω := C([0, T ], D) and for ω ∈ Ω and t ∈ [0, T ], the evaluation map at time t is defined by e t (ω) := ω(t), the set of generalized incompressible flows is by definition the set of probability measures Q on Ω such that e t# Q = L for every t ∈ [0, T ], GIF := {Q ∈ P(Ω) : e t# Q = L, ∀t ∈ [0, T ]}. (1.3) We are also given π 0,T ∈ P(D×D) a probability measure on D×D having L as marginals and which captures the joint distribution of particles at times 0 and T (one may think for instance the deterministic coupling π 0,T := (id, X T ) # L where X T ∈ Sdiff represents the terminal Lagrangian configuration of the fluid). The set of generalized incompressible flows compatible with π 0,T is then given by GIF(π 0,T ) := {Q ∈ GIF : (e 0 , e T ) # Q = π 0,T }.

(1.4)

For ω ∈ Ω we denote by E(ω) its kinetic action:

E(ω) := 1 2 T 0 | ω(t)| 2 dt if ω ∈ H 1 ((0, T ), D) +∞ otherwise.
(1.5)

Brenier's relaxation of Arnold's geodesic problem then reads as the infinitedimensional linear-programming problem inf

Q∈GIF(π 0,T ) E(Q) := Ω E(ω)dQ(ω). (1.6) 
This formulation can be viewed as an optimal transport problem with infinitely many marginal constraints corresponding to the incompressibility of the flow and an additional constraint corresponding to the prescribed joint initial/terminal distribution π 0,T . It is probably the first instance of the nowadays active field of multi-marginal optimal transport [START_REF] Pass | Multi-marginal optimal transport: theory and applications[END_REF]. Mérigot and Mirebeau [START_REF] Mérigot | Minimal geodesics along volume-preserving maps, through semidiscrete optimal transport[END_REF] recently produced a tractable numerical method for a non-convex Lagrangian formulation of (1.6). The marginal constraints are penalized using semi-discrete optimal transport for which fast solvers are now available (see [START_REF] Mérigot | A multiscale approach to optimal transport[END_REF], [START_REF] Lévy | A numerical algorithm for L 2 semi-discrete optimal transport in 3D[END_REF]).

In the present paper, we follow a different approach, based on the socalled entropic regularization which leads to a strictly convex problem. The entropic regularization approach, which goes back to Schrödinger [START_REF] Schrödinger | Über die umkehrung der naturgesetze[END_REF] has deep connections with large deviations [START_REF] Dawson | Large deviations from the McKean-Vlasov limit for weakly interacting diffusions[END_REF]. It has been extensively analyzed and developed by Mikami [START_REF] Mikami | Monge's problem with a quadratic cost by the zero-noise limit of h-path processes[END_REF] and Léonard [START_REF] Léonard | From the Schrödinger problem to the Monge-Kantorovich problem[END_REF], [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF] who in particular proved convergence of Schrödinger bridges to optimal transport geodesics as the noise intensity vanishes. It has also proved to be an efficient computational strategy for optimal transport by Cuturi [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] who made the connection with the simple but powerful Sinkhorn scaling algorithm which is equivalent to the famous iterative proportional fitting procedure (see [START_REF] Csiszár | I-divergence geometry of probability distributions and minimization problems[END_REF], [START_REF] Rüschendorf | Convergence of the iterative proportional fitting procedure[END_REF]), also see [START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF] for various applications to optimal transport. Our aim in this paper is twofold: first showing that the entropic regularization leads to tractable simulations. We present in section 6 computations of a non classical two-dimensional GIF. Similar computations were presented recently in [START_REF] Mérigot | Minimal geodesics along volume-preserving maps, through semidiscrete optimal transport[END_REF] but rely on a different relaxation and different numerical methods. Secondly, we connect this numerical scheme to the Schrödinger bridge framework which involves the relative entropy with respect to the Wiener measure with a small variance parameter. We shall indeed show, that in the periodic case, D = T d , our numerical approach is exactly the discretized in time counterpart of the entropic interpolation approach developed recently in [START_REF] Arnaudon | An entropic interpolation problem for incompressible viscid fluids[END_REF] and reminiscent of Yasue's variational approach for Navier-Stokes equations [START_REF] Yasue | A variational principle for the Navier-Stokes equation[END_REF].

The paper is organized as follows. After rewriting the time discretization of Brenier's problem as a multi-marginal optimal transport problem in section 2, we introduce its entropic regularization in section 3. In the periodic case, a detailed comparison with the time-discretization of Bredinger's problem1 as well as a Γ-convergence result are given in section 4. In section 5, Sinkhorn's algorithm is described in the present setting. Finally, section 6 is devoted to numerical results in dimensions one and two.

Time discretization

In what follows, D is either a bounded convex domain of R d or the flat torus, D = R d /2πZ d , we denote by dist the distance on D, that is the euclidean distance in the convex domain case and in the case of the torus: dist(x, y) := inf

k∈Z d |x -y + 2πk| ∀(x, y) ∈ T d .
The path space Ω = C([0, T ], D) is equipped with the topology of uniform convergence and P(Ω) with the corresponding weak * topology. Given N ∈ N, N ≥ 1, let T N := {k T N , k = 0, . . . , N } and consider the time-discretization of Brenier's problem (1.6) inf

Q∈GIF N (π 0,T ) E(Q), (2.1) 
where GIF N (π 0,T ) := {Q ∈ P(Ω) :

e t# Q = L, ∀t ∈ T N , (e 0 , e T ) # Q = π 0,T }.
It is well-known (see [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF]) that both linear problems (1.6) and (2.1) admit solutions (which are not unique in general).

The discretized in-time problem (2.1) can easily be rewritten as an optimal transport problem with multi-marginal constraints as follows. Given

x N := (x 0 , • • • , x N ) ∈ D N +1
, let us denote by proj 0,N and proj k the canonical projections:

proj k (x N ) = x k , k = 0, • • • , N, proj 0,N (x N ) = (x 0 , x N ). Defining the cost c N (x N ) := N 2T N -1 k=0 dist 2 (x k+1 , x k ), ∀x N := (x 0 , • • • , x N ) ∈ D N +1 (2.2)
and the set of plans

Γ N (π 0,T ) := {γ ∈ P(D N +1 ) : proj k# γ = L, k = 0, ..., N, proj 0,N # γ = π 0,T } (2.
3) let us consider the multi-marginal optimal transport problem:

inf γ∈Γ N (π 0,T ) D N +1 c N (x N )dγ(x N ).
(2.4)

Setting P N (ω) := (ω(t)) t∈T N , ∀ω ∈ Ω it is clear that Q ∈ P(Ω) belongs to GIF N (π 0,T ) if and only if P N # Q belongs to Γ N (π 0,T ). Moreover, since c N (x 0 , • • • , x N ) = inf E(ω) : ω ∈ Ω, P N (ω) = (x 0 , • • • , x N ) ,
we easily deduce the following: Finally, let us emphasize that (2.1) approximates (1.6) in the sense of Γ-convergence. Let us denote by χ GIF N (π 0,T ) and χ GIF(π 0,T ) the characteristic function of GIF N (π 0,T ) and GIF(π 0,T ) respectively i.e. for Q ∈ P(Ω),

χ GIF N (π 0,T ) (Q) = 0 if Q ∈ GIF N (π 0,T ), +∞ otherwise, , χ GIF(π 0,T ) (Q) = 0 if Q ∈ GIF(π 0,T ), +∞ otherwise, ,
we indeed have (we refer to chapter 6 of [START_REF] Nenna | Numerical Methods for Multi-Marginal Optimal Transportation[END_REF] for a proof):

Proposition 2.2. The sequence of functionals on P(Ω) (endowed with the weak * topology),

E + χ GIF N (π 0,T ) Γ-converges as N → +∞ to E + χ GIF(π 0,T )
.

Since E has relatively compact sublevel sets in Ω, the previous result in particular implies convergence of minimizers of (2.1) to minimizers of (1.6).

Entropy minimization

The equivalent linear programming problems (2.4) and (2.1) are extremely costly to solve numerically and a natural strategy, which has received a lot of attention recently, is to approximate these problems by strictly convex ones by adding an entropic penalization. First, let us set a few notations, given a Polish space X, and two probability measures on X, q and r the relative entropy of q with respect to r (a.k.a. Kullback-Leibler divergence) is given by H(q|r) := X log dq dr dq if q r +∞ otherwise where dq dr stands for the Radon-Nikodym derivative of q with respect to r. If X = D m and µ ∈ P(D m ) we shall simply denote by Ent(µ) the relative entropy of µ with respect to L ⊗m ; slightly abusing notation, when µ L ⊗m we shall identify µ with its density and simply write

Ent(µ) = 1 |D| m D m log(µ(x 1 , • • • , x m ))µ(x 1 , • • • , x m )dx 1 • • • dx m
where |D| denotes the Lebesgue measure of D.

A first way to perform an entropic regularization of (2.4) is, given a small parameter ε > 0, to replace (2.4) by

inf γ∈Γ N (π 0,T ) D N +1 c N dγ + ε Ent(γ) (3.1)
Note that for the previous problem to make sense, i.e. for the existence of at least one γ ∈ Γ N (π 0,T ) such that Ent(γ) < +∞ it is necessary and sufficient that Ent(π 0,T ) < +∞.

This, in particular, rules out the case2 where π 0,T = (id, X T ) # L with X T ∈ Sdiff. Defining the Gibbs measure on D N +1 associated to the cost c N :

η N,ε (x N ) := Λ N,ε exp - c N (x N )
ε where Λ N,ε is the normalizing constant which makes η N,ε be a probability density, (3.1) can be rewritten as the Kullback-Leibler projection problem of η N,ε onto Γ N (π 0,T ): inf

γ∈Γ N (π 0,T ) ε H(γ|η N,ε ). (3.
3)

It will follow from the proof of Theorem 4.3 (also see remark 4.4) that in the periodic case D = T d , the finite entropy condition (3.2) guarantees the Γ-convergence of (3.1) to (2.4) as ε → 0.

4 Comparison with Bredinger in the periodic case

Bredinger's problem and its time discretization

Another way to approximate the problem is to introduce some noise at the level of the path space i.e. in (1.6) as was done recently in [START_REF] Arnaudon | An entropic interpolation problem for incompressible viscid fluids[END_REF] 3 as follows.

Throughout this section, we assume that

D = T d := R d /2πZ d . Assuming (3.
2) and given a small parameter ε > 0 as before, let R ε ∈ P(Ω) be defined by

R ε = 1 (2π) d T d Law(x + √ εB ε )dx (4.1)
where B ε is the standard Brownian motion starting at 0 (that is the Markov process whose generator is

1 2 ∆) on 1 √ ε T d . Following [1], we shall call inf Q∈GIF(π 0,T ) H(Q|R ε ) (4.2)
the Bredinger problem (with variance parameter ε). Let us now discretize in time the Bredinger problem (4.2) in a similar way as we deduced (2.1) from (1.6) i.e. consider inf

Q∈GIF N (π 0,T ) H(Q|R ε ). (4.3)
It is worth noting here that R ε ∈ GIF. Following Léonard [START_REF] Léonard | From the Schrödinger problem to the Monge-Kantorovich problem[END_REF], one can reduce (4.3) to an entropy minimization problem over Γ N (π 0,T ) as follows.

Let us set θ N,ε :=

P N # R ε (4.4)
and disintegrate R ε with respect to θ N,ε as

R ε = (T d ) N +1 R x N ε dθ N,ε (x N ), so that R x N ε
is the law of a Brownian bridge i.e. the law of a Brownian path conditional to the fact that its values at times in T N are given by x N . In a similar way, given Q ∈ GIF N (π 0,T ), setting γ := P N # Q ∈ Γ N (π 0,T ) and disintegrating Q with respect to γ:

Q = (T d ) N +1 Q x N dγ(x N ),
we have

H(Q|R ε ) = H(γ|θ N,ε ) + (T d ) N +1 H(Q x N |R x N ε )dγ(x N ) ≥ H(γ|θ N,ε )
with equality if and only if

Q x N = R x N ε
for γ-almost every x N . Hence we get the following entropic analogue of Lemma 2.1:

Proposition 4.1. Let Q ∈ GIF N (π 0,T ) then Q solves (4.3) if and only if γ := P N # Q solves inf γ∈Γ N (π 0,T ) H(γ|θ N,ε ) (4.5)
and Q disintegrates with respect to γ := P N # Q as

Q = T d N +1 R x N ε dγ (x N ). (4.6) 
Proof. By strict convexity, (4.3) and (4.5) admit at most one solution. Thanks to H(Q|R ε ) = H(γ|θ N,ε ) +

(T d ) N +1 H(Q x N |R x N ε )dγ(x N ) (4.7)
where γ := P N # Q and the fact that Q ∈ GIF N (π 0,T ) if and only if γ := P N # Q ∈ Γ N (π 0,T ) the minimization problem (4.3) can be rewritten as

inf γ∈Γ N (π 0,T ) inf H(Q|R ε ) | Q ∈ P(Ω), P N # Q = γ . (4.8) 
With (4.7), the inner minimization is uniquely solved when

Q x N = R x N ε for γ-almost every x N ∈ T d N +1 since H(Q x N |R x N ε ) = 0 is the minimal value of the relative entropy. Therefore, for each γ ∈ Γ N (π 0,T ) we have inf H(Q|R ε ) | Q ∈ P(Ω), P N # Q = γ = H(Q γ |R x N ε ) = H(γ|θ N,ε ),
where

Q γ = (T d ) N +1 R x N ε dγ(x N ),
and the solution of (4.3) is

Q = Q γ
where γ is the unique solution of (4.5). Now, we see that (4.5) leads to another entropy regularized optimal transport problem, which can equivalently be rewritten as

inf γ∈Γ N (π 0,T ) (T d ) N +1 c N,ε dγ + ε Ent(γ) with c N,ε := -ε log(θ N,ε ). (4.9)
The difference between the naive regularization (3.1) and (4.9) is that the cost which comes from the discretization of Bredinger's problem c N,ε is related to the heat kernel and not directly to the initial quadratic distance cost. We shall compare both costs and give a convergence result in the next paragraph. We conclude this section by summarizing in the following table all the variational models we have seen so far.

Brenier's problem inf

Q∈GIF(π 0,T ) E(Q) where E(Q) := Ω E(ω)dQ(ω).

Discrete Brenier problem

inf

Q∈GIF N (π 0,T ) E(Q) ⇐⇒ inf γ∈Γ N (π 0,T ) (T d ) N +1 c N (x N )dγ(x N ). Bredinger's problem inf Q∈GIF(π 0,T ) H(Q|R ε ) Discrete Bredinger problem inf Q∈GIF N (π 0,T ) H(Q|R ε ) ⇐⇒ inf γ∈Γ N (π 0,T )
H(γ|θ N,ε ).

Convergence as noise vanishes

Our goal now is to establish (for fixed N ) a convergence result as ε → 0. In the first place, one needs to connect c N,ε and c N which can be done thanks to classical Gaussian estimates for the heat kernel. First we observe that the kernel θ N,ε from (4.1)-(4.4) can be computed as follows. First let us denote by p t the heat kernel on R d :

p t (z) := 1 (2πt) d 2 exp - |z| 2 2t , t > 0, z ∈ R d , (4.10) 
the heat-kernel on T d is obtained by its 2πZ d periodization:

g t (x) := (2π) d k∈Z d p t (x + 2kπ), x ∈ T d [-π, π] d , (4.11) 
and the heat kernel on 1 √ ε T d is likewise given by

g ε t (x) := (2π) d k∈Z d p t (x + 2kπ √ ε ), x ∈ 1 √ ε T d . (4.12) Since ε -d 2 g ε t x √ ε = g εt (x), x ∈ T d , we have θ N,ε (x 0 , • • • , x N ) = ε -dN 2 N -1 k=0 g ε T N x k+1 -x k √ ε = N -1 k=0 gεT N (x k+1 -x k ) so that c N,ε (x 0 , • • • , x N ) = -ε N -1 k=0 log gεT N (x k+1 -x k ) .
To compare this expression with the minimal quadratic cost c N , a natural tool is the following Gaussian estimate for the heat kernel (see the self-contained notes of [START_REF] Maheux | Notes on heat kernels on infinite dimensional torus[END_REF] for the case of the torus):

Theorem 4.2. The heat kernel g t on the torus satisfies for every t > 0 and

x ∈ T d : λ (2πt) d 2 exp - dist 2 (x, 0) 2t ≤ g t (x) ≤ Λ (2πt) d 2 exp - dist 2 (x, 0) 2t
where λ and Λ are two positive constants (depending on d).

Taking logarithms and summing over k we thus obtain

-N ε log(Λ)+ dN ε 2 log 2πεT N ≤ c N,ε -c N ≤ -N ε log(λ)+ dN ε 2 log 2πεT N
i.e. there is a constant M such that, for small enough ε, one has

|c N -c N,ε | ≤ M (εN | log( εT N )|). (4.13)
From (4.13), we can easily deduce a Γ-convergence result as ε → 0 (and N fixed) between (2.4) (equivalent to (2.1)) and its entropic regularization à la Bredinger (4.9) (equivalent to (4.3)). For γ ∈ P((T d ) N +1 ), let us denote by χ Γ N (π 0,T ) the characteristic function of Γ N (π 0,T ) i.e.

χ Γ N (π 0,T ) (γ) = 0 if γ ∈ Γ N (π 0,T ) +∞ otherwise
and define the functionals to be minimized in (2.4) and (4.9) respectively

J N (γ) := (T d ) N +1 c N dγ + χ Γ N (π 0,T ) (γ),
and

J N,ε (γ) := (T d ) N +1 c N,ε dγ+ε Ent(γ)+χ Γ N (π 0,T ) (γ) = ε H(γ|θ N,ε )+χ Γ N (π 0,T ) (γ).
We then have Theorem 4.3. Let us assume the finite entropy condition (3.2), then J N,ε , Γ-converges to J N as ε → 0 + for the weak * topology of P((T d ) N +1 ).

Proof. Let γ ε converge weakly * to γ, we first have to prove the Γ-liminf inequality lim inf

ε→0 J N,ε (γ ε ) ≥ J N (γ). (4.14) 
We may assume that γ ε ∈ Γ N (π 0,T ) for a vanishing sequence of ε otherwise there is nothing to prove. Since Γ N (π 0,T ) is weakly * closed we then also have γ ∈ Γ N (π 0,T ). Using the fact that for γ ε ∈ Γ N (π 0,T ), Ent(γ ε ) ≥ Ent(L N +1 ) = (N + 1) Ent(L) and the estimate (4.13) we get

J N,ε (γ ε ) ≥ -M (εN | log( εT N )|) + (T d ) N +1 c N dγ ε + (N + 1)ε Ent(L)
and since c N is continuous, (4.14) immediately follows.

As for the Γ-limsup inequality, we have, given γ ∈ Γ N (π 0,T ), to find γ ε ∈ Γ N (π 0,T ) converging weakly * to γ and such that lim sup

ε→0 (T d ) N +1 c N,ε dγ ε + ε Ent(γ ε ) ≤ (T d ) N +1 c N dγ. (4.15)
We approximate γ ∈ Γ N (π 0,T ) by γ ε as follows. First disintegrate γ with respect to its projection on the first and last components as

γ = γ x 0 ,x N ⊗ π 0,T
and set

γ ε = γ x 0 ,x N ε ⊗ π 0,T with γ x 0 ,x N ε = g ⊗(N -1) ε γ x 0 ,x N .
By construction proj 0,N # γ ε = π 0,T and proj k# γ ε = g ε L = L since L is invariant by the heat flow, we thus have γ ε ∈ Γ N (π 0,T ) and γ ε converges to γ as ε → 0. To estimate Ent(γ ε ), we first observe that Ent(γ ε ) = Ent(π 0,T ) +

T d ×T d Ent(γ x 0 ,x N ε )dπ 0,T (x 0 , x N )
and then, by construction of γ x 0 ,x N ε and the convexity of Ent Remark 4.4. Of course, in the periodic case, there is also Γ-convergence as ε → 0 + if one uses c N instead of c N,ε i.e. when considering (3.1) instead of (4.9). The case of a domain with boundary is less clear to us, in particular the Γ-limsup argument by convolution with the heat flow above does not work in this case.

Ent(γ x 0 ,x N ε ) = Ent (T d ) N -1 N -1 k=0 g ε (x k -•)dγ x 0 ,x N (x 1 , • • • , x N -1 ) ≤ (T d ) N -1 Ent( N -1 k=0 g ε (x k -•))dγ x 0 ,x N (x 1 , • • • , x N -1 ) = Ent(g ⊗(N -1) ε ) = (N - 

Sinkhorn algorithm

Once ε and N are fixed, both entropic regularizations (3.1) (written as in (3.3)) and (4.5) can be written in a common way. It reads as a Kullback-Leibler projection on the set Γ N (π 0,T ), of a certain reference measure α whose density is a product kernel:

inf γ∈Γ N (π 0,T ) H(γ|α) with α(x 0 , • • • x N ) := N -1 k=0 K(x k+1 -x k ) (5.1)
where, in the case of (3.1), K is the Gaussian kernel

K(x) = exp - N dist 2 (x, 0) 2εT
(we have omitted the normalizing constant which does play any role in the minimization problem) and in the Bredinger case (4.5), K is the heat kernel

K(x) = gεT N (x).
There is a unique solution to (5.1) which is of the form

γ(x 0 , • • • , x N ) = γ a,b (x 0 , • • • x N ) := b(x 0 , x N ) N -1 k=1 a k (x k )α(x 0 , • • • x N ) (5.2) where b = b(x 0 , x N ) and a = (a 1 (x 1 ), • • • , a N -1 (x N -1
)) are positive potentials (exponentials of the Lagrange multipliers 4 associated to the marginal constraints). These positive potentials are (uniquely up to multiplicative constants with unit product) determined by the requirement that γ a,b ∈ Γ N (π 0,T ) i.e. the relations

π 0,T (x 0 , x N ) = b(x 0 , x N ) D N -1 N -1 k=1 a k (x k )α(x 0 , • • • x N )dx 1 • • • dx N -1 and for k = 1, • • • , N -1 1 |D| = a k (x k ) D N N -1 j=1,j =k a j (x j )b(x 0 , x N )α(x 0 , • • • x N )dx 0 • • • dx k-1 dx k+1 • • • dx N .
4 this is formal since existence of Lagrange multipliers for the continuous problem cannot be taken for granted in infinite dimensions unless a demanding qualification-like assumption is met requiring that π 0,T somehow lies in the interior of the domain of the relative entropy. Nevertheless, once discretized in space, the problem becomes a finite-dimensional smooth convex minimization with linear constraints so that the existence of such multipliers is guaranteed. To reduce the amount of notation here, we use the same notations for the continuous problem (5.1) as for the discretized one where integrals are replaced by finite sums.

The idea of Sinkhorn algorithm (also known as IPFP, Iterated Proportional Fitting procedure) is to update one multiplier so as to fit one marginal constraint at a time. The algorithm constructs inductively a sequence of measures with densities as follows. Start with

γ (0) = α = γ a (0) ,b (0) , a (0) = (1, • • • , 1), b (0) = 1 and once γ (l) = γ a (l) ,b (l) (with a (l) = (a (l) 1 , • • • , a (l) N -1 )) has been determined, compute b (l+1) by b (l+1) (x 0 , x N ) = π 0,T (x 0 , x N ) D N -1 N -1 k=0 a (l) k (x k )α(x 0 , • • • x N )dx 1 • • • dx N -1 (5.3) 
and then

a (l+1) k (x k ) = 1 |D|A (l+1) k (x k ) , k = 1, • • • , N -1, x k ∈ D with A (l+1) 1 (x 1 ) = D N N -1 j=2 a (l) j (x j )b (l) (x 0 , x N )α(x 0 , • • • x N )dx 0 dx 2 • • • dx N (5.4) and for k = 2, • • • , N -1, setting x -k := (x 0 , • • • , x k-1 , x k+1 , • • • , x N ): A (l+1) k (x k ) = D N k-1 j=1 a (l+1) j (x j ) N -1 j=k+1 a (l) j (x j )b (l) (x 0 , x N )α(x 0 , • • • x N )dx -k (5.5) Finally, set γ (l+1) = γ a (l+1) ,b (l+1) with a (l+1) = (a (l+1) 1 , • • • , a (l+1) 
N -1 ). This algorithm can be viewed as Kullback-Leibler projecting α in an alternating way onto each linear marginal constraint [START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF]. In finite dimensions (hence for the discretized problem) it is well-known (see [START_REF] Bauschke | Dykstra's algorithm with Bregman projections: a convergence proof[END_REF]) that this algorithm converges to the projection onto the intersection i.e. Γ N (π 0,T ).

Remark 5.1 (Implementation). The iterations of Sinkhorn might seem tedious at a first glance because of the integration against α, but due to the special form of α, these are just series of convolution with the kernel K. In the periodic case, this roughly amounts to compute efficiently Fourier coefficients. In addition, a useful property in practice is that the kernel K can be written in tensorized form

K(z 1 , • • • , z d ) = d j=1 k(z j )
where k is a kernel in dimension one. Remark 5.2 (Penalization of the terminal configuration). When the Lagrangian coupling between initial and final configuration is deterministic, i.e. π 0,T := (id, X T ) # L, it is possible to take into account this constraint as a penalization : first the constraint proj 0,N # γ = π 0,T is removed from (2.3) which therefore does not depend anymore on π 0,T , secondly a least square penalization with a positive parameter β is added to (2.2) which becomes

c N,β (x N ) := N 2T N -1 k=0 dist 2 (x k+1 , x k ) + β dist 2 (x N , X T (x 0 ))
The cost now depends on X T and β.

The impact on Sinkhorn algorithm is small and the complexity unchanged : The Lagrange multiplier b disappears, take b ≡ 1 in (5.3-5.4-5.5). In the same equations, the kernel α (5.1) becomes also in (5.3-5.4-5.5)

α β (x 0 , • • • x N ) = α(x 0 , • • • x N ) exp - β|x N -X T (x 0 )| 2 2ε
Of course, β has to be dimensionalized according to T N .

6 Numerical results

One-dimensional experiments

We first reproduce a 1D result obtained with the method described in section 5 and taken from [START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF]. It is a simulation of a test case proposed (and solved with a Lagrangian method) in [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF]. It provides a good warm up for the presentation of 2D results which are new.

The first test case is not periodic, it is set on D = [0, 1] equipped with the standard Euclidean distance. The final configuration is given by X T (x 0 ) = 1 -x 0 which is not an orientation preserving diffeomorphism. Arnold problem (1.2) does not make sense since classical particles cannot cross.

We apply the algorithm of section 5 to Brenier GIF relaxation. The multimarginal transport plans gives a Eulerian measure of the mass movements. In order to track the underlying Lagrangian motion we represent in Figure 1 and for different times t k the quantity

P t k (x 0 , x k ) = D N -2 γ(x 0 • • • x N )dx 1 • • • dx k-1 dx k+1 • • • dx N , (6.1) 
which represents the amount of mass which has traveled from x 0 to x k between initial time and time t k . If the solution was classical and deterministic (but it is not), it would correspond to (id, X t k ) # L.

The initial and final correlations (id, id) # L and (id, X T ) # L are prescribed. All marginals are the Lebesgue measure. The solution forces the mass to split and the "generalized particles" to mix and cross to minimize the kinetic energy of the GIF.

The results, displayed in figure 1 are consistent with the 1989 Lagrangian simulation of Brenier [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF]. For this case we also plotted in figure 2 the the Hilbert projective metric between two consecutive iterations of Sinkhorn and for three different number of marginals. The Hilbert metric between two strictly positive vectors p, q ∈ R M ++ is defined as

Hil := log max i p i q i min i p i q i . (6.2) 
Since in this case N + 1 marginals are considered and so N + 1 Lagrange multipliers a i , the Hilbert metric on the product space can be written as the sum of N + 1 terms: if we consider the variables a i at step l and l + 1 the Hilbert metric is written as

Hil N k (⊗ N i=0 a (l+1) i , ⊗ N i=0 a (l) i ) := N i=0
Hil(a

(l+1) i , a (l) 
i ). (6.

3)

It has been showed in [START_REF] Franklin | Special issue dedicated to Alan J. Hoffman on the scaling of multidimensional matrices[END_REF][START_REF] Tryphon | Positive contraction mappings for classical and quantum Schrödinger systems[END_REF] (and for a generalization of Sinkhorn in [START_REF] Chizat | Scaling algorithms for unbalanced transport problems[END_REF]) that the map defined by Sinkhorn iterations is indeed contractive in the Hilbert projective metric for the two-marginals case. As one can see in figure 2 this is still true in the multi-marginal generalization of Sinkhorn, even if it seems that the number of iterations required to convergence (for the three computations we have used Hil N k as stopping criteria with a tolerance η = 10 -4 ) depends on the number of marginals (or time steps) chosen.

We also present in figure 3 the numerical solution to the same problem on the flat torus R/Z. This can be simply achieved by using the periodization of the Euclidean distance dist(x, y) := inf k∈Z |x -y + k| ∀(x, y) ∈ [0, 1]. The kernel K is changed accordingly. The periodization induces a topological change in the solution which is classical in periodic optimal transport problems. In figure 4 we present a numerical solution (on the flat torus) for a discontinuous final configuration. The computations in figures 1, 3 and 4 
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Two-dimensional experiments: the Beltrami flow

Consider the unit square D = [0, 1] 2 and the Beltrami flow obtained from the following time-independent velocity and pressure fields:

u(x 1 , x2 ) = (-cos(πx 1 ) sin(πx 2 ), sin(πx 1 ) cos(πx 2 )), p(x 1 , x2 ) = 1 2 (sin(πx 1 ) 2 + sin(πx 2 ) 2 ).
where (x 1 , x2 ) denotes the 2D Cartesian coordinates One can verify that they solve the steady Euler equations.

It is possible to integrate the ODE ∂ t X(t, x) = u(X(t, x)), ∀x ∈ D and construct for any final time T classical solution in Sdiff to a (1.2). For the same final configuration X T = X(T, .) Brenier established in [6, Theorem 5.1]) the consistency with the generalized solution of (1.6) provided sup

(t,x)∈[0,T ]×D ∇ 2 x p(t, x) < π 2 T 2 Id
in the sense of positive definite matrices. For the Beltrami flow, the maximum eigenvalue of the Hessian of the pressure is π 2 which suggests T = 1 is a critical time and that we may expect the optimal GIF to depart from the Sdiff solution for T > 1 and exhibit generalized behavior such as splitting/mixing/crossing of "generalized particles".

In order to track the Lagrangian behavior of the generalized solution, we extend the 1D representation technique as follows. We split the domain D P t k (x 0 , x k ) dx 0 (6.6) in the corresponding color with an opacity depending the actual value of the field. Each of these fields represent the amount of mass which has traveled from the initial RED/BLUE/GREEN region at time t k . We also plot the sum of the three fields. The value at any time is the Lebesgue measure but because we use different colors with different opacities, it gives an idea of the mixing.

In figures 5, 6 and 7, we plot different final times T : the classical Lagrangian solution with no mixing in the first column, P R + P G + P B in the second column and P R /P G /P B in the remaining three columns.

For T = 0.9 (figure 5) the classical and GIF solution agree. One should keep in mind that we solve an Entropic regularization of the problem which should be accounted for some of the mass spreading.

For T = 1.3 (figure 6) we are past the critical time and the GIF exhibit a different behavior with a different pattern like a clockwise rotation in the middle of the domain. It is cheaper in terms of kinetic energy to send the mass across rather that doing the full counterclockwise rotation.

For T = π (figure 7) , the GIF is again different but seems to produce less mixing.

Notice that our generalized Beltrami solutions are consistent with the solution in [START_REF] Mérigot | Minimal geodesics along volume-preserving maps, through semidiscrete optimal transport[END_REF] which are computed using a non convex Lagrangian formulation. All the computations are performed with a uniform discretization of [0, 1] 2 with M = 64 × 64 points, = 10 -4 and N = 16. All these simulation take approximately a CPU time of 3 hours, this means that the code must be parallelized in order to become competitive. 

Lemma 2 . 1 .

 21 Problems (2.1) and (2.4) are equivalent in the sense that Q N ∈ GIF N (π 0,T ) solves (2.1) if and only if P N # Q N solves (2.4) and c N (P N (ω)) = E(ω), for Q N -a.e. ω.

1 )

 1 Ent(g ε ) thanks to Theorem 4.2 we have Ent(g ε ) ≤ log(Λ) -d 2 log(2πε) so, thanks to (3.2), we get Ent(γ ε ) = O(| log(ε)|) hence lim sup ε→0 ε Ent(γ ε ) ≤ 0, thanks to (4.13) we thus deduce (4.15).

Figure 1 :

 1 Figure 1: Non Periodic Case : Gray-map value of P t k (see (6.1)) for different times t k . Horizontal axis is x 0 and vertical axis x k .

Figure 2 :Figure 3 :

 23 Figure 2: Distance (log scale) between two consecutive iterations of Sinkhorn by using the Hilbert projective metric for N = 8 (solid line), N = 16 (dashed line) and N = 32 (dotted-dashed line)

Figure 4 : 1 ]

 41 Figure 4: Periodic Case (X T discontinuous) : Gray-map value of P t k (see (6.1)) for different times t k . Horizontal axis is x 0 and vertical axis x k .

Figure 5 :

 5 Figure 5: Final time : T = 0.9. Columns : Classical Color tracking of the Lagrangian solution with no mixing in the first column, P R + P G + P B in the second column and P R /P G /P B in the remaining three columns (see (6.4) for definitions). Rows : Time evolution. The final Lagrangian configuration at the bottom left is the final datum X T in π 0,T = (id, X T ) # L.

we adopt here the terminology of[START_REF] Arnaudon | An entropic interpolation problem for incompressible viscid fluids[END_REF] where the name Bredinger is introduced as a contraction of Brenier and Schrödinger.

However, as we shall see, one way to overcome this problem is by penalizing in the cost the condition x N = X T (x 0 ).

in connection with Navier-Stokes.
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