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Towards the deployment of a fully centralized
Cloud-RAN architecture

Veronica Quintuna Rodriguez and Fabrice Guillemin
Orange Labs, 2 Avenue Pierre Marzin, 22300 Lannion, France
{veronicakarina.quintunarodriguez,fabrice.guillemin } @orange.com

Abstract—In the framework of Network Function Virtualiza-
tion (NFV), we address in this work the design and sizing of
Cloud-RAN architectures. We concretely investigate the execution
time of software-based Base Band Units (BBUs) on multi-
core systems. Since Cloud-RAN requires a real-time behavior,
we use parallel programming techniques in order to minimize
the runtime of BBU functions. For an efficient utilization of
computing resources, we investigate the relevance of resource
pooling where a global scheduling algorithm allocates processing
units to runnable BBU-jobs. We specifically examine the gain that
can be obtained when applying data parallelism on the channel
decoding BBU-function which is the most expensive one in
terms of processing time. Performance results show a significant
reduction in the runtime of PHY functions which enables the
deployment of a fully centralized Cloud-RAN architecture.

Keywords: Cloud-RAN, NFV, VNF, BBU, channel decod-
ing, multi-core, global scheduling.

I. INTRODUCTION

Network Function Virtualization (NFV) [1] is an emerging
paradigm which advocates the separation between network
functions and hosting hardware. This approach is intended
to make the network architecture and operation more flexible
since network functions can be instantiated on the fly in cloud
infrastructures and no more on dedicated servers via complex
procedures. Evolved Packet Core (EPC), IP Multimedia Sub-
system (IMS), etc. are typical candidates for virtualization. In
this paper, we pay special attention to Radio Access Network
(RAN) functions. The cloudification of RAN functions is of
utmost interest for several reasons. In the context of network
slicing, RAN functions could be instantiated on the fly for a
specific use case (e.g., a temporary cellular network for the
needs of a company). Cloud-RAN enables the deployment of
radio networks with a tailored behavior for a particular service
or client, i.e., RAN as a Service (RANaaS).

Cloud-RAN is based on network functions which are de-
fined in software. They run on general purpose hardware,
e.g., GPU/CPU based servers. The cloudification of RAN can
be seen as a key architectural evolution of mobile networks
(especially in areas with a dense mesh of small cells). It
allows hundreds of remote Radio Remote Heads (RRHs) to
be connected to a centralized BBU-pool hosted in a Central
Office (CO).

For a network operator, the main advantage of Cloud-RAN
is the native support of collaborative radio technologies such as
Coordinated Multi-point (CoMP), coordinated beam-forming,

joint transmission, among others. These advanced algorithms
are difficult to implement in current mobile architectures due
to the latency between cell sites. Resource saving is another
important benefit of this evolution. Energy consumption re-
duction is possible via BBU pooling and even thanks to
coordinated ON/OFF switching strategies of eNodeBs (eNBs).
Computing resources in data centers can also be saved via
resource pooling. The key point is to apply statistical multi-
plexing when dimensioning future COs.

Centralizing BBUs brings some challenges, a key one being
the front-haul sizing. The front-haul dimension represents the
distance between the CO (BBUs) and antennas (RRHs). This
size is constrained by the Hybrid Automatic Repeat reQuest
(HARQ) process defined in LTE, i.e., the Round Trip Time
(RTT). As a matter of fact, Cloud-RAN requires a real-time
behavior. The BBU should complete the base-band processing
within 3 ms where 2 ms are available for the reception process
and 1 ms for the transmission process. The front-haul capacity
should also be studied. It depends on the configuration of
each eNB hosted in the BBU-pool (e.g., MIMO, SISO, LTE
bandwidth of 5 MHz, 20 MHz, etc).

The time budget (1 ms and 2 ms for down-link and up-
link, respectively) should actually be shared between the
propagation time and the processing time. If the processing
time is reduced, the front-haul size can be increased and BBU
functions can be located higher in the network, typically in
Points of Presence at the edge of an IP network.

In [2] a threading model has been proposed for reducing
the execution time of BBU functions in the down-link (DL)
direction, notably the Channel Coding function. In the present
work, we continue along the same line of investigation by
introducing a solution to minimize the execution time of BBU
functions in the up-link (UL) direction. We concretely inves-
tigate the execution of BBU functions on multi-core systems
when applying parallel programming. First, we identify the
driving factors which determine the runtime of BBU functions.
Then, we implement a threading model with data parallelism
in order to decrease the execution time of BBU functions
in the up-link direction. Finally, we evaluate by simulation
the performance of virtualized BBU functions in terms of
latency (i.e., processing time). The knowledge of runtime of
BBU functions is needed for dimensioning the Cloud-RAN
architecture, i.e., the computing resources of data centers, the
front-haul size and capacity.



This document is organized as follows: The Cloud-RAN
architecture is discussed in Section II. The runtime of BBU
functions and parallelization are described in Section III.
The performance analysis in terms of latency is presented in
Section IV. Concluding remarks are presented in Section V.

II. CLOUD-RAN ARCHITECTURE

Current mobile networks have a distributed architecture
where BBUs are located near to antennas. BBUs are im-
plemented on proprietary hardware and are provided by a
single vendor. On the contrary, Cloud-RAN architectures are
based on open-platforms where the base-band functions can
be instantiated on demand. In the same way the computing
resources can be dynamically allocated.

The Cloud-RAN architecture can support selective central-
ization of BBU functions. Several functional splits of the BBU
have been widely considered in the literature [3], [4], [5]. We
can roughly classify Cloud-RAN architectures as fully and
partially centralized; in this paper, we focus our study in the
case of full centralization which moves all base-band functions
(BBUs) higher in the network. See Figure 1 for an illustration.

A. BBU-pool

The BBU-pool is deployed on commodity hardware, i.e.,
multi-core GPU/CPU-based servers. Base-band functions are
defined in software and run as applications. Cloud-RAN
employs virtualization technologies which can be based on
Virtual Machines (VMs) and/or containers. In this work, we
take advantage of the performance provided by containers
which, unlike VMs run on a common single kernel. This gives
them the benefit of being faster and more resource-efficient.
This point has been studied in [6].

Cloud-RAN - L
8|l mRc PocP R mAG  PHY
((2) 2l OGO go===g—0O
\m 3 2 NI

" L-\L Container Engine ‘

o
s os
‘ ® @ c cores ‘

RRC  :Radio Resource Control
PDCP : Packet Data Convergence Protocol

RLC: Radio Link Control

Fig. 1. Fully-centralized Cloud-RAN architecture.

In a container-based Cloud-RAN platform, BBU functions
are represented as runnable-tasks (processes or jobs) which
are placed in the highest layer of the Cloud-RAN system
as shown in Figure 1. These tasks correspond to all physi-
cal, MAC and network functionalities, i.e., IFFT/FFT, mod-
ulation/demodulation, encoding/decoding, radio scheduling,
HARQ management, radio link control, data convergence pro-
cedures, and User Equipments (UEs) measurement reporting

and paging maintained by the Radio Resource Control (RRC)
protocol.

Since strict real-time constraints are present in the execution
of BBU functions, the behavior of the Operating System (OS)
plays a crucial role in the performance of Cloud-RAN systems.
In fact, each BBU-function represents a chunk of jobs or tasks
to be scheduled by a global scheduling algorithm embedded
into the kernel of the OS. This algorithm determines the
order of execution of BBU-jobs and allocates them computing-
resources.

B. Front-haul size

The front-haul size, i.e., the distance between the BBU-
pool and antennas, is limited by the time-budget of the RTT
defined by LTE which includes the acknowledgment of each
sub-frame. In LTE, the acknowledgment messages and re-
transmission procedures in case of errors are handled by the
HARQ process.
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Fig. 2.  HARQ process in Cloud-RAN architectures.

As shown in Figure 2, the BBU-pool has less than 3 ms
for the whole base-band processing (namely, decoding, check-
ing the Cyclic Redundancy Check (CRC), and encoding the
ACK/NACK). The reception process (Rx) has a budget of 2 ms
and the transmission process (Tx) 1 ms, denoted by T, and
Tr,, respectively; the turnaround time is 8 ms.

In fact, to dimension the front-haul size, it is first necessary
to know the response time 7, of the BBU-pool, i.e., the
required time to execute all BBU functions. Thus, the time-
budget for the propagation of IQ signals, i.e., the front-haul
delay, is the remaining time after the base-band processing
in the BBU-pool. Since the BBU-pool (CO) is linked with
antennas by optic-fiber, the front-haul size d can easily be
obtained from the front-haul time-budget, so-called front-haul
delay Ty, and the speed of light ¢, as d = ¢ x Trp,.

The HARQ mechanism considers an advancing time 74 in
order to align signals in time due to propagation delay between



the UE and the eNB. In LTE there are 8 HARQ processes
executed at the same time with an offset of 1 ms each which
corresponds to the acquisition time of a sub-frame, T4,. Thus,
THARQ = RTT + Ty, where

RIT =Ty, +Tre + 2 TAq + BBUpTOC — 2% Ty,

C. Front-haul capacity

The front-haul capacity is defined by the number of eNBs
hosted in the CO. The current widely used protocol for
data transmission between antennas and BBUs is Common
Public Radio Interface (CPRI) which transmits 1Q signals. The
transmission rate is constant since CPRI is a serial Constant
Bit Rate (CBR) interface. It is then independent of the mobile
network load [7]. The data throughput depends on the cell
configuration and can be obtained as

RIQ =2x M x fs * Fcoding * Fcontrol * Nant * Nsem

where the factor 2 corresponds to I and Q radio signals; M is
the number of bits per sample used in the quantisation process
(current LTE implementations use M = 15 [8]); fs is the
sampling frequency, which is a multiple of the nominal chip
rate of LTE, f. = 3.84 MHz, e.g., the sampling frequency
for 10 MHz and 20 MHz is 15.36 MHz and 30.72 MHz,
respectively; Fioqing 1S the line coding factor which can
be either 10/8 or 66/64 [9]; Feontror is the control factor
which defines the number of data words and control words
(Feontror = 16/15 when using CPRI); N,,,; and N, are the
number of antennas and sectors, respectively.

For example, an eNB with 3 sectors and 8x8 MIMO anten-
nas needs a data rate of 29.49 Gbps for 20 MHz. Research
studies are focusing on bandwidth compression techniques and
packetisation of CPRI data via Ethernet [10]. Others solutions
propose different functional split architectures in order to
reduce the required bandwidth [11], [7]. For example, when
including the demapping process in the RRH, it is possible
to adapt the bandwidth as a function of the traffic load in the
cell, then the required front-haul capacity is directly given by
the fraction of utilized radio resources [11].

In general, the required data rate significantly decreases
when the functional split is shifted after the PHY layer or
even after the MAC layer [11].

III. PROCESSING BBU FUNCTIONS IN THE CLOUD

This work is focused on the implementation of BBU func-
tions carried out during the Rx process (up-link). It includes
the channel decoding which is the most expensive sub-function
in terms of latency [4], [12], [13]. The performance of BBU
functions for the Tx process (down-link) is studied in [2].

In order to minimize the runtime of BBU functions, we
investigate the relevance of parallel programing and resource
pooling in multi-core systems. The main goal of the runtime
reduction is to enlarge the distance between the BBU-pool and
antennas while saving computing resources.

In [14], namely CloudIQ, is shown that at least 22% of
computing resources can be saved only when using statistical

multiplexing and resource pooling in Cloud-RAN systems. It
exploits the variations in the processing load of individuals
BBUs to use fewer computing resources.

While in CloudIQ, an LTE sub-frame is completely pro-
cessed on a single computing resource, we are interested on
splitting the sub-frame processing in parallel runnable tasks in
order to decrease the runtime of the entire sub-frame, namely
data parallelism. Note that functional parallelism cannot be
applied since BBU functions (e.g, decoding, demodulation)
need to be executed sequentially.

We propose the parallel processing of sub-frames as follows:
The workload of a sub-frame is divided in slices where each
of them corresponds to the data of a single UE. These slices,
so-called sub-tasks, are executed simultaneously on different
cores. For further performance improvement, we propose
splitting the workload of a single UE in parallel runnable Code
Blocks (CBs).

Hence, the resulting threading model executes one thread
per UE, and/or, one thread per CB for the channel decoding
function. The threading model is illustrated in Figure 3. A
global scheduler allocates a dedicated single core to each sub-
task (either per UE or per CB) in order to avoid context
switching overhead.
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Fig. 3. Threading model of BBU-UL functions using data parallelism.

The Rx base-band processing begins with the demapping
process which selects the signal corresponding to a UE in order
to demodulate and decode the received data. The MAC layer
which handles the radio scheduling and HARQ mechanisms,
performs demultiplexing of the Up-Link Shared Channel (UL-
SCH) to restore the various logical channels containing the
control messages and the IP packets. The size of data per UE
in a sub-frame is determined by the radio scheduler which
builds the resource grid of a cell. The radio scheduler allocates
resources (time and frequency), namely Physical Resource
Blocks (PRB), to a UE in function of the data transmission
needs and the radio channel quality. The number of allocated
PRB together with the Modulation and Coding Scheme (MCS)
determine the Transport Block Size (TBS).



The execution time of each PHY function (i.e., FFT, de-
modulation, and decoding) depends of the TBS attributed to
each UE. In other words, when applying data parallelism, the
runtime of BBU functions (i.e., the Cloud-RAN performance
in terms of latency) depends on the structure of the resource
grid which is determined by the radio scheduler. Hence, the
radio resource grid represents the workload of a Cloud-RAN
system. It is important to note that scheduling strategies are not
defined by LTE and as a consequence they are vendor specific.
Most common radio schedulers takes into account the Channel
Quality Indicator (CQI), the QoS Class Identifier (QCI), the
number of spatial layers, Inter-Cell Interference Coordination
(ICIC), among others.

IV. PERFORMANCE ANALYSIS

In this section we investigate the runtime of the PHY BBU
sub-functions on a multi-core platform. In order to evaluate
the gain in terms of latency, we apply data parallelism for
the execution of PHY UL functions, i.e., FFT, demodulation
and channel decoding. We use Open Air Interface (OAI) data
[13] in order to determine the runtime of BBU sub-functions.
OAI is an open-source solution that implements the RAN
functionality in software and can be used as a benchmark.

A. Simulation settings

The simulation is performed for a single cell with SISO
configuration, 20 MHz of bandwidth and Frequency Division
Duplex (FDD) transmission mode. The simulator builds the
resource grid considering the behavior of current commercial
radio scheduler deployed in large cities. It selects both the
MCS and the number of PRBs based on emulated radio
conditions, the traffic in the cell, and the data load per UE.
The simulator determines the TBS using tables 7.1.7.1-1 and
7.1.7.2.1.1-1 defined in the LTE Physical Layer Specification
3GPP TS 36.213 version 12.4.0 Release 12 [15]. In order to
study the worst case, we consider non empty scheduling, i.e.,
all UL resources designated to a UE are used and need to be
processed. We evaluate two scenarios.

1) Scenario A: Real traffic emulation during busy hours:
This scenario is carried out under real traffic conditions. We
emulate the behavior of current deployed eNBs. We use the
MCS and Channel Quality Indicator (CQI) patterns performed
by an eNB during busy-hours as shown in Figure 4(a).

In general, radio schedulers use the CQI to determine the
MCS. When the MCS takes values from 0 to 9, data is
modulated in QPSK, while for values between 10 — 16 the
eNB uses 16-QAM modulation. In order to build the resource
grid we have also obtained the number of UEs scheduled
by Transmission Time Interval (TTI) which is illustrated in
Figure 4(b).

Note that only one or two UEs are scheduled each millisec-
ond. A fragment of the obtained resource grid is shown in
Figure 5(a).

2) Scenario B: No traffic patterns: In order to investigate
the worst case, the simulator does not limit the behavior
of eNBs to a specific traffic pattern. The resource grid is
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Fig. 4. Radio scheduling indicators.

built under variable radio conditions and elastic number of
connected UEs. The number of PRBs allocated to a UE
ranges from 6 to 110 [15], [16]. The MCS varies between
0 and 27 which enables QPSK, 16-QAM, and 64-QAM
modulation orders [15]. The obtained resource grid is shown
in Figure 5(b).
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Fig. 5. LTE resource grid (Cloud-RAN workload).

B. PHY UL runtime

We evaluate the runtime of the PHY layer during the
reception process. In a first step, we do not consider the
data parallel model presented in Section III. Figure 6(a) and
Figure 6(b) show the execution time for the demodulation,
channel decoding and FFT sub-functions for Scenarios A
and B, respectively. Besides the fact that the FFT runtime
is constant and that the demodulation processing time is less
fluctuating than the decoding process, it is worth noting that



the runtime of the whole PHY layer is essentially determined
by the decoding processing time.
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Fig. 6. Performance of virtual-BBUs (PHY layer, up-link).

The FFT runtime only depends on the number of PRBs.
The demodulation sub-function is directly influenced by the
modulation order and the number of PRBs. The decoding
process depends on the TBS, i.e., the CQI, the data load by
UE and the traffic in the cell.

Simulation results show that the execution time of the
PHY UL sub-functions can reach values of up to 1.8 ms
(Scenario B). It does not leave enough margin to deploy a
fully centralized RAN architecture which should additionally
consider the front-haul delay and the processing time of L2
and L3 functions within the LTE Rx budget, i.e., 2 ms. In
order to enable the deployment of a fully centralized RAN
architecture, we evaluate in the following the performance gain
obtained when using data parallelism.

C. Data parallelism: Performance gain

We focus our analysis on the most expensive function
in terms of latency, i.e., the channel decoding process. We
evaluate the performance gain when using data parallelism
on a multi-core platform with ¢ cores. We decompose the
channel decoding function in a set of jobs where each of
them processes a portion of data. In our proposed Cloud-RAN
system, each runnable job accesses to computing resources ac-
cording to the scheduling strategy. The scheduler selects them

in first-in-first-out order. We use a non-preemptive scheduling
algorithm which allocates a single core to each job. After
allocation, a core is busy until that the job is completed, i.e.,
a job cannot be interrupted.

We evaluate the performance of the decoding sub-function
under two degrees of data parallelism (1) by UEs and (2) by
Code Blocks (CBs). In general, a sub-frame contains more
than one UE, hence the PHY processing can be executed in
parallel threads where each job corresponds to a UE. In the
same way, when a Transport Block allocated to a UE exceeds
6120 bits, it is split in CBs of 6120 bits which can be executed
in parallel. Hence, BBU-jobs arrive to the computing platform
in batches. The batch size when applying data parallelism by
UEs corresponds to the number of UEs per TTI. The batch size
when processing CBs in parallel is the product of active UEs
and the number of CBs per UE. The number of parallel threads
for both (1) and (2) varies every millisecond in function of the
number of UEs allocated by TTI and the data load per UE.

We study the runtime of the decoding sub-function when
using a multi-core platform with 6 cores for both above
described scenarios A and B. We evaluate the gain of the
parallel execution by UEs and by CBs with respect to no-
parallelism, i.e., the serial execution of jobs.
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Fig. 7. Performance of channel decoding when using data parallelism.
Let us consider the Scenario A which reflects the behavior
of current deployed eNBs in busy hours. Here, the mean
runtime of the decoding process can be reduced by a factor
of five when using data parallelism by CBs. It is shown



in Figure 7(a). When more than one UE is scheduled by
TTI, data parallelism by UEs can also considerably decrease
the execution time. Parallelism by UEs requires notably less
developing effort than parallelism by CBs. Parallelism by UEs
can then be considered as advantageous when taking into
account the complexity in the implementation.

Let us now consider the Scenario B, performance results are
shown in Figure 7(b). The runtime of the decoding function is
divided by 3 when executing CBs in parallel and halved when
applying threads per UEs.

The study of the probability density function of the channel
decoding runtime shows that when executing one thread per
CB, runtime values are more concentrated around the mean.
Even if the reduction experimented when running UEs in
parallel is already very interesting in terms of latency, the
parallelism by CBs offers better performance, especially when
comparing the tail of both probability density functions. See
Figure 8 for an illustration. Note that when applying paral-
lelism by UEs, the probability density function exhibits a long
tail that is similar to that obtained when there is no parallelism.

In other words, parallelism by CBs presents less statistical
dispersion, i.e., the execution of the channel decoding function
is near to a specific value (e.g., 300 ms for a multi-core plat-
form with 6 cores). This fact is crucial for the cloudification
of RAN functions.
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V. CONCLUSION

In this work, we have studied a fully centralized Cloud-
RAN architecture which meets the need for improving the
performance of software-based BBUs in terms of latency. To
reduce the runtime of the most expensive BBU function, i.e.,
the channel decoding process, we have applied data parallelism
and resource pooling in a multi-core system.

We have evaluated two methods of parallelism. The first
one uses one thread per UE, and the second one goes further,
employing one thread per CB. We have implemented a global
scheduler to determine which core executes a particular job
and in what order the BBU-jobs are processed.

Performance results show that a finer granularity in the par-
allelization model of the decoding function can significantly

reduce the runtime and the variability. This performance gain
enables longer distances between the BBU-pool and antennas,
as well as, the efficient utilization of computing resources.

The main conclusion is that the cloudification of RAN
functions for the up-link is feasible in dense areas, which is
in accordance with [2].
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