N

N

Performance analysis of resource pooling for network
function virtualization

Veronica Karina Quintuna Rodriguez, Fabrice Guillemin

» To cite this version:

Veronica Karina Quintuna Rodriguez, Fabrice Guillemin. Performance analysis of resource pooling
for network function virtualization. Psicologia: Reflexdo e Critica, 2016. hal-01621281

HAL Id: hal-01621281
https://hal.science/hal-01621281
Submitted on 23 Oct 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01621281
https://hal.archives-ouvertes.fr

Performance Analysis of Resource Pooling for
Network Function Virtualization

Veronica Karina Quintuna Rodriguez and Fabrice Guillemin
Orange Labs
2 Avenue Pierre Marzin
22300 Lannion, France
{veronicakarina.quintunarodriguez,fabrice.guillemin } @orange.com

Abstract—In the framework of network function virtualization,
we consider in this paper the execution of Virtualized Network
Functions (VNFs) in data centers whose computing capacities
are limited. We assume that each VNF is composed of sub-
functions to be executed on general purpose hardware, each sub-
function requiring a random amount of processing time. Because
of limited processing capacity, we investigate the relevance of
resource pooling where available cores in a data center are shared
by active VNFs. We study by simulation various algorithms
for scheduling sub-functions composing active VNFs (namely
Greedy, Round Robin and Dedicated Core algorithms). We
additionally introduce an execution deadline criterion, which
means that VNFs can renege if their sojourn time in the system
exceeds by a certain factor their service time. This feature is
especially relevant when considering the processing of real-time
VNF. Simulations show that sub-functions chaining is critical
with regard to performance. When sub-functions have to be
executed in series, the simple Dedicated Core algorithm is the
most efficient. When sub-functions can be executed in parallel,
Greedy or Round Robin algorithms offer similar performance
and outperform the Dedicated Core algorithm. Enabling as much
as possible parallelism and avoiding chaining when designing
a VNF are fundamental principles to gain from the available
computing resources.

Keywords: Scheduling, virtualization, VNF, cloud comput-
ing, fog computing.

I. INTRODUCTION

The emergence of virtualization technology plays a crucial
role in the evolution of telecommunications network archi-
tectures, notably by enabling the virtualization of network
functions. While such functions were so far implemented
on proprietary and closed platforms offered by equipment
providers, virtualization allows network functions to be im-
plemented on Commercial off-the-shelf (COTS) servers. This
is clearly a great revolution in the design of networks and IT
infrastructures, which can eventually be completely merged.

For today’s network operators, virtualization promises more
flexibility and scalability as well as resource efficiency in
the deployment of network services [1]. In addition, the use
of virtualization techniques allows the network operator to
deal with traffic growth without constantly investing in costly
infrastructure, since Virtualized Network Functions (VNFs)
can be hosted in traditional data centers and customized
according to specific needs.

In this context, a VNFs is a piece of software which can
even be available as an open source program and executed
on general purpose processors (e.g., ARM processors, x86
servers) in multi-platform environments (i.e., operating sys-
tems); this guarantees portability and compatibility. Further-
more, virtualization techniques and data center processing en-
able on-demand provisioning, elasticity and resource pooling.
In terms of flexibility and cost efficiency, network functions
should not be simply virtualized but also redesigned to gain
from the available computing resources.

An end-to-end network service (e.g., video streaming, mo-
bile voice) can be represented as a forwarding graph of
network functions, which is commonly referred to as a service
chaining [2]. Today’s hardware-based approach makes services
implementation extremely complex and time-consuming [3].
In a virtualized environment, a VNF Forwarding Graph
(VNF FG) runs on the top of the virtualization layer and can
be managed more efficiently [2]. For instance, to update a
network service, it is enough to add a new VNF on a virtual
machine; in the same way, to scale the network, it is only
necessary to instantiate the underlying VNF on the computing
facility.

Furthermore, each VNF consists of a number of software
components, referred to in the following as sub-functions.
The flexibility brought by virtualization should be exploited
to realize modular and parallel sub-functions. We assume
that cores of a computing facility are assigned for executing
sub-functions according to a specific scheduling algorithm.
This algorithm plays a key role in the system performance,
especially when there are real-time constraints or deadlines
for the execution of a particular VNF.

In this paper, we shall consider three scheduling algorithms,
referred to as Round Robin, Greedy and Dedicated Core. The
goal of this contribution is to identify which algorithm is
the most efficient in terms of execution time of a VNF and
reneging rate (when a deadline for the execution of a VNF
applies). In like manner, we aim to determine the impact of
VNF design in the global performance of a network function.

The organization of this paper is as follows: Potential use
cases are presented in Section II. In Section III, we introduce
the model and performance measures to characterize the
efficiency of the system. Scheduling algorithms are described

in Section IV. Simulation results of scheduling algorithms
with or without reneging are discussed in Section V. Finally,
concluding remarks are presented in Section VI.

II. PROBLEM STATEMENT AND USE CASES

Network Function Virtualization (NFV) approach enables
the deployment of a large number of VNFs, which can be
executed on cloud-computing as well as fog computing envi-
ronments. While large centralized data centers are commonly
operated by the cloud framework, fog computing enables data
center dissemination on the edge of the network infrastructure.
The advantage of small data centers disseminated at the net-
work edge is that they are close to end-users and ensure lower
latency and better customer experience. The key difference
between fog and cloud computing is in the limitation of
computing capacity [4].

This work pays special attention to the execution of VNFs in
data centers with limited capacity in terms of computing. We
more precisely investigate the feasibility of resource pooling.
We consider a computing facility composed of a number of
cores, which can be dynamically allocated for the execution
of sub-functions of an active VNF.

Functions of mobile core network (e.g., those of the Evolved
Packet Core (EPC) of 4G mobile or future 5G networks) are
good candidates for virtualization in the form of virtualized
EPC (vEPC), Cloud-EPC (C-EPC) or EPC as a Service
(EPCaaS) [5], [6]. As shown in Fig. 1 several functions can be
handled by software, such as, session setup, user authentication
and access authorization, currently handled by the Mobility
Management Entity (MME). This is also the case of packet
filters, policy control and charging, supported until now by
P-Gateway as well as mobility functions (e.g., in case of
handover between eNodeBs or between LTE and other 3GPP
access) held by S-Gateway.

| [Encryption | | Mobility | | Authorization |

| Session setup | | Policy Control |

| Decoding
| Compression | [Coding |

| Modulation | | Radio allocation | | Authentication | | Charging |

- sUb-function-

Eg)) Scheduler O Scheduler ®
oo °
computing o
m eee resources m °
Fig. 1. Network Function Virtualization.

Each VNF can be executed on Virtual Machines (VM) or
containers. In this way, operators can instantiate each EPC
component in order to cope with the incoming traffic demands.
On the other hand, it is also possible to optimize resources
during non-peak hours.

Moreover, a virtual EPC could be instantiated for a specific
need, e.g., a company which is willing to operate its own

private mobile network for its employees. The same applies
for other traditional network functions, e.g., IP Multimedia
Subsystem (IMS) for private Voice over IP (VoIP) networks.

In spite of the promises of virtualization, several challenges
should be dealt with in future implementations, particularly
because some network functions have strict requirements in
terms of real-time processing. This is notably the case of Radio
Access Network virtualization for short vVRAN. For instance,
in 4G mobile networks, the Time Division Duplex (TDD)
process requires a response ACK/NACK (i.e., ACK to proceed
to the transmission of a new frame, or NACK to attempt a re-
transmission) to the User Equipment (UE) or eNodeB within
3ms after a frame is arrived, where 2ms are available for
reception process and 1ms for transmission process [7]. This
operation named Hybrid Automatic Repeat-Request (HARQ)
is performed at the MAC level, after demodulation and decod-
ing are done. If successful decoding is not possible the packet
re-transmission is scheduled. Nevertheless, this fact degrades
the customer experience, because it reduces the achievable UE
peak rate [8].

Considering the realization of vVRAN, traditional eNodeBs
with integrated radio and base-band processing are replaced
with shared processing and distributed radio elements, i.e.,
Remote Radio Head (RRH). So, virtual Base Band Unit (BBU)
sub-functions are located at a centralized site, named below
vBBU, where a pool of computing resources could be dynam-
ically allocated based on traffic conditions. In addition, BBU
virtualization can dramatically improve the global network
performance; since several radio elements are handled by a
single BBU pool, inter-cell coordination facilitates cooperative
multi-point processing and massive MIMO implementation
while avoiding interference [9].

In this way, the entire BBU functionality [10], [11] in-
cluding RAN L1, L2, and L3 protocol layers could be
represented as a suite of virtual sub-functions available for
treating Physical Resource Blocks (PRB), as illustrated in
Fig. 1. Modulation and encoding process as well as data
convergence process (e.g., packet compression and encryption)
and radio bands allocation might be considered as virtual
sub-functions of the base-band processing module. Thus, the
processing load mainly depends of the Modulation and Coding
Scheme (MCS), the execution time of these sub-functions is
determined by the channel conditions between the eNodeB
and the current UE. Depending on which value is reported by
the UE, network transmits data with different MCS. If network
gets high Channel Quality Indicator (CQI) from UE, (i.e., good
radio quality) it transmits the data with high-order modulation
and a simple channel coding scheme. Likewise, for a low CQI,
the network constructs the transmission block with a robust
MCS. All sub-functions except modulation/demodulation and
encoding/decoding might have small run time enabling the
possibility of sharing computing resources [8].

Decoding function (e.g., LDPC, turbo codes) is the most
complex in terms of processing load, since its number of
iterations depends on the signal quality. Therefore, decoders
are promising candidates for parallelization to meet real-time

constraints; for instance, multiple code words may be decoded
in parallel or even the decoder itself might be decomposed into
multiple threads that run in parallel [8].

In view of the two above use cases (i.e., vVBBU, vEPC),
we see that virtualization requires an appropriate decompo-
sition of virtual network functions in order to guarantee an
efficient resource utilization in terms of computing by adequate
scheduling algorithms. This fact enables resource pooling and
statistical multiplexing in the execution of sub-functions on
multi-core platforms, performing the same tasks with less
hardware or capacity. It is set out in more detail in the next
section.

III. MODEL DESCRIPTION
A. Model setting

At present resource allocation in virtual platforms have near
static behavior; virtual machines or containers are reserved
for a specific VNF (e.g., VEPC, vBBU) even though a VNF is
sporadically invoked. As a consequence, efficiency in resource
utilization is not achieved, since computing resources are
frozen but no used. It would thus be better to perform statistical
multiplexing on computing resources. More precisely, in the
following, we assume that a set of cores is available to
execute VNFs with dynamic resource orchestration. Cores are
allocated for the execution of a VNF when that function is
invoked.

As discussed in Section II, in most cases, the runtime of
a virtual network sub-function is deterministic. Nevertheless,
other aspects discussed in [12] are intrinsic to the execution
of a sub-function such as memory access time, caching poli-
cies, disk access time, inter-processor communication, system
buses and I/O buses behavior, among others. In fact, the
multiprocessing architecture plays an important role in the
whole network virtualization performance. In the following,
we include these issues in the holding time of cores, which
becomes a random variable. This is a classical assumption in
network performance modeling when various factors influence
the execution of a job.

Taking into account a pool of cores which are statistically
shared by several active VNFs, a significant gain in resource
savings is expected. The counterpart is that the execution
of a VNF might be delayed until some core is available
in comparison with the case when computing resources are
dedicated to a single VNF. In this paper, we assume that
a VNF is composed of sub-functions, each of them being
executed on the multi-core platform. The goal of this work
is to investigate how the underlying sub-functions should be
scheduled or even conceived to improve the VNF performance.

In this context, the functional disaggregation in the virtu-
alization process should take into account the correspondence
between sub-functions, because it determines the behavior in
the execution process. Then, a particular VNF could be viewed
as a process flow with sub-functions either running in sequence
or else being executed in simultaneous threads. The present
work analyzes the behavior of scheduling algorithms for both
configurations, i.e., when VNFs are executed as a chain of

sub-functions in contrast with the case when sub-functions are
allowed to be executed in parallel.

B. Queuing system formulation

Let us consider a computing facility (i.e., a data center)
equipped with a pool of ¢ cores capable of executing elemen-
tary sub-functions. These sub-functions are part of a VNF,
also referred to macro-function. Such a VNF is composed of
k sub-functions; when a VNF is invoked the entire batch of
k sub-functions has to be handled by the computing facility.
The model proposed below takes k as a constant, however,
it could be easily extended to the case when k is a random
variable (e.g., with a geometric distribution).

VNF requests occur at the computing facility according to
a Poisson process with rate A\. The execution time of a sub-
function is random with an exponential distribution, with mean
1/u; for the jth sub-function of a VNF, where j =1,... k.
We assume that execution times of various sub-functions are
independent, hence, the execution time of a macro-function
is originally the sum of k£ exponential random variables. The
mean execution time is

s :Z:]

When all p; are equal to some p > 0, the execution time is
simply an Erlang random variable with mean &/ and variance
k/u2, denoted, for short, by Er(k,).

In general, this model involves a pool of cores which
execute only one sub-function at a time. The holding time of
a core by the jth sub-function of a VNF is exponential, with
mean 1/ ;. Hence, when a request occurs while all cores are
busy, the function is queued, see Fig. 2 for an illustration.
The total amount of time r to treat a VNF by the computing
facility is composed by the queuing delay ¢ and the execution
time of sub-functions s, so that, the system response time for
the execution of a VNF is given by r = s 4 ¢. The queuing
delay is the amount of time that the VNF spends in the system
while none of its sub-functions is executed.

Compute Pool

Average
arrival rate

q
Waiting time

Core 1

— Core 2

e

Sub-functions
=

Service time

Scheduling Algorithm

Wi interarrival - Hi-1 — Core ¢

time

r

Response time

Fig. 2. Elements of the queuing system.

We assume that the waiting room of the computing facility
is infinite. It is then clear that the system is stable if and only
if the load p defined by

is less than 1. In the following, we assume that this stability
condition is always satisfied. That condition is not necessary in
the case of reneging, since this phenomenon makes the system
stable at the price of rejecting requests.

C. Performance measures

In view of the above queuing system formulation, we char-
acterize its performance by the distribution of the sojourn time
r of VNFs in the system. If r takes small values, then macro-
functions (VNFs) are rapidly executed and consequently, the
overall efficiency is achieved.

On the other hand, if the sojourn time is too large, then
some VNFs are slowly executed and in some cases (e.g.,
VRAN) completing the execution of a VNF becomes use-
less. As presented in Section II, a time budget of 3ms for
BBU processing is available to allow continuous transmission
per UE. This fact is equivalent to introduce the concept of
reneging. This budget represents the time between the end
of the up-link transmission and the start of the down-link
subframe carrying the corresponding ACK/NACK [13]. More
precisely, a customer reneges if its sojourn time in the system
exceeds too much its service time. Reneging in multiple-
servers queuing systems is discussed in [14]. The adopted
reneging criterion is given below:

Definition 1 (Reneging macro-function): A VNF execution
request reneges if its sojourn time r > (1 + 6)s for some
6 > 0. This is equivalent to the condition ¢ > s, where ¢ is
queuing delay of the macro-function.

In case of reneging, the VNF leaves the system and all
resources used prior to its departure are wasted. Hence, the
performance of the system is characterized beyond the sojourn
time r by the reneging rate n(6) as a function of the parameter
0.

Whether with the distribution of sojourn time or reneging,
the system performance depends on the queuing delay of VNF
requests, i.e., the time that a VNF spends in the system without
receiving service. This queuing delay depends on how sub-
functions are sorted for their execution. This is precisely the
role of the scheduling algorithms described in the following
section.

IV. SCHEDULING ALGORITHMS

The scheduling algorithm determines which VNF and, more
precisely, which sub-function gets access to a particular core
of the computing facility. In other words, the scheduling
algorithm selects which sub-function is executed. The schedul-
ing strategy has a direct impact on the system response
time as well as on the resources utilization efficiency. Thus,
the scheduling analysis aims at identifying conditions and
constraints to improve the system performance.

The scheduler selects the next sub-function to be processed
among VNFs that are ready to be executed, and allocates to
it a processing unit (core). Let us consider three scheduling
algorithms: Dedicated Core (DC); Round Robin (RR) and
Greedy (G) presented in the following subsections.

1) Allocating the entire macro-function to a Dedicated
Core: This method processes all sub-functions forming a
particular VNF upon the same core. The scheduler selects the
VNF keeping the arrival order. In this case, the computing
facility can be described by an M/G/c queue system, where
the service time is the sum of independent exponential random
variables. If all ;1 are the same, then an M /Er(k, 1)/c queue
system is obtained.

2) Allocating sub-functions by Round Robin criterion: This
algorithm handles the VNFs under the RR criterion. Incoming
VNFs integrate the circular cycle upon arrival, while the
scheduler selects them in first-in-first-out order. Hence, sub-
functions are assigned to the pool of cores in a circular order.
As detailed in [15], Round Robin generally employs time-
sharing, assigning to each task a time slot, and interrupting
the task if it is not completed. In this paper, the proposed
algorithm does not force the sub-function going out of the
core if it is not finished, since we assume that sub-functions
are not divisible.

3) Greedy allocation of sub-functions: Unlike the precedent
algorithms, the arrival order of VNFs is prioritized at the
moment of allocating sub-functions, in the sense that, if a VNF
starts its service, then the system tries to finish it as soon as
possible. Thus, when the first sub-function of a VNF starts its
execution, the next core which becomes available is used to
serve the second sub-function and so on.

As a consequence, those VNFs which have started their
service have priority over those which have not begun their
execution. Incoming VNFs are obliged to wait to be processed
until precedent VNFs have completely finished their execution.
In other words, the system does not try to share the computing
resources among the VNFs which are in the system as in the
case of RR algorithm. Greedy algorithm aims at completing
the service of VNFs at the earliest possible way without
fairness.

V. PERFORMANCE ANALYSIS
A. Simulation setting

The fundamental issue is to analyze the performance of the
scheduling algorithms introduced in the previous section. We
are interested in the sojourn time distribution of VNFs as well
as in the reneging rate in case of deadline for the execution
of a VNF. Keeping in mind that a VNF is formed by sub-
functions, which can be executed in parallel or in series, the
behavior of scheduling algorithms is analyzed for both cases.

Different scenarios have been considered in relation with the
computing pool size and the number of sub-functions per VNF,
taking values where ¢ < k, ¢ > k and ¢ > k. Furthermore,
we have considered different load conditions, namely p =
0.6 (moderate load) and p = 0.9 (heavy load). Finally, we
analyze the behavior when all sub-functions have the same
mean execution time. This means that for all j = 1,... k,
p; = p for some constant ;4 > 0. The parameter 1/\ equal
to the mean inter-arrival time of VNFs is taken as time unit.
The parameter p is adjusted so that the load p = k\/(uc) is
equal to a prescribed value.

The performance results analyzed below correspond to those
scenarios with heavy load and a number of cores greater than
the number of VNF’s sub-functions. The same configuration
was applied when sub-functions belonging to a particular VNF
have different mean execution times. We have also evaluated
the performance when different classes of VNFs share the
same multi-core platform. This latter scenario offers the pos-
sibility to support new services with the same infrastructure,
having for instance the co-execution of RAN functionality
with other network functions. The results obtained for these
scenarios are qualitatively the same as those presented below
and are not reported in this paper.

B. Scheduling performance without reneging

In the framework of VNFs where their components repre-
sent a forwarding graph of sub-functions, Greedy algorithm
is not applicable because the chaining constraint can not be
respected. For instance, BBU is a chained process whose
functional blocks roughly are modulation/demodulation, en-
coding/decoding, radio scheduling, and RLC/MAC PDU gen-
eration/decomposition. Hence, we analyze the performance in
terms of sojourn time of VNFs when these are scheduled
following the RR criterion as well as the DC algorithm. Fig. 3
illustrates the behavior of both algorithms considering a highly
loaded system with parameter p = 0.9, which means that the
arrival rate of VNFs is important for the computing capacity.

Response Time (chaining), p=0.9

0.06 // N\ + DC |
io.o4
& 002}
0 ‘
0 1 2 3

time

Fig. 3. Scheduling performance considering chained sub-functions

From Fig. 3, it turns out that the simple DC algorithm
offers slightly better performance than the RR algorithm,
especially for the tail the of the sojourn time distribution.
This will be confirmed by considering the case when VNFs
can renege. The additional delay introduced by a higher
sojourn time represents in most cases the degradation of the
customer experience. For instance, when executing a vBBU,
all information sent from the physical layer to the MAC layer
and vice-verse has to deal with this extra time. In this case, a
critical effect of a high sojourn time is the caducity of channel
measurements sent from the UEs to the eNodeB, which are
used for radio scheduling and other fundamental issues in the
characterization of radio signals. As a consequence, the mobile
network losses both energy and spectral efficiency.

Let us consider now, VNFs whose sub-functions are allowed
to be executed in parallel. This means that the execution of
a particular sub-function is independent of the results of the
previous one. In this context, Greedy (G) algorithm can be
applied. Fig. 4 presents the behavior of three algorithms where

the performance of both G and RR is notably better than
the behavior obtained with the DC algorithm. Even more, G
algorithm shows a slightly better performance than that of RR.

It is evident that the chaining constraint considered in the
first simulation balks the advantages of RR algorithm in its
attempt of fairness. In this way the simplicity embedded in
DC criterion is the most appropriate for a computing pool
environment, all the more as the complexity of RR does not
improve the sojourn time of VNFs.

Response Time (no chaining), p=0.9

o
01} /. + DC
. 7 A RR
b I o G
1] I —
=0.05 Y
D_ / N\
/ \\
0 / | S W A "
0 1 2 3
time

Fig. 4. Scheduling performance considering no chained sub-functions

C. Scheduling performance considering a deadline in the
execution of VNFs

In this subsection, we analyze the scheduling performance
considering reneging with parameter § = 1. As explained in
Section III, this factor represents the deadline present in some
network functions which require real-time execution as in the
case of base band processing of mobile networks. Considering
the scenario where ¢ > k and applying the chaining constraint,
Fig. 5 illustrates the behavior of RR and DC algorithms. Again
their performances in terms sojourn time of a VNF are similar
with an advantage for DC when considering the tail of sojourn
time distributions.

Response Time (chaining), p=0.9, 6=1
N

+ DC |
A RR

time

Fig. 5.
reneging

Scheduling performance considering chained sub-functions and

Table I shows reneging rate which represents the number of
VNFs that have not finished their execution.

The utilization rate and waste rate show respectively the
occupation of the computing platform by VNFs which have
been completely processed and the occupation of cores by sub-
functions belonging to VNFs which have reneged. DC offers a
slightly better performance, in line with the observation made
for the tail of the sojourn time distributions when there is no
reneging.

TABLE I
SCHEDULING PERFORMANCE WITH CHAINED SUB-FUNCTIONS

Reneged Rate | Utilization Rate | Waste Rate
DC 1.6270 99.0821 0.6816
RR 4.5060 97.0478 2.4837

RR algorithm yields a higher reneging rate, and conse-
quently worse utilization factor than DC algorithm. Hence,
more computing resources are wasted.

Analyzing the case when sub-functions can be executed in
parallel, the behavior of scheduling algorithms turns out again
more favorable for G and RR criteria. It is shown in Fig. 6
where reneging rate was established with § = 1, it means that
a VNF interrupts its service and leaves the system if its sojourn
time is greater than the double of the required execution time.
The same kind of behavior has been observed for smaller and
greater values of 6.

Response Time (no chaining), p=0.9, 6=1

01 * DG
— ; A RR
I ‘ - ° G
=0.05
o 7/
O / e A A A A
0 1 2 3
time
Fig. 6. Scheduling performance considering no chained sub-functions and
reneging

As much as in terms of execution delay as in terms of
reneging rate presented in Table II, G has the best performance.

TABLE II
SCHEDULING PERFORMANCE WITH NO CHAINED SUB-FUNCTIONS

Reneged Rate | Utilization Rate | Waste Rate
DC 1.6220 99.0478 0.6956
RR 2.6430 98.3832 1.2734
G 0.4560 99.7832 0.0625

It is evident that the behavior of DC is relegated by RR
and G performance. Nevertheless, the utilization rate of DC
remains interesting when compared with that resulting of RR
execution. Results show that the worst algorithm in terms
of resources saving is RR although it keeps a better sojourn
time. Greedy becomes the most efficient and notably the most
suitable when the execution of sub-functions is not limited by
the chaining constraint.

VI. CONCLUSION

In this work, we have studied a system executing VNFs
on a computing platform composed by a pool of cores;
each VNF is composed of several sub-functions. We have
analyzed by simulation the performance of three algorithms
for scheduling the execution of sub-functions of active VNFs

(namely, Round Robin, Dedicated Core and Greedy). It turns
out that when sub-functions can be executed in parallel, the
Greedy algorithm ensures the best performance in terms of
execution delay. We have also considered the case when VNFs
may renege because the sojourn time in the system exceeds
some threshold related to the required amount of service. Still
in this case, the Greedy algorithm offers the best performance.

In the case of chained sub-functions Greedy algorithm can
not be applied, and the performances observed with Dedicated
Core and Round Robin are similar, so the complexity added
by this latter is not justified.

This phenomenon has to be taken into account when de-
signing VNFs executed on a pool of cores. In particular when
decomposing a network service into components or micro-
services, the best choice is to decompose a function into sub-
functions which can be executed in parallel and independently
of each other.

REFERENCES

[1] Slavisa Aleksic and Igor Miladinovic. Network virtualization: Paving
the way to carrier clouds. In Telecommunications Network Strategy and
Planning Symposium (Networks), pages 1-6, 2014.

[2] Network Functions Virtualisation ETSI. Architectural framework. Tech-
nical report, Technical Report ETSI GS NFV 002 V1.1.1, 2013.

[3] ONF Solution Brief. Openflow-enabled sdn and network functions
virtualization. Open Netw. Found, 2014.

[4] Ivan Stojmenovic and Sheng Wen. The fog computing paradigm:
Scenarios and security issues. In Computer Science and Information
Systems (FedCSIS), 2014 Federated Conference on, pages 1-8. IEEE,
2014.

[5] Tarik Taleb, Marius Corici, Carlos Parada, Almerima Jamakovic, Simone
Ruffino, Georgios Karagiannis, and Thomas Magedanz. Ease: Epc as a
service to ease mobile core network deployment over cloud. Network,
IEEE, 29(2):78-88, 2015.

[6] Kostas Pentikousis, Yan Wang, and Weihua Hu. Mobileflow: Toward
software-defined mobile networks. Communications Magazine, IEEE,
51(7):44-53, 2013.

[7]1 I Chih-Lin, Jinri Huang, Ran Duan, Chunfeng Cui, Jesse Xiaogen Jiang,
and Lei Li. Recent progress on c-ran centralization and cloudification.
Access, IEEE, 2:1030-1039, 2014.

[8] Dirk Wubben, Peter Rost, Jens Steven Bartelt, Massinissa Lalam,
Valentin Savin, Matteo Gorgoglione, Armin Dekorsy, and Gerhard Fet-
tweis. Benefits and impact of cloud computing on 5g signal processing:
Flexible centralization through cloud-ran. Signal Processing Magazine,
IEEE, 31(6):35-44, 2014.

[9] Alexander William Dawson, Mahesh K Marina, and Francisco J Garcia.

On the benefits of ran virtualisation in c-ran based mobile networks. In

Software Defined Networks (EWSDN), 2014 Third European Workshop

on, pages 103-108. IEEE, 2014.

Navid Nikaein. Processing radio access network functions in the cloud:

Critical issues and modeling. In Proceedings of the 6th International

Workshop on Mobile Cloud Computing and Services, pages 36—43.

ACM, 2015.

Rui Wang, Honglin Hu, and Xiumei Yang. Potentials and challenges of

c-ran supporting multi-rats toward 5g mobile networks. Access, IEEE,

2:1187-1195, 2014.

Michael Haugh. Examining factors of the nfv-i impacting performance

and portability. 2015.

Uwe Dotsch, Mark Doll, Hans-Peter Mayer, Frank Schaich, Jonathan

Segel, and Philippe Sehier. Quantitative analysis of split base station

processing and determination of advantageous architectures for lte. Bell

Labs Technical Journal, 18(1):105-128, 2013.

Ligiang Liu and Vidyadhar G Kulkarni. Balking and reneging in

m/g/s systems exact analysis and approximations. Probability in the

Engineering and Informational Sciences, 22(03):355-371, 2008.

Ishwari Singh Rajput and Deepa Gupta. A priority based round robin

cpu scheduling algorithm for real time systems. International Journal

of Innovations in Engineering and Technology, 1(3):1-11, 2012.

[10]

(1]

[12]

[13]

[14]

[15]

