
HAL Id: hal-01621290
https://hal.science/hal-01621290v1

Submitted on 23 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VNF modeling towards the Cloud-RAN implementation
Veronica Karina Quintuna Rodriguez, Fabrice Guillemin

To cite this version:
Veronica Karina Quintuna Rodriguez, Fabrice Guillemin. VNF modeling towards the Cloud-RAN
implementation. 2017 International Conference on Networked Systems (NetSys) , 2017. �hal-01621290�

https://hal.science/hal-01621290v1
https://hal.archives-ouvertes.fr


VNF modeling towards the Cloud-RAN
implementation

Veronica Quintuna Rodriguez and Fabrice Guillemin
Orange Labs, 2 Avenue Pierre Marzin, 22300 Lannion, France

{veronicakarina.quintunarodriguez,fabrice.guillemin}@orange.com

Abstract—We address in this paper the problem of modeling
Virtual Network Functions (VNFs) in order to devise execution
principles. We specifically represent a VNF as a chain of sub-
functions or micro-services and investigate its processing on a
multi-core platform. Instead of reserving dedicated resources to
a VNF, we specifically examine the gain that can be obtained by
resource pooling, namely a pool of cores which is shared by active
VNFs. The driving use case of this study is the virtualization
and the cloudification of Radio Access Network functions, in
particular Base Band Unit (BBU) functions. We validate this
approach by simulation and show that an adequate threading
model can reduce the VNF runtime. Obtained results open the
door towards the Cloud-RAN implementation since some BBU
tasks might be hosted in geographically distant data centers.

Keywords: NFV, VNF, Cloud-RAN, BBU, channel coding,
multi-core, global scheduling.

I. INTRODUCTION

Network Function Virtualization (NFV) is a promising
technique [1] which provides network operators with high
flexibility and agility to instantiate network functions on de-
mand, e.g., control functions such as IP Multimedia Subsystem
(IMS) or Evolved Packet Core (EPC). Instead of implementing
such functions on expensive dedicated hardware, Virtualized
Network Functions (VNFs) can be run on general purpose
servers, ideally by using open-source software. Moreover, the
possibility of instantiating on the fly control functions and
configuring network elements via Software Defined Network
(SDN) protocols (e.g., OpenFlow) allows network operators to
create customized networks on demand, and thus, to explore
new businesses offering innovative services.

Two current use cases investigated by network operators are
virtual EPC (vEPC) and Radio Access Network as a Service
(RANaaS). The first case is targeted at companies wishing to
deploy private mobile networks by using the spectrum and
the access network of a network operator. A vEPC can then
be instantiated by a network operator and configured by a
company according to own needs (firewall, private numbering,
user’s profile, etc.). RANaaS is one step further by offering
to a client the possibility of deploying his own radio access
network, even if the radio spectrum is still under the control
of an operator. In this paper, we shall pay special attention to
the RAN and explore how a RAN can be handled as a VNF
by a network operator.

With regard to the implementation of NFV, one possibility
is to instantiate a VNF as a software package on a Virtual

Machine (VM) or a container with dedicated resources in
terms of computing and storage. This is typically the case
of current open-source software packages for EPC and Radio
Access Network (RAN) functions, namely Open Air Interface
(OAI)-cn and OAI-eNB, respectively [2], [3].

The basic reason for implementing a VNF on a single VM
or more generally on the same data center in the case of
multiple VMs is that some network functions cannot easily be
dissociated (e.g., P-Gateway and MME in the case of EPC).
Even when the functional decomposition of a VNF is possible,
some performance constraints can limit the separation of some
elements (e.g. in the case of RAN, the time budget for the TX
base-band process is 1 millisecond).

On the other hand, a dedicated resource allocation to each
VNF is extremely expensive since resources keep assigned
even when the VNF is not active and any resource shar-
ing model cannot be applied. In addition, beyond unused
resources, the energy consumption aspects of NFV are also
of prime interest. If NFV enables a split between hardware
and software-based network functions, supporting VNFs on
not optimized hardware may lead to additional costs in terms
of energy. This is a major issue for network operators and
more generally for the whole of the IT industry in the aim
of reducing the energy footprint in the next future. Hence,
any attempt to save energy is utmost important. In our under-
standing, resource pooling is one possibility to achieve energy
efficiency.

In order to reach efficient resource utilization, we rely in
this paper on the decomposition of a VNF into a set of
sub-functions which can be executed independently of each
other as much as possible. This is consistent with the notion
of micro-services [4] as well as with the network slicing
concept [5]. In this perspective, a VNF is considered as a
service chain that can be disseminated throughout the network.
However, a major challenge is to place the various components
on non co-localized data centers while meeting performance
and resilience objectives [6].

The present work investigates the implementation of a VNF
in the form of a chain of components to be executed on a
multi-core platform. Instead of dedicating resources to each
VNF, we assume that VNFs are served by one high capacity
server, i.e., the global capacity is not split into virtual servers.
This is motivated by the general results given by Kleinrock,
chapter 5 [7], where it is shown that it is better to have jobs in



a big queue instead of splitting jobs into sub-classes processed
by dedicated servers.

In order to illustrate the implementation of VNFs, we con-
sider the case of Cloud-RAN, which is a proposed architecture
for future mobile networks [8], [9], [10]. The RAN functions
are today hosted by eNodeBs (eNBs) but in the next future it
is very likely that those functions can be grouped higher in
the back-haul network, thus, dissociating Radio Remote Head
(RRH) and Base Band Unit (BBU). In this case, centralized
BBUs are executed on a large pool of computing resources
that accomplish the virtualized RAN functions. Improving the
response time in the execution of BBU functions is highly
important because, beyond the hard real-time constraints of
LTE, the runtime of some BBU functions might not have a
deterministic behavior.

The goal of this work is to determine the amount of time
which is possible to gain when applying parallel processing
techniques in the execution of BBU functions. The resulting
gain shall allow the separation of the BBU-pool and antennas
(RRHs). In addition, the performance of virtual BBUs in
terms of latency (i.e., runtime) determines the number of cells
(MIMO/SISO) that can be hosted in the BBU-pool, as well as
the required back-haul capacity.

In order to reduce the BBU runtime, we present a VNF
threading model for the virtualization of BBU down-link func-
tions. The proposed model defines threads at a finer granularity
and maximizes the number of processes that can be executed in
parallel. As a proof of concept, we demonstrate by simulation
the gain in terms of latency which is a step towards the RAN
cloudification. The simulation scenario assumes urban macro-
cells with heterogeneous traffic conditions for multiple UEs.

The major goal of the present study is to investigate which
distance can be introduced between BBU and RRH functions
and how many BBUs can be grouped together. The ultimate
goal is to determine where to implement a BBU hostel
and more generally a Central Office (Central Office (CO))
depending on the target radio coverage. This actually amounts
to cloudifying RAN functions. For this purpose, we introduce
general modeling principles for VNFs.

This paper is organized as follows: In Section II, we present
the VNF model using the case of BBU functions. Imple-
mentation guidelines of a virtualized BBU are described in
Section III. The scheduling strategy is detailed in Section IV.
In Section V, we present the simulation results for BBU
DL functions and the achieved gain in terms of latency.
Concluding remarks are presented in Section VI.

II. VNF MODELING

A. Model Description

VNF modeling needs to be based on the general philosophy
of high performance computing architectures which maintains
thousands of threads in parallel [11]. Due to the intrinsic nature
of a network function only some tasks can run independently
one of each other, thus their parallel execution is not always
possible.

In this context, we consider a VNF as a suite of executable
processes. Each of them executes a specific sub-function in
such a way that the global VNF can be realized. Some
processes can be started only when the output of the previous
one is available. Two such processes are necessarily executed
in series. On the contrary, some tasks can run in parallel even
if the subsequent task can be executed only when the output
of all parallel processes is available.

This leads to the representation of a VNF as depicted in
Figure 1. The tasks tn−1 and tn are executed in series but
tn+1 is composed of m sub-tasks tn+1,1, . . . , tn+1,m, which
can be executed in parallel. Task tn+2 can be executed only
when all the tasks tn+1,j , j = 1, . . . ,m are completed.

Fig. 1. VNF modeling

With regard to the execution of VNFs on a Graphics
Processing Unit (GPU)/Central Processing Unit (CPU)-based
server, we can assume that the computing capacity is shared
among the various active VNFs. The server can be composed
of a single or several cores. In the case of a multi-core
platform, we assume that cores are shared among the various
VNFs. The scheduler contained in the kernel of the operating
system is in charge of allocating the capacities of the cores.

Each task of a VNF can be considered as a job requiring a
certain amount of service but upon service completion, a job
can simply leave the system or give rise to another job with
another service requirement, or to several jobs each with a
certain amount of service, which can give rise to another job
only when all the parallel jobs are completed.

We can hence easily see that the presence of batches can
have a significant impact on those tasks which are executed
in series, if the server capacity is shared among all active
tasks. A VNF can momentarily receive more processing than
other VNFs. Moreover, if the subsequent task of a VNF can
start only when all the sub-tasks of a batch are all completed,
then badly scheduling tasks can introduce significant latency
in the execution of the global VNF. An abundant literature
addresses the problem of batch processing and constraint
based programming. In the following, we shall focus on non-
preemptive Round-Robin scheduling to test the benefit of
parallel execution of sub-tasks of a VNF before considering
more sophisticated scheduling algorithms.



B. The case of RAN

To illustrate the decomposition of a VNF into sub-functions
or components, we consider in this section the case of RAN
in the framework of LTE. Note that the current trend in 3GPP
is to keep the architecture of RAN for the first phase of 5G
similar to that of LTE. As a consequence, it is relevant to
consider the current architecture for devising the RAN of 5G.
We shall more precisely focus on distributed radio elements
(RRH) and centralized BBUs with shared processing, i.e., the
BBU functions are hosted in a multi-core data center.

Separating the BBU and RRH functions is motivated by
many reasons, beyond the usual ones such as better computing
resource utilization, energy savings, operational cost reduction,
etc. Grouping several BBUs on the same data center also
enables multi-point cooperation, advanced coordinated beam-
forming, optimal radio resource allocation, and efficient power
management.

The BBU processes the data of User Equipments (UEs) as
follows. Packets from the IP layer are handled by the PDCP,
RLC and MAC layers before to be presented in a Transport
Block (TB) format to the physical layer (PHY) as shown in
Figure 2.

Fig. 2. BBU elements

A TB is a group of Resource Block (RB) with a common
Modulation and Coding Scheme (MCS). The modulation Or-
der (denoted by Qm) represents the number of bits per symbol.
The data rate for an UE depends on the number of data bits

contained in the TB. Thus, the Transport Block Size (TBS)
corresponds to the data carried for an UE in a Transmission
Time Interval (TTI).

LTE standardization defines the procedure for choosing the
TBS for FDD and TDD frame configurations. In the rest
of this paper, we shall consider the FDD scenario and we
shall analyze only the functions involved in the transmission
process (Tx) for the down-link (DL) direction. Furthermore,
we shall consider only the best effort bearer, in spite of the fact
that the 3GPP standards specify a multi-bearer architecture.
In the horizon of 5G, it is very likely that all services will
be supported by the best effort bearer. An adequate traffic
management at the IP layer, possibly taking into account cross
layer information (including that of the radio layer), will then
be necessary to meet the QoS requirements. A quality of
service architecture is however out of the scope of this paper.

The runtime of the VNF that implements the BBU functions
is especially impacted by the sub-functions listed below and
shown in Figure 3:

• Compression and encryption procedures of the PDCP
sub-layer;

• Concatenation tasks executed by the RLC sub-layer;
• Radio scheduling and HARQ management handled by the

MAC layer, and
• Sub-functions performed by the PHY layer, which are

channel coding, modulation and OFDM signal genera-
tion.

Fig. 3. VNF model of the BBU

The VNF threading model for the BBU is shown in Fig-
ure 4, which is consistent with the VNF template depicted in
Figure 1. It presents the various sub-functions to be executed
for different UEs. PDCP sub-functions are able to be executed
in parallel running one thread per UE. RLC sub-functions are
sequentially executed after the PDCP sub-function.

The MAC layer defines the TBS and MCS which are
function of the traffic load and the radio channel conditions.
The radio scheduler selects the UEs to be served in each TTI,
i.e., one sub-frame of 1 millisecond. The scheduler allocates
resources according to some algorithm, for instance Round
Robin or Proportional Fair among the various UEs which have
data to receive or transmit. In general, the scheduler takes
into account the radio conditions (namely Channel Quality
Indicator (CQI)) to allocate radio resources while achieving
some fairness criterion. In general, the CQI derives from
channel models which are defined by vendors. The most



Fig. 4. VNF threading model of the BBU

important factor involved in the CQI measurement is the
Signal-to Interference Noise Ratio (SINR).

Current mobile networks use high-throughput FPGA archi-
tectures to perform channel coding which can be considered
as the bottleneck in the virtualization of RAN functions [12].
As a consequence, we investigate the gain that can be
achieved when virtual coding sub-functions are instantiated
and executed in parallel as much as possible. We propose a
multi-threading scheme which processes transport blocks by
segments namely Code Blocks (CBs). LTE defines 6120 bits
as the maximum Code Block Size (CBS).

Fig. 5. PHY threading model

The CB is the data structure which triggers the encoding
function. The number of parallel channel coding threads per
UE depends on the TBS. When the TBS is not big enough,
parallelism is not performed since only one CB is produced.
Conversely, when the TBS takes the maximum standardized
value, the number of parallel threads is given by dTBS/CBSe.
See Figure 5 for an illustration.

Modulation sub-function is sequentially executed after the
code block concatenation. Finally, the OFDM signal is gener-
ated after the modulation sub-function is completed.

Figure 6 shows an illustration of additional procedures
required for MIMO. Note that the transport block size is also
different.

Fig. 6. MIMO threading model

The aim of the threading model presented above is to inves-
tigate the performance gain in terms of execution time when
running PHY sub-functions with a high level of parallelism.
Concretely, we focus on the channel coding sub-function since
it is the most expensive one. These claims are validated by
simulation in Section V.

Looking for a high-performing virtual RAN, we also inves-
tigate the scheduling algorithm which dictates how much CPU
time is allocated to each sub-function, thread and/or job. We
describe general implementation guidelines in the next section.

III. IMPLEMENTATION OF A VIRTUALIZED BBU

A. Implementation guidelines

The implementation of a VNF on a data center as depicted in
Figure 1 calls for some implementation principles. Basically,
when a software-based network function runs on a multi-
core platform, it generates multiple jobs which are executed
according to a certain scheduling algorithm. (See Figure 7 for
an illustration.)

The scheduling strategy plays a crucial role in the perfor-
mance of VNFs, since it allocates the processing capacity
and decides which runnable job will be executed, i.e., which
processor executes a job and in what order the jobs are pro-
cessed. Scheduling algorithms are implemented in the kernel
of operating systems (OS), thus virtualization solutions where
the resource allocation of CPU and memory is handled by an
external entity (e.g., the hypervisor in the case of VM) have
lower performance than those where the resource provisioning
is kept by the OS (e.g.,containers).

The computing platform architecture is also important for
the performance of VNFs, especially when considering the
memory access time. Generally speaking, the time required to
access instructions and data in memory is rarely negligible in
general purpose computers.

Commodity parallel computing platforms based on GPUs
can significantly increase the performance, since they give
direct access to the instruction set and parallel runnable
elements. The performance analysis of computer architectures
and memory access mechanisms is beyond the scope of
this work. It is nevertheless important to note that recent



Fig. 7. BBU virtualization environment

studies have compared the LTE BBU execution on GPU and
CPU based architectures [13]. Results show that GPU servers
substantially increase the performance.

In the following, we focus our study on the fact that there is
an important level of parallelism in the base-band processing
of LTE. It can be exploited when applying an appropriate
threading-based model that works together with the scheduling
strategy of a multi-core platform.

B. Implementing BBUs in a virtualized environment

Let us consider a multi-core platform where two or more
homogeneous cores are connected to a shared memory. This
architecture represents a pool of resources which can host var-
ious eNBs. The main challenge is to guarantee the individual
performance of each eNB while avoiding waste of resources.
Thus, the computing platform processes the BBU functions
of various radio network elements which are geographically
distant. The front-haul capacity should also maintain the
latency requirements in order to meet LTE deadlines.

We propose a container-based virtual environment in which
the BBU functions run as applications. This approach im-
proves the performance because there is a single kernel han-
dling the BBU processes or jobs, in this way their execution
uses less RAM and makes the runtime more efficient. See
Figure 7 for an illustration.

We assume that all cores are controlled by a global sched-
uler. Partitioned scheduling is also possible in multi-core
systems, however dedicating resources for a particular task or
sub-function limits the performance of the VNF runtime [7].

The global scheduler makes its decisions based on the
scheduling policy. We assume that all BBU-jobs have the same
and the highest priority in the system. Thus, the scheduling

policy allocates cores among the runnable BBU-threads. The
scheduling strategy is detailed and illustrated in the following
section.

IV. SCHEDULING STRATEGY FOR PARALLEL PROCESSING

In the framework of parallel computing on multi-core plat-
forms, we define a global scheduler which selects the next job
to be processed among those which are ready to be executed.
The scheduler allocates a single processing unit (core) to each
job according to the Round Robin criterion. We use non-
preemptive scheduling, in this way, a running job cannot be
interrupted and it is executed until completion.

We focus on the channel coding function which is de-
composed into several sub-functions that can be processed in
parallel. See Figure 8 for an illustration. The execution of sub-
functions occurs at the same instant on separate cores. Note
that parallel computing is not possible on a single core, since
only one sub-task is able to run at any instant. When sub-tasks
are carried out simultaneously on one core (or even multiple-
cores) by time-sharing computing resources, we then refer to
concurrent computing [14]. Parallel and concurrent computing
can be used together, nevertheless, we focus our analysis on
parallel computing.

As shown in Figure 8, we consider data decomposition in
such a way that the channel coding sub-function is performed
on different sub-sets of data at the same time, i.e., each
parallel task works on a portion of data. Note that functional
parallelism is not applicable on the PHY layer of BBUs, since
modulation, channel coding and IFFT sub-functions must be
executed in series.

In the framework of software-based BBUs, each LTE sub-
frame generates a job for channel coding processing, i.e., a



(a) No parallelism (b) UEs in parallel

(c) CBs in parallel

Fig. 8. Global scheduler for parallel computing

new job requires service every millisecond. When parallel
computing is not applied, as shown in Figure 8(a), a channel
coding job denoted by CCk for the k-th sub-frame is executed
on a single core even when more cores are available. If the
channel coding job CCk arrives when the previous one CCk−1

is not finished, the scheduler allocates to it the next free core.
In the case that all cores are busy, the job is queued. This
scenario is not desirable when executing base-band functions,
mainly when closed-loop processes are active, e.g., the HARQ
process defined in LTE.

In order to speed up the channel coding sub-function, we
decompose each channel coding job CCk in a suite of sub-
jobs. Each parallel sub-job works on a portion of BBU data.
The sub-job belonging to the n-th UE allocated in the k-th

sub-frame is denoted by CCk,n. Channel coding jobs arrive
in batches at the computing platform every millisecond. (See
Figure 8(b) for an illustration.) The batch size (i.e., the number
of active jobs) is variable and corresponds to the number of
UEs allocated into a sub-frame. The service time of a job in
this batch varies in function of the TBS which is determined by
the radio scheduler in the MAC layer. Batches are processed
in a First-Come-First-Serve discipline. The global scheduler
selects jobs in a circular order and assigns them one core to
each.

We now consider a finer granularity in the decomposition
of channel coding sub-functions. Thus, each job CCk,n of the
n-th UE is split in a set of m parallel sub-jobs, where the
m-th sub-job is denoted by CCk,n,m. This is illustrated in
Figure 8(c). The resulting number of parallel channel coding
jobs, i.e., the batch size, varies every millisecond (or more
generally, according to the periodicity of radio scheduling).
Thus, the batch size is the product of active UEs and the
number m of CBs. Note that m can take different values
for each UE. As in the preceding threading model, incoming
batches join the tail of a single queue and each job gets access
to a particular core under Round-Robin criterion.

We evaluate these scenarios by simulation. Performance
results and simulation settings are described in the following
section.

V. PERFORMANCE ANALYSIS OF A VIRTUALIZED BBU

A. Simulation settings

In this section, we evaluate by simulation the execution
time of virtualized BBU functions. First, we analyse the
performance on a single-core platform. Then, we present the
gain in terms of latency on a multi-core platform employing
the threading model depicted in Figure 4. The simulation
emulates a container-based virtualization environment with
a global scheduling as described in Section III. We utilize
the software-based RAN solution named OAI-5G, in order to
determine the execution time of each runnable job.

We emulate real traffic conditions for an urban macro
cell with multiple connected UEs. Concretely, we consider
heterogeneous traffic where UEs with small needs in terms of
radio resources coexist with UEs requiring high data rates. In
addition, the simulation scenario takes place during the peak-
hour, i.e., we assume a greedy consumption of radio resources
with the aim to evaluate the worst case. The simulation tool
implements the Release 12 of the LTE specification for the
PHY layer which is defined by the 3GPP TS 36.213, version
12.4.0 [15].

The simulation is performed for an LTE bandwidth of
20MHz, FDD transmission and SISO configuration. We focus
our study on the execution of the PHY DL taskset which is
composed of channel coding, modulation, and IFFT functions.
We are concretely interested in the runtime performed by each
TTI (1 millisecond).

The simulation selects the modulation order Qm and more
concretely the MCS index IMCS based on the emulated radio
conditions, i.e., the SINR. It is shown in Table I.



TABLE I
MODULATION ORDER AND SINR

CQI Modulation Qm MCS index IMCS SINR [dB]
1-6 QPSK 2 0 - 9 < 3
7- 9 16-QAM 4 10 - 16 < 9
10- 15 64-QAM 6 17 - 28 < 20

In the same way, we define the number of Physical Resource
Blocks (PRB) for an UE in function of the emulated traffic
in the cell and of the data load per user. Note that for an
LTE Bandwidth of 20 MHz the available number of PRB is
110 [15].

We can easily identify the ITBS from the IMCS looking
up the table 7.1.7.1-1 presented in the LTE Physical layer
specification 3GPP TS 36.213 version 12.4.0 Release 12 [15].
Used values are show in Table II.

TABLE II
MODULATION AND TBS INDEX

MCS index IMCS Qm TBS index ITBS

0-9 2 ITBS = IMCS

10- 16 4 ITBS = IMCS − 1
17- 28 6 ITBS = IMCS − 2

Based on the TBS index, ITBS , and the number of Physical
RB, NPRB , we determine the TBS from the table 7.1.7.2.1.1-
1 of the LTE PHY specification 36.213 version 12.4.0 Release
12 [15]. It is for transport blocks not mapped to two or more
layer spatial multiplexing, i.e., SISO configuration. A fragment
is shown in Table III

TABLE III
TRANSPORT BLOCK SIZE TABLE

NPRB

ITBS 4 5 6 7 8 9
12 904 1128 1352 1608 1800 2024
13 1000 1256 1544 1800 2024 2280
14 1128 1416 1736 1992 2280 2600

B. Performance results: PHY runtime

The simulation shows the runtime of the PHY layer for a
single cell and multiple connected UEs. In a first step, we do
not consider the parallel execution of BBU functions. Figure 9
presents separately the runtime for the Modulation, Channel
coding and IFFT sub-functions.

The execution time of the modulation sub-function depends
on the modulation order and on the number of PRBs. The IFFT
sub-function depends only on the number of PRBs. Finally the
Channel Coding depends on the TBS, i.e., the quality of radio
conditions, the amount of data to be transmitted by each UE
and the traffic load in the cell. Simulation results which are
based on the OAI performance show that the runtime of the
whole PHY layer takes around 785 microseconds. It does not

Fig. 9. Execution time of PHY sub-functions

leave enough margin for processing L2 and L3 BBU functions.
This fact may limit the implementation of centralized BBUs.
We present below the gain that can be obtained when using
implementation guidelines that were described in Section III.

C. Gain in terms of latency

In order to reduce the execution time of the BBU, we focus
our analysis on the channel coding sub-function. We simulate
a multi-core platform with c cores and a global scheduler
managing all of them as detailed in Section IV.

(a) c = 2

(b) c = 6

Fig. 10. Parallel execution of channel coding.

We evaluate the gain in terms of latency when using the
threading model presented in Section II. We are able to execute
one thread per UE, and even one thread by CB. It is possible to



execute up to eleven threads per UE when it has the maximum
number of RBs and the maximum modulation order according
to the LTE-Release 12.

Figures 10(a) and 10(b) show the gain of the parallel
execution of channel coding in a multi-core platform with 2
and 6 cores respectively. Results are shown for the following
scenarios:

1) UEs in parallel, CBs in series: one thread per UE.
2) UEs and CBs in parallel: one thread per CB.
3) UEs and CBs in series: no parallelism.

It clearly appears that the execution of the channel coding
sub-function with one thread per CB can halve the runtime
even when using only twice the processing capacity. When
the processing capacity is significantly increased, (e.g., for a
multi-core platform with 6 cores), the runtime of the channel
coding can be reduced almost five times compared with the
original model which is not based on parallel threads.

(a) c = 2

(b) c = 6

Fig. 11. Probability density of channel coding runtime.

Figures 11(a) and 11(b) show the probability density dis-
tribution function for each scenario. Results show that for a
multi-core platform with c = 6, the execution time of the
channel coding when running one thread per CB or even one
thread per UE becomes less variable (i.e., runtime values are
more concentrated around the mean). This fact is relevant for
the incoming cloudification of RAN functions.

VI. CONCLUSION

We have studied in this paper the execution of VNFs on
multi-core platforms. Results show that NFV implementation
requires an adequate computing platform, an efficient global
scheduling algorithm, as well as an optimum threading model
in order to minimize the runtime of VNFs.

In the case of software-based RAN functions, we defined
threads at a fine granularity and as a result, the most expensive
sub-function in terms of latency (namely channel coding) was
strongly decreased. This fact is a step towards the Cloud-
RAN implementation, since some tasks of the BBU can be
moved higher in the network, this offers more possibilities in
the functional split.

In a future work, we shall investigate how these sub-
functions might be executed on various data-centers separated
from each other. Moreover, we shall investigate how to account
of the uplink and what strategy is the most suited for sharing
computing resources.

REFERENCES

[1] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Net-
work function virtualization: Challenges and opportunities for innova-
tions. IEEE Communications Magazine, 53(2):90–97, 2015.

[2] Navid Nikaein, Raymond Knopp, Florian Kaltenberger, Lionel Gauthier,
Christian Bonnet, Dominique Nussbaum, and Riadh Ghaddab. Openair-
interface 4G: an open LTE network in a PC. In International Conference
on Mobile Computing and Networking, 2014.

[3] Florian Kaltenberger, Raymond Knopp, Navid Nikaein, Dominique
Nussbaum, Lionel Gauthier, and Christian Bonnet. OpenAirInterface:
Open-source software radio solution for 5G. In European Conference
on Networks and Communications (EUCNC), Paris, France, 2015.

[4] Johanna Heinonen, Pekka Korja, Tapio Partti, Hannu Flinck, and Petteri
Pöyhönen. Mobility management enhancements for 5G low latency
services. In 2016 IEEE International Conference on Communications
Workshops (ICC), pages 68–73. IEEE, 2016.

[5] Xuan Zhou, Rongpeng Li, Tao Chen, and Honggang Zhang. Network
slicing as a service: enabling enterprises’ own software-defined cellular
networks. IEEE Communications Magazine, 54(7):146–153, 2016.

[6] David Dietrich, Ahmed Abujoda, and Panagiotis Papadimitriou. Network
service embedding across multiple providers with Nestor. In IFIP
Networking Conference, 2015, pages 1–9. IEEE, 2015.

[7] Leonard Kleinrock. Queueing Systems, volume II: Computer Applica-
tions. Wiley Interscience, 1976.

[8] China Mobile. C-RAN: the road towards green RAN. White Paper, ver,
2, 2011.

[9] I Chih-Lin, Corbett Rowell, Shuangfeng Han, Zhikun Xu, Gang Li,
and Zhengang Pan. Toward green and soft: a 5G perspective. IEEE
Communications Magazine, 52(2):66–73, 2014.

[10] I Chih-Lin, Jinri Huang, Ran Duan, Chunfeng Cui, Jesse Xiaogen Jiang,
and Lei Li. Recent progress on C-RAN centralization and cloudification.
IEEE Access, 2:1030–1039, 2014.

[11] Shane Ryoo, Christopher I Rodrigues, Sara S Baghsorkhi, Sam S
Stone, David B Kirk, and Wen-mei W Hwu. Optimization principles
and application performance evaluation of a multithreaded GPU using
CUDA. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pages 73–82, 2008.

[12] Islam Alyafawi, Eryk Schiller, Torsten Braun, Desislava Dimitrova,
Andre Gomes, and Navid Nikaein. Critical issues of centralized and
cloudified LTE-FDD radio access networks. In 2015 IEEE International
Conference on Communications (ICC), pages 5523–5528. IEEE, 2015.

[13] Q Zheng, Y Chen, S Abeyratne, S Dreslinski, and T Mudge. Revisiting
cloud RAN from a computer architecture point of view, July 2016.
[Online; posted July-2016].

[14] R Pike and A Gerrand. Concurrency is not parallelism. Heroku Waza,
2012.

[15] LTE, evolved universal terrestrial radio access, physical layer procedures
(3GPP TS 36.213 version 12.4.0 release 12). Standard, European
Telecommunications Standards Institute, 2015.


