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Abstract

Starting from Brenier’s relaxed formulation of the incompress-
ible Euler equation in terms of geodesics in the group of measure-
preserving diffeomorphisms, we propose a numerical method based on
Sinkhorn’s algorithm for the entropic regularization of optimal trans-
port. We also make a detailed comparison of this entropic regular-
ization with the so-called Bredinger entropic interpolation problem
(see [1]). Numerical results in dimension one and two illustrate the
feasibility of the method.
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1 Introduction

The motion of incompressible inviscid fluids inside a bounded domainD ⊂ Rd

(or, as we shall often consider the periodic in space case, D = Td := Rd/2πZd
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is the flat torus) without the action of external forces is governed by the
equations introduced by Euler in 1755 [12]:

∂tu+ (u · ∇)u+∇p = 0 in (0, T )×D
div(u) = 0 in (0, T )×D
u · n = 0 on (0, T )× ∂D,

(1.1)

where n denotes the unit normal to ∂D, u denotes the velocity field and p
is the pressure. As was first emphasized by Arnold [2, 3], (1.1) can be seen,
at least formally, in Lagrangian coordinates as the Euler-Lagrange for the
minimization of the action

A(X) :=

∫ T

0

‖Ẋ‖2
L2(D)dt (1.2)

subject to the constraint that t 7→ X(t, .) is a path in Sdiff, the group
of Lebesgue-measure preserving diffeomorphisms of D. Indeed, the incom-
pressibility constraint translates in Eulerian terms as the requirement that
the velocity field u associated with X, through ∂tX(t, x) = u(t,X(t, x))
is divergence-free. The pressure p acts as a Lagrange multiplier for this
constraint and the optimality equation for the minimization of A on paths
constrained to remain in Sdiff leads to (1.1).

From now on, we shall consider Brenier’s relaxed formulation [6, 7, 8, 9]
of the minimizing geodesic problem between an initial and terminal config-
uration of the fluid. This formulation which allows splitting and crossing of
particles, is based on the notion of generalized incompressible flow (GIF). De-
noting by L the Lebesgue measure on D (normalized so as to be a probability
measure on D), by Ω the path space

Ω := C([0, T ],D)

and for ω ∈ Ω and t ∈ [0, T ], the evaluation map at time t is defined by
et(ω) := ω(t), the set of generalized incompressible flows is by definition the
set of probability measures Q on Ω such that et#Q = L for every t ∈ [0, T ],

GIF := {Q ∈ P(Ω) : et#Q = L, ∀t ∈ [0, T ]}. (1.3)

We are also given π0,T ∈ P(D×D) a probability measure onD×D having L as
marginals and which captures the joint distribution of particles at times 0 and
T (one may think for instance the deterministic coupling π0,T := (id, XT )#L
where XT ∈ Sdiff represents the terminal Lagrangian configuration of the
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fluid). The set of generalized incompressible flows compatible with π0,T is
then given by

GIF(π0,T ) := {Q ∈ GIF : (e0, eT )#Q = π0,T}. (1.4)

For ω ∈ Ω we denote by E(ω) its kinetic energy:

E(ω) :=

{
1
2

∫ T
0
|ω̇(t)|2dt if ω ∈ H1((0, T ),D)

+∞ otherwise.
(1.5)

Brenier’s relaxation of Arnold’s geodesic problem then reads as the infinite-
dimensional linear-programming problem

inf
Q∈GIF(π0,T )

E(Q) :=

∫
Ω

E(ω)dQ(ω). (1.6)

This formulation can be viewed as an optimal transport problem with in-
finitely many marginal constraints corresponding to the incompressibility of
the flow and an additional constraint corresponding to the prescribed joint
initial/terminal distribution π0,T . It is probably the first instance of the
nowadays active field of multimarginal optimal transport [22].

Mérigot and Mirebeau [20] recently produced a tractable numerical method
for a non-convex Lagrangian formulation of (1.6). The marginal constraints
are penalized using semi-discrete optimal transport for which fast solvers are
now available (see [19], [17]).

In the present paper, we follow a different approach, based on the so-
called entropic regularization which leads to a strictly convex problem. The
entropic regularization approach, which goes back to Schrödinger [23], has
been extensively analyzed and developed by Christian Léonard [15, 16] who
in particular proved convergence of Schrödinger bridges to optimal transport
geodesics as the noise intensity vanishes. It has also proved to be an efficient
computational strategy for optimal transport by Cuturi [11] who made the
connection with the simple but powerful Sinkhorn scaling algorithm, also see
[5] for various applications.

Our aim in this paper is twofold: first showing that the entropic regular-
ization leads to tractable simulations. We present in section 6 computations
of a non classical two-dimensional GIF. Similar computations were presented
recently in [20] but rely on a different relaxation and different numerical
methods. Secondly, we connect this numerical scheme to the Schrödinger
bridge framework which involves the relative entropy with respect to the
Wiener measure with a small variance parameter. We shall indeed show,
that in the periodic case, D = Td, our numerical approach is exactly the
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discretized in time counterpart of the entropic interpolation approach de-
veloped recently in [1] and reminiscent of Yasue’s variational approach for
Navier-Stokes equations [24].

The paper is organized as follows. After rewriting the time discretization
of Brenier’s problem as a multi-marginal optimal transport problem in section
2, we introduce its entropic regularization in section 3. In the periodic case, a
detailed comparison with the time-discretization of Bredinger’s problem1 as
well as a Γ-convergence result are given in section 4. In section 5, Sinkhorn’s
algorithm is described in the present setting. Finally, section 6 is devoted to
numerical results in dimensions one and two.

2 Time discretization

In what follows, D is either a bounded convex domain of Rd or the flat torus,
D = Rd/2πZd, we denote by dist the distance on D, that is the euclidean
distance in the convex domain case and in the case of the torus:

dist(x, y) := inf
k∈Zd
|x− y + 2πk| ∀(x, y) ∈ Td.

The path space Ω = C([0, T ],D) is equipped with the topology of uniform
convergence and P(Ω) with the corresponding weak ∗ topology. Given N ∈
N, N ≥ 1, let TN := {k T

N
, k = 0, . . . , N} and consider the time-discretization

of Brenier’s problem (1.6)

inf
Q∈GIFN (π0,T )

E(Q), (2.1)

where

GIFN(π0,T ) := {Q ∈ P(Ω) : et#Q = L, ∀t ∈ TN , (e0, eT )#Q = π0,T}.

It is well-known (see [6]) that both linear problems (1.6) and (2.1) admit
solutions (which are not unique in general).

The discretized in-time problem (2.1) can easily be rewritten as an op-
timal transport problem with multi-marginal constraints as follows. Given
xN := (x0, · · · , xN) ∈ DN+1, let us denote by proj0,N and projk the canonical
projections:

projk(xN) = xk, k = 0, · · · , N, proj0,N(xN) = (x0, xN).

1we adopt here the terminology of [1] where the name Bredinger is introduced as a
contraction of Brenier and Schrödinger.
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Defining the cost

cN(xN) :=
N

2T

N−1∑
k=0

dist2(xk+1, xk), ∀xN := (x0, · · · , xN) ∈ DN+1 (2.2)

and the set of plans

ΓN(π0,T ) := {γ ∈ P(DN+1) : projk#γ = L, k = 0, ..., N, proj0,N#
γ = π0,T}

(2.3)
let us consider the multi-marginal optimal transport problem:

inf
γ∈ΓN (π0,T )

∫
DN+1

cN(xN)dγ(xN). (2.4)

Setting
PN(ω) := (ω(t))t∈TN , ∀ω ∈ Ω

it is clear that Q ∈ P(Ω) belongs to GIFN(π0,T ) if and only if PN#Q belongs
to ΓN(π0,T ). Moreover, since

cN(x0, · · · , xN) = inf
{
E(ω) : ω ∈ Ω, PN(ω) = (x0, · · · , xN)

}
,

we easily deduce the following:

Lemma 2.1. Problems (2.1) and (2.4) are equivalent in the sense that QN ∈
GIFN(π0,T ) solves (2.1) if and only if PN#QN solves (2.4) and

cN(PN(ω)) = E(ω), for QN -a.e. ω.

Finally, let us emphasize that (2.1) approximates (1.6) in the sense of
Γ-convergence. Let us denote by χGIFN (π0,T ) and χGIF(π0,T ) the characteristic
function of GIFN(π0,T ) and GIF(π0,T ) respectively i.e. for Q ∈ P(Ω),

χGIFN (π0,T )(Q) =

{
0 if Q ∈ GIFN(π0,T ),

+∞ otherwise,
,

χGIF(π0,T )(Q) =

{
0 if Q ∈ GIF(π0,T ),

+∞ otherwise,
,

we indeed have (we refer to chapter 6 of [21] for a proof):

Proposition 2.2. The sequence of functionals on P(Ω) (endowed with the
weak ∗ topology), E + χGIFN (π0,T ) Γ-converges as N → +∞ to E + χGIF(π0,T ).

Since E has relatively compact sublevel sets in Ω, the previous result in
particular implies convergence of minimizers of (2.1) to minimizers of (1.6).
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3 Entropy minimization

The equivalent linear programming problems (2.4) and (2.1) are extremely
costly to solve numerically and a natural strategy, which has received a lot of
attention recently, is to approximate these problems by strictly convex ones
by adding an entropic penalization. First, let us set a few notations, given
a Polish space X, and two probability measures on X, q and r the relative
entropy of q with respect to r (a.k.a. Kullback-Leibler divergence) is given
by

H(q|r) :=

{∫
X

log
(
dq
dr

)
dr if q � r

+∞ otherwise

where dq
dr

stands for the Radon-Nikodym derivative of q with respect to r.
If X = Dm and µ ∈ P(Dm) we shall simply denote by Ent(µ) the relative
entropy of µ with respect to L⊗m; slightly abusing notation, when µ� L⊗m
we shall identify µ with its density and simply write

Ent(µ) =
1

|D|m

∫
Dm

log(µ(x1, · · · , xm))µ(x1, · · · , xm)dx1 · · · dxm

where |D| denotes the Lebesgue measure of D.

A first way to perform an entropic regularization of (2.4) is, given a small
parameter ε > 0, to replace (2.4) by

inf
γ∈ΓN (π0,T )

∫
DN+1

cN dγ + εEnt(γ) (3.1)

Note that for the previous problem to make sense, i.e. for the existence of at
least one γ ∈ ΓN(π0,T ) such that Ent(γ) < +∞ it is necessary and sufficient
that

Ent(π0,T ) < +∞. (3.2)

This, in particular, rules out the case2 where π0,T = (id, XT )#L with XT ∈
Sdiff. Defining the Gibbs measure on DN+1 associated to the cost cN :

ηN,ε(xN) := ΛN,ε exp
(
− cN(xN)

ε

)
where ΛN,ε is the normalizing constant which makes ηN,ε be a probability
density, (3.1) can be rewritten as the Kullback-Leibler projection problem of
ηN,ε onto ΓN(π0,T ):

inf
γ∈ΓN (π0,T )

εH(γ|ηN,ε). (3.3)

2However, as we shall see, one way to overcome this problem is by penalizing in the
cost the condition xN = XT (x0).
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4 Comparison with Bredinger in the periodic

case

4.1 Bredinger’s problem and its time discretization

Another way to approximate the problem is to introduce some noise at the
level of the path space i.e. in (1.6) as was done recently in [1]3 as follows.
Throughout this section, we assume that D = Td := Rd/2πZd. Assuming
(3.2) and given a small parameter ε > 0 as before, let Rε ∈ P(Ω) be defined
by

Rε =
1

(2π)d

∫
Td

Law(x+
√
εB)dx (4.1)

where B is the standard Brownian motion starting at 0 (that is the Markov
process whose generator is 1

2
∆ on Td). Following [1], we shall call

inf
Q∈GIF(π0,T )

H(Q|Rε) (4.2)

the Bredinger problem (with variance parameter ε). Let us now discretize in
time the Bredinger problem (4.2) in a similar way as we deduced (2.1) from
(1.6) i.e. consider

inf
Q∈GIFN (π0,T )

H(Q|Rε). (4.3)

It is worth noting here that Rε ∈ GIF. Following Léonard [15], one can
reduce (4.3) to an entropy minimization problem over ΓN(π0,T ) as follows.
Let us set

θN,ε := PN#Rε (4.4)

and disintegrate Rε with respect to θN,ε as

Rε =

∫
TdN+1

RxN
ε dθN,ε(xN),

so that RxN
ε is the law of a Brownian bridge i.e. the law of a Brownian path

conditional to the fact that its values at times in TN are given by xN . In
a similar way, given Q ∈ GIFN(π0,T ), setting γ := PN#Q ∈ ΓN(π0,T ) and
disintegrating Q with respect to γ:

Q =

∫
TdN+1

QxN dγ(xN),

3in connection with Navier-Stokes.
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we have

H(Q|Rε) = H(γ|θN,ε) +

∫
(Td)N+1

H(QxN |RxN
ε )dγ(xN) ≥ H(γ|θN,ε)

with equality if and only if QxN = RxN
ε . Hence we get the following entropic

analogue of proposition 2.1:

Proposition 4.1. Let Q? ∈ GIFN(π0,T ) then Q? solves (4.3) if and only if
γ? := PN#Q solves

inf
γ∈ΓN (π0,T )

H(γ|θN,ε) (4.5)

and Q? disintegrates with respect to γ? := PN#Q
? as

Q? =

∫
TdN+1

RxN
ε dγ?(xN). (4.6)

Proof. By strict convexity, (4.3) and (4.5) admit at most one solution. Thanks
to

H(Q|Rε) = H(γ|θN,ε) +

∫
(Td)N+1

H(QxN |RxN
ε )dγ(xN) (4.7)

where γ := PN#Q and the fact that Q ∈ GIFN(π0,T ) if and only if γ :=
PN#Q ∈ ΓN(π0,T ) the minimization problem (4.3) can be rewritten as

inf
γ∈ΓN (π0,T )

{
inf
{

H(Q|Rε) | Q ∈ P(Ω), PN#Q = γ
}}

. (4.8)

With (4.7), the inner minimization is uniquely solved when QxN = RxN
ε for

γ−almost every xN ∈ TdN+1
since H(QxN |RxN

ε ) = 0 is the minimal value of
the relative entropy. Therefore, for each γ ∈ ΓN(π0,T ) we have

inf
{

H(Q|Rε) | Q ∈ P(Ω), PN#Q = γ
}

= H(Qγ|RxN
ε ) = H(γ|θN,ε),

where

Qγ =

∫
TdN+1

RxN
ε dγ(xN),

and the solution of (4.3) is
Q = Qγ?

where γ? is the unique solution of (4.5).
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Now, we see that (4.5) leads to another entropy regularized optimal trans-
port problem, which can equivalently be rewritten as

inf
γ∈ΓN (π0,T )

∫
DN+1

cN,ε dγ + εEnt(γ) with cN,ε := −ε log(θN,ε). (4.9)

The difference between the naive regularization (3.1) and (4.9) is that
the cost which comes from the discretization of Bredinger’s problem cN,ε is
related to the heat kernel and not directly to the initial quadratic distance
cost. We shall compare both costs and give a convergence result in the next
paragraph. We conclude this section by summarizing in the following table
all the variational models we have seen so far.

Brenier’s problem

inf
Q∈GIF(π0,T )

E(Q)

where

E(Q) :=

∫
Ω

E(ω)dQ(ω).

Discrete Brenier’s problem

inf
Q∈GIFN (π0,T )

E(Q)⇐⇒ inf
γ∈ΓN (π0,T )

∫
DN+1

cN(xN)dγ(xN).

Bredinger’s problem

inf
Q∈GIF(π0,T )

H(Q|Rε)

Discrete Bredinger’s problem

inf
Q∈GIFN (π0,T )

H(Q|Rε)⇐⇒ inf
γ∈ΓN (π0,T )

H(γ|θN,ε).

4.2 Convergence as noise vanishes

Our goal now is to establish (for fixed N) a convergence result as ε→ 0. In
the first place, one needs to connect cN,ε and cN which can be done thanks
to classical Gaussian estimates for the heat kernel.

First we observe that the kernel θN,ε from (4.1)-(4.4) can be computed as
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follows. First let us denote by pt the heat kernel on Rd:

pt(z) :=
1

(2πt)
d
2

exp
(
− |z|

2

2t

)
, t > 0, z ∈ Rd, (4.10)

the heat-kernel on Td is obtained by its 2πZd periodization:

gt(x) := (2π)d
∑
k∈Zd

pt(x+ 2kπ), x ∈ Td ' [−π, π]d. (4.11)

Then

θN,ε(x0, · · · , xN) =
N−1∏
k=0

g εT
N

(xk+1 − xk)

so that

cN,ε(x0, · · · , xN) = −ε
N−1∑
k=0

log
(
g εT

N
(xk+1 − xk)

)
.

To compare this expression with the minimal quadratic cost cN , a natural tool
is the following Gaussian estimate for the heat kernel (see the self-contained
notes of [18] for the case of the torus):

Theorem 4.2. The heat kernel gt on the torus satisfies for every t > 0 and
x ∈ Td:

λ

(2πt)
d
2

exp
(
− dist2(x, 0)

2t

)
≤ gt(x) ≤ Λ

(2πt)
d
2

exp
(
− dist2(x, 0)

2t

)
where λ and Λ are two positive constants (depending on d).

Taking logarithms and summing over k we thus obtain

−Nε log(Λ)− dNε
2

log
(2πεT

N

)
≤ cN,ε−cN ≤ −Nε log(λ)− dNε

2
log
(2πεT

N

)
i.e.

|cN − cN,ε| ≤M(εN | log(
εT

N
)|). (4.12)

From (4.12), we can easily deduce a Γ-convergence result as ε → 0 (and
N fixed) between (2.4) (equivalent to (2.1)) and its entropic regularization à
la Bredinger (4.9) (equivalent to (4.3)). For γ ∈ P(DN+1), let us denote by
χΓN (π0,T ) the characteristic function of ΓN(π0,T ) i.e.

χΓN (π0,T )(γ) =

{
0 if γ ∈ ΓN(π0,T )

+∞ otherwise
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and define the functionals to be minimized in (2.4) and (4.9) respectively

JN(γ) :=

∫
DN+1

cNdγ + χΓN (π0,T )(γ),

and

JN,ε(γ) :=

∫
DN+1

cN,εdγ+εEnt(γ)+χΓN (π0,T )(γ) = εH(γ|θN,ε)+χΓN (π0,T )(γ).

We then have

Theorem 4.3. Let us assume the finite entropy condition (3.2), then JN,ε,
Γ-converges to JN as ε→ 0+ for the weak ∗ topology of P(DN+1).

Proof. Let γε converge weakly ∗ to γ, we first have to prove the Γ-liminf
inequality

lim inf
ε→0

JN,ε(γε) ≥ JN(γ). (4.13)

We may assume that γε ∈ ΓN(π0,T ) for a vanishing sequence of ε otherwise
there is nothing to prove. Since ΓN(π0,T ) is weakly ∗ closed we then also have
γ ∈ ΓN(π0,T ). Using the fact that for γε ∈ ΓN(π0,T ), Ent(γε) ≥ Ent(LN+1) =
(N + 1) Ent(L) and the estimate (4.12) we get

JN,ε(γε) ≥ −M(εN | log(
εT

N
)|) +

∫
DN+1

cNdγε + (N + 1)εEnt(L)

and since cN is continuous, (4.13) immediately follows.

As for the Γ-limsup inequality, we have, given γ ∈ ΓN(π0,T ), to find
γε ∈ ΓN(π0,T ) converging weakly ∗ to γ and such that

lim sup
ε→0

∫
DN+1

cN,εdγε + εEnt(γε) ≤
∫
DN+1

cNdγ. (4.14)

We approximate γ ∈ ΓN(π0,T ) by γε as follows. First disintegrate γ with
respect to its projection on the first and last components as

γ = γx0,xN ⊗ π0,T

and set
γε = γx0,xNε ⊗ π0,T with γx0,xNε = g⊗(N−1)

ε ? γx0,xN .

By construction proj0,N#
γε = π0,T and projk#γε = gε ? L = L since L is

invariant by the heat flow, we thus have γε ∈ ΓN(π0,T ) and γε converges to
γ as ε→ 0. To estimate Ent(γε), we first observe that

Ent(γε) = Ent(π0,T ) +

∫
Td×Td

Ent(γx0,xNε )dπ0,T (x0, xN)
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and then, by Jensen’s inequality

Ent(γx0,xNε ) ≤ Ent(g⊗(N−1)
ε ) = (N − 1) Ent(gε)

thanks to Theorem 4.2 we have

Ent(gε) ≤ log(Λ)− d

2
log(2πε)

so, thanks to (3.2), we get Ent(γε) = O(| log(ε)|) hence lim supε→0 εEnt(γε) ≤
0, thanks to (4.12) we thus deduce (4.14).

Remark 4.4. Of course, in the periodic case, there is also Γ-convergence as
ε → 0+ if one uses cN instead of cN,ε i.e. when considering (3.1) instead of
(4.9). The case of a domain with boundary is less clear to us, in particular
the Γ-limsup argument by convolution with the heat flow above does not
work in this case.

5 Sinkhorn algorithm

Once ε and N are fixed, both entropic regularizations (3.1) (written as in
(3.3)) and (4.5) can be written in a common way. It reads as a Kullback-
Leibler projection on the set ΓN(π0,T ), of a certain reference measure α whose
density is a product kernel:

inf
γ∈ΓN (π0,T )

H(γ|α) with α(x0, · · ·xN) :=
N−1∏
k=0

K(xk+1 − xk) (5.1)

where, in the case of (3.1), K is the Gaussian kernel

K(x) = exp
(
− N |x|2

2εT

)
and in the Bredinger case (4.5), K is the heat kernel

K(x) = g εT
N

(x).

There is a unique solution to (5.1) which is of the form

γ(x0, · · · , xN) = γa,b(x0, · · ·xN) := b(x0, xN)
N−1∏
k=1

ak(xk)α(x0, · · ·xN) (5.2)
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where b = b(x0, xN) and a = (a1(x1), · · · , aN−1(xN−1)) are positive poten-
tials (exponentials of the Lagrange multipliers4 associated to the marginal
constraints). These positive potentials are (uniquely up to multiplicative con-
stants with unit product) determined by the requirement that γa,b ∈ ΓN(π0,T )
i.e. the relations

π0,T (x0, xN) = b(x0, xN)

∫
DN−1

N−1∏
k=1

ak(xk)α(x0, · · ·xN)dx1 · · · dxN−1

and for k = 1, · · · , N − 1

1

|D|
= ak(xk)

∫
DN

N−1∏
j=1,j 6=k

aj(xj)b(x0, xN)α(x0, · · · xN)dx0 · · · dxj−1dxj+1 · · · dxN .

The idea of Sinkhorn algorithm (also known as IPFP, Iterated Proportional
Fitting procedure) is to update one multiplier so as to fit one marginal con-
straint at a time. The algorithm constructs inductively a sequence of mea-
sures with densities as follows. Start with

γ(0) = α = γa(0),b(0) , a
(0) = (1, · · · , 1), b(0) = 1

and once γ(l) = γa(l),b(l) (with a(l) = (a
(l)
1 , · · · , a

(l)
N−1)) has been determined,

compute b(l+1) by

b(l+1)(x0, xN) =
π0,T (x0, xN)∫

DN−1

N−1∏
k=0

a
(l)
k (xk)α(x0, · · ·xN)dx1 · · · dxN−1

(5.3)

and then

a
(l+1)
k (xk) =

1

|D|A(l+1)
k (xk)

, k = 1, · · · , N − 1, xk ∈ D

with

A
(l+1)
1 (x1) =

∫
DN

N−1∏
j=2

a
(l)
j (xj)b

(l)(x0, xN)α(x0, · · ·xN)dx0dx2 · · · dxN (5.4)

4this is formal since existence of Lagrange multipliers for the continuous problem cannot
be taken for granted in infinite dimensions, but once discretized in space, the problem
becomes a finite-dimensional smooth minimization convex problem with linear constraints
so that the existence of such multipliers is guaranteed. To reduce the amount of notation
here, we use the same notations for the continuous problem (5.1) as for the discretized one
where integrals are replaced by finite sums.

13



and for k = 2, · · · , N − 1, setting x−k := (x0, · · · , xk−1, xk+1, · · · , xN):

A
(l+1)
k (xk) =

∫
DN

k−1∏
j=1

a
(l+1)
j (xj)

N−1∏
j=k+1

a
(l)
j (xj)b

(l)(x0, xN)α(x0, · · ·xN)dx−k

(5.5)

Finally, set γ(l+1) = γa(l+1),b(l+1) with a(l+1) = (a
(l+1)
1 , · · · , a(l+1)

N−1 ). This
algorithm can be viewed as Kullback-Leibler projecting α in an alternating
way onto each linear marginal constraint [5]. In finite dimensions (hence
for the discretized problem) it is well-known (see [4]) that this algorithm
converges to the projection onto the intersection i.e. ΓN(π0,T ).

Remark 5.1 (Implementation). The iterations of Sinkhorn might seem te-
dious at a first glance because of the integration against α, but due to the
special form of α, these are just series of convolution with the kernel K. In
the periodic case, this roughly amounts to compute efficiently Fourier coeffi-
cients. In addition, a useful property in practice is that the kernel K can be
written in tensorized form

K(z1, · · · , zd) =
d∏
j=1

k(zj)

where k is a kernel in dimension one.

Remark 5.2 (Penalization of the terminal configuration). When the Lagrangian
coupling between initial and final configuration is deterministic, i.e. π0,T :=
(id, XT )#L, it is possible to take into account this constraint as a penal-
ization : first the constraint proj0,N#

γ = π0,T is removed from (2.3) which

therefore does not depend anymore on π0,T , secondly a least square penal-
ization with a positive parameter β is added to (2.2) which becomes

cN,β(xN) :=
N

2T

N−1∑
k=0

dist2(xk+1, xk) + β dist2(xN , XT (x0))

The cost now depends on XT and β.

The impact on Sinkhorn algorithm is small and the complexity unchanged :
The Lagrange multiplier b disappears, take b ≡ 1 in (5.3-5.4-5.5). In the same
equations, the kernel α (5.1) becomes also in (5.3-5.4-5.5)

αβ(x0, · · ·xN) = α(x0, · · ·xN) exp
(
− β|xN −XT (x0)|2

2ε

)
Of course, β has to be dimensionalized according to T

N
.
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6 Numerical results

6.1 One-dimensional experiments

We first reproduce a 1D result obtained with the method described in sec-
tion 5 and taken from [5]. It is a simulation of a test case proposed (and
solved with a Lagrangian method) in [6]. It provides a good warm up for the
presentation of 2D results which are new.

The first test case is not periodic, it is set on D = [0, 1] equipped with the
standard Euclidean distance. The final configuration is given by XT (x0) =
1− x0 which is not an orientation preserving diffeomorphism. Arnold prob-
lem (1.2) does not make sense since classical particles cannot cross.

We apply the algorithm of section 5 to Brenier GIF relaxation. The mul-
timarginal transport plans gives a Eulerian measure of the mass movements.
In order to track the underlying Lagrangian motion we represent in Figure 1
and for different times tk the quantity

Ptk(x0, xk) =

∫
DN−2

γ(x0 · · · xN)dx1 · · · dxk−1dxk+1 · · · dxN , (6.1)

which represents the amount of mass which has traveled from x0 to xk be-
tween initial time and time tk. If the solution was classical and deterministic
(but it is not), it would correspond to (id, Xtk)#L.

The initial and final correlations (id, id)#L and (id, XT )#L are prescribed.
All marginals are the Lebesgue measure. The solution forces the mass to
split and the “generalized particles” to mix and cross to minimize the kinetic
energy of the GIF.

The results, displayed in figure 1 are consistent with the 1989 Lagrangian
simulation of Brenier [6]. For this case we also plotted in figure 2 the the
Hilbert projective metric between two consecutive iterations of Sinkhorn and
for three different number of marginals. The Hilbert metric between two
strictly positive vectors p, q ∈ RM

++ is defined as

Hil := log

(
maxi

pi
qi

mini
pi
qi

)
. (6.2)

Since in this case N + 1 marginals are considered and so N + 1 Lagrange
multipliers ai, the Hilbert metric on the product space can be written as the
sum of N + 1 terms: if we consider the variables ai at step l and l + 1 the
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Hilbert metric is written as

HilNk (⊗Ni=0a
(l+1)
i ,⊗Ni=0a

(l)
i ) :=

N∑
i=0

Hil(a
(l+1)
i , a

(l)
i ). (6.3)

It has been showed in [13, 14] (and for a generalization of Sinkhorn in [10])
that the map defined by Sinkhorn iterations is indeed contractive in the
Hilbert projective metric for the two-marginals case. As one can see in fig-
ure 2 this is still true in the multi-marginal generalization of Sinkhorn, even
if it seems that the number of iterations required to convergence (for the
three computations we have used HilNk as stopping criteria with a tolerance
η = 10−4) depends on the number of marginals (or time steps) chosen.

t = 0 t = 1/8 t = 1/4 t = 3/8 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 1: Non Periodic Case : Gray-map value of Ptk (see (6.1)) for different
times tk. Horizontal axis is x0 and vertical axis xk.

We also present in figure 3 the numerical solution to the same problem
on the flat torus R/Z. This can be simply achieved by using the periodiza-
tion of the Euclidean distance dist(x, y) := infk∈Z |x− y + k| ∀(x, y) ∈ [0, 1].
The kernel K is changed accordingly. The periodization induces a topolog-
ical change in the solution which is classical in periodic optimal transport
problems. In figure 4 we present a numerical solution (on the flat torus) for
a discontinuous final configuration. The computations in figures 1, 3 and 4
are performed with a uniform discretization of [0, 1] with M = 200 points,
ε = 10−3 and N = 16.

6.2 Two-dimensional experiments: the Beltrami flow
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Figure 2: Distance (log scale) between two consecutive iterations of Sinkhorn
by using the Hilbert projective metric for N = 8 (solid line), N = 16 (dashed
line) and N = 32 (dotted-dashed line)

t = 0 t = 1/8 t = 1/4 t = 3/8 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 3: Periodic Case : Gray-map value of Ptk (see (6.1)) for different times
tk. Horizontal axis is x0 and vertical axis xk.

Consider the unit square D = [0, 1]2 and the Beltrami flow obtained from
the following time-independent velocity and pressure fields:

u(x̃1, x̃2) = (− cos(πx̃1) sin(πx̃2), sin(πx̃1) cos(πx̃2)),

p(x̃1, x̃2) =
1

2
(sin(πx̃1)2 + sin(πx̃2)2).

where (x̃1, x̃2) denotes the 2D Cartesian coordinates One can verify that they
solve the steady Euler equations.
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t = 0 t = 1/8 t = 1/4 t = 3/8 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 4: Periodic Case (XT discontinuous) : Gray-map value of Ptk (see
(6.1)) for different times tk. Horizontal axis is x0 and vertical axis xk.

It is possible to integrate the ODE ∂tX(t, x) = u(X(t, x)), ∀x ∈ D and
construct for any final time T classical solution in Sdiff to a (1.2). For the
same final configuration XT = X(T, .) Brenier established in [6, Theorem
5.1]) the consistency with the generalized solution of (1.6) provided

sup
(t,x)∈[0,T ]×D

∇2
xp(t, x) <

π2

T 2
Id

in the sense of positive definite matrices. For the Beltrami flow, the max-
imum eigenvalue the Hessian of the pressure is π2 which suggests T = 1
is a critical time and that we may expect the optimal GIF to depart from
the Sdiff solution for T > 1 and exhibit generalized behavior such as split-
ting/mixing/crossing of ”generalized particles”.

In order to track the Lagrangian behavior of the generalized solution, we
extend the 1D representation technique as follows. We split the domain D
at initial time into three colored sub-domains :

RED := [0,
1

3
]× [0, 1], GREEN := (

1

3
,
2

3
]× [0, 1], BLUE := (

2

3
, 1]× [0, 1]

Then we use again the definition (6.1) and plot for each time tk and for all
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xk ∈ D the 2D fields

Ptk,R(xk) =

∫
RED

Ptk(x0, xk) dx0 (6.4)

Ptk,G(xk) =

∫
GREEN

Ptk(x0, xk) dx0 (6.5)

Ptk,B(xk) =

∫
BLUE

Ptk(x0, xk) dx0 (6.6)

in the corresponding color with an opacity depending the actual value of the
field. Each of this field represent the amount of mass which has traveled from
the initial RED/BLUE/GREEN region at time tk. We also plot the sum of
the three fields. The value at any time is the Lebesgue measure but because
we use different colors with different opacities, it gives an idea of the mixing.

In figures 5, 6 and 7, we plot different final times T : the classical La-
grangian solution with no mixing in the first column, PR + PG + PB in the
second column and PR/PG/PB in the remaining three columns.

For T = 0.9 (figure 5) the classical and GIF solution agree. One should
keep in mind that we solve an Entropic regularization of the problem which
should be accounted for some of the mass spreading.

For T = 1.3 (figure 6) we are past the critical time and the GIF exhibit
a different behavior with a different pattern like a clockwise rotation in the
middle of the domain. It is cheaper in terms of kinetic energy to send the
mass across rather that doing the full counterclockwise rotation.

For T = π (figure 7) , the GIF is again different but seems to produce
less mixing.

Notice that our generalized Beltrami solutions are consistent with the
solution in [20] which are computed using a non convex Lagrangian formu-
lation.
All the computations are performed with a uniform discretization of [0, 1]2

with M = 64 × 64 points, ε = 10−4 and N = 16. All these simulation take
approximately a CPU time of 3 hours, this means that the code must be
parallelized in order to become competitive.
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dimension infinie et ses applications à l’hydrodynamique des fluides par-
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t = 0

t = T
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t = T
2

t = 3T
4

t = T

Figure 5: Final time : T = 0.9. Columns : Classical Color tracking of the
Lagrangian solution with no mixing in the first column, PR +PG +PB in the
second column and PR/PG/PB in the remaining three columns (see (6.4) for
definitions). Rows : Time evolution. The final Lagrangian configuration at
the bottom left is the final datum XT in π0,T = (id, XT )#L.
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Figure 6: Final time : T = 1.3. Columns : Classical Color tracking of the
Lagrangian solution with no mixing in the first column, PR +PG +PB in the
second column and PR/PG/PB in the remaining three columns (see (6.4) for
definitions). Rows : Time evolution. The final Lagrangian configuration at
the bottom left is the final datum XT in π0,T = (id, XT )#L.
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Figure 7: Final time : T = π. Columns : Classical Color tracking of the
Lagrangian solution with no mixing in the first column, PR +PG +PB in the
second column and PR/PG/PB in the remaining three columns (see (6.4) for
definitions). Rows : Time evolution. The final Lagrangian configuration at
the bottom left is the final datum XT in π0,T = (id, XT )#L.
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