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Abstract. In this paper, we address the resolution of material decomposition, which

is a nonlinear inverse problem encountered in spectral computerized tomography (CT).

The problem is usually solved in a variational framework but, due to the nonlinearity

of the forward operator, the objective function may be nonconvex and standard

approaches may fail. Regularized iterative schemes based on the Bregman distance

have been suggested for improving global convergence properties. In this work, we

analyse the convexity of the material decomposition problem and propose a regularized

iterative scheme based on the Bregman distance to solve it. We evaluate our Bregman

iterative algorithm and compare it to a regularized Gauss-Newton (GN) method using

data simulated in a realistic thorax phantom.

First, we prove the existence of a convex set where the usual data fidelity term is

convex. Interestingly, this set includes zero, making it a good initial guess for iterative

minimisation schemes. Using numerical simulations, we show that the data fidelity

term can be nonconvex for large values of the decomposed materials. Second, the

proposed Bregman iterative scheme is evaluated in different situations. It is observed

to be robust to the selection of the initial guess, leading to the global minimum in all

tested examples while the GN method fails to converge when the initial guess is not

well chosen. Moreover, it is found to avoid the selection of the regularization parameter

for little extra computation.

In conclusion, we have provided a suitable initialization strategy to solve the

nonlinear material decomposition problem using convex optimization methods and

evaluated a Bregman iterative scheme for this problem. The improvement in global

convergence of Bregman iterative scheme combined with other interesting properties of

the Bregman distance appears as a compelling strategy for nonlinear inverse problems.

Keywords: Bregman distance, convexity, spectral computerized tomography
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1. Introduction

We consider regularized methods for solving nonlinear inverse problems. Successful

methods for linear inverse problems have been generalized for the case of nonlinear

inverse problems. However, in general, objective functions involving nonlinear operators

are nonconvex, so classical optimization procedures may fail. Regularized iterative

procedures have been proposed to ensure that a global minimizer exists. The idea

behind these methods is to replace the original regularized problem with a sequence of

problems, each of which satisfies stronger convergence properties [1, 2].

A popular and efficient iterative regularization procedure for the `1- and total

variation (TV)-problems is based on the use of the Bregman distance and has been

widely studied for linear measurements [3, 4, 5, 6, 7, 8]. Replacing a convex

regularization functional with the Bregman distance associated to this functional leads

to an iterative scheme that converges to the solution of the constrained optimization

problem. The use of the Bregman distance provides additional appealing properties. For

instance, it has been shown that minimizing the Bregman distance associated to TV can

recover the contrast lost that may appear when solving the TV problem [9]. The split

Bregman method proposed for image processing and compressed sensing combines the

Bregman distance with a splitting technique to efficiently deal with non differentiable

convex functional, such as total variation [7, 10, 11]. It has been successfully applied to

solve the total variation problem in image denoising, image impainting, and compressed

sensing [7, 12, 13, 14, 15, 16, 17]. The use of Bregman distance for the TV minimization

subject to nonlinear measurements enjoys further benefits but it has not been widely

explored [14, 18]. In [19], Bregman iterative schemes based on classical reconstruction

methods were proposed to improve global convergence for nonlinear inverse problems.

In this work, we are concerned with the nonlinear material decomposition problem

that appears in spectral computerized tomography (CT). Spectral CT is gaining

increasing attention due to the recent development of energy discriminating photon-

counting detectors that simultaneously count photons and resolve their energy [20, 21].

This technology addresses the limitations of conventional CT and provides material

decomposition capabilities, which allows, for instance, characterizing lesions for breast

imaging [22] and atherosclerotic plaque [23, 24]. The spectral CT material reconstruction

problem can be solved by dividing it in to two separated steps: a nonlinear material

decomposition step, which takes places on the Radon domain, and a linear tomographic

reconstruction step. We focus on the material decomposition problem and adopt a

model-based approach which models source spectrum and energy responses of the

detector [25]. For alternative approaches to material reconstruction see the following

works [26, 27, 28, 29, 30, 31]. We remark that spectral CT material reconstruction differs

from recent works that proposed regularization approaches for the linear tomographic

problem and that regularized on the image domain [14, 32, 33, 34].

Most previous studies that addressed spectral CT have ignored nonconvexity or

adopted some assumptions to make the problem convex [35]. For dual-energy CT and
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for the negative loglikelihood functional, a hybrid first and second order variational

approach was proposed to provide a more robust algorithm [36]. Recently, a regularized

Gauss-Newton (GN) method with specific regularization applied to each material was

applied to solve the material decomposition problem [37]. This method provided

significantly superior results than the non regularized maximum-likelihood method that

is commonly used in practice [25].

The goal of this work is to investigate convexity for the material decomposition

inverse problem and to propose a regularized Bregman iterative scheme to solve this

problem. To this goal we build from the previously proposed regularized GN method

[37] and modify it in order to minimise the Bregman distance associated to the same

regularization functional. We put particular emphasis to study convexity and to provide

a suitable initialization strategy for convex optimization algorithms. In addition, we

assess the benefits of a Bregman iterative algorithm to provide a global minimum by

studying its dependence on the initial guess.

The paper is organized as follows. In section 2 we present the formulation of

the forward and inverse problem. In section 3 we show that the data fidelity term is

convex in a defined set and that the zero solution belongs to this region. In section

4 we describe the numerical approaches adopted to solve this problem, the regularized

Bregman iterative scheme and a regularized Gauss-Newton method. In section 5, we

show the numerical results. First, we analyse convexity using numerical examples. Then,

we assess the Bregman iterative scheme in comparison to the Gauss-Newton approach

using a numerical thorax phantom. Section 6 contains the discussion, further work and

conclusion.

2. Material decomposition in spectral CT

2.1. Forward problem

Material decomposition requires the inversion of the nonlinear system [37]

s = F(a) (1)

where s represents the measured photon counts, a represents the unknown projected

mass densities, and F models both the light-matter interaction within the object and

the measurement process. In spectral imaging, the measured photon counts can be

written as s = (s1, . . . , sI) where si, 1 ≤ i ≤ I, represents the photon counts measured

in the i-th energy bin of the detector. Moreover, we assume that the unknown projected

mass densities can be written as a = (a1, . . . , aM) where am, 1 ≤ m ≤M , is the projected

mass density image of the m-th material in the object.

For a detector having P pixels, we have si = (s1i , . . . , s
P
i ) and am = (a1m, . . . , a

P
m),

where spi (resp. apm) represents the photon counts (resp. projected mass density) in

the p-th pixel of the detector. Assuming that no inter-pixel spectral mixing occurs, the



Nonlinear material decomposition 4

system (1) is equivalent to

spi = Fpi (ap1, . . . , a
p
M), 1 ≤ i ≤ I and 1 ≤ p ≤ P (2)

The nonlinear mapping Fpi : RM → R can be modelled by [25]

Fpi (ap1, . . . , a
p
M) :=

∫
E
n0(E)di(E) exp

[
−

M∑
m=1

apmτm(E)

]
dE (3)

where E = [0, Emax] is the energy range delivered by the X-ray tube, n0(E) is the X-ray

source energy spectrum, di(E) is the energy-dependent response function of the i-th

bin of the detector, and τm(E) is the energy-dependent mass attenuation of the m-th

constituent of the object.

2.2. Inverse problem

Within a variational framework, material decomposition is formulated as the following

optimisation problem

min
a

C(a) = min
a

L(sδ, a) + α̃R(a) (4)

where sδ represents the noisy measurements, L is a data fidelity term, R is a

regularization term encoding a priori knowledge about the solution, and α̃ is the

regularisation parameter. Assuming that the measurements are Poisson distributed,

the following approximation of the discretised Kullbach-Leibler divergence is considered

L(sδ, a) =
1

2
‖F(a)− sδ‖2W , (5)

where ‖x‖W is the weighted norm defined by ‖x‖2W = x>W>Wx. Here, the weight

matrix W is chosen as

W = diag

(
1

max (
√
sδ, ε)

)
, (6)

where ε is a small parameter that is added to the denominator to avoid division by zeros.

It is important to note that although the regularization functional R is convex the

cost function C in (4) can be nonconvex whenever the data fidelity term L is non convex,

which usually occurs with nonlinear measurements.

2.3. Gauss Newton method

A wide variety of approaches can be used to solve the nonlinear problem (4) [38, 39].

Among them the Gauss Newton method has fast (quadratic) convergence and has been

recently shown to be very effective for material decomposition [36, 37]. The Gauss

Newton update is computed as

an+1 = an + λnH
−1(an)C ′(an) (7)
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where λn is the step length, C ′ is the gradient of C, and H is an approximation for the

Hessian of C, which is given by

H(an) = F ′(an)>W>WF ′(an) + α̃R′′(an) (8)

where F ′ denotes the Jacobian of F and R′′ the Hessian of R. The step length is

usually found by a line search strategy, i.e., minimizing the cost function along the

descent direction provided by H−1(an)C ′(an).

3. Analysis of the convexity of the problem

The convexity of the material decomposition problem is analysed deriving the following

properties for the Hessian of the data fidelity functional. For simplicity, the analysis is

conducted considering one pixel only (i.e. for P = 1) and the index p has been dropped.

Since the data fidelity term L is separable with respect to pixels, the results bellow can

be generalised to any pixel number (i.e., P > 1).

Definition 1. Let gi(a,E) be the number of incident photons seen at energy E in the

i-th energy bin of the detector. It is given by

gi(a,E) = n0(E)di(E) exp

[
−

M∑
m=1

amτm(E)

]
(9)

Proposition 1. The Hessian of L is given by

H(a) = −
∑
i

w2
i (si −Fi(a))T>Gi(a)T + F ′>W>WF ′ (10)

where T = (τj,m) ∈ RJ×M is the mass attenuation matrix defined by τj,m = τm(j∆E),

1 ≤ j ≤ J and Gi(a) = diag (gi(a,E1), . . . , gi(a,EJ)) ∆E.

Proof. The functions Fi : RM → R, 1 ≤ i ≤ I are twice continuously differentiable and

the Hessian of L takes the following matrix form [40]

H(a) = −
∑
i

w2
i (si −Fi(a))Hi(a) + F ′>W>WF ′ (11)

where Hi denotes the Hessian of Fi. It can be shown that Hi(a) = T>Gi(a)T (see

section Appendix A), which completes the proof.

Proposition 2. The data fidelity functional L is convex on the (possibly nonconvex)

set A defined by

A = {a ∈ RM | Fi(a) ≥ si, ∀i} (12)

Proof. While F ′>W>WF ′ is clearly positive semi-definite, some or all the terms

w2
i (si − Fi(a))T>Gi(a)T can contribute against convexity. Since Gi(a) is a diagonal

matrix with positive elements, T>Gi(a)T is positive definite. If si−Fi(a) is negative for

all i, then H(a) is the sum of positive definite matrices, hence it is positive definite.
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Proposition 3. Let atruem be the solution. The data fidelity functional L is convex on

the convex set B defined by

B = {a ∈ RM | am ≤ atruem , ∀m} (13)

Proof. Noting that all Fi : am 7→ Fi(am) are monotonically decreasing, choosing

am ≤ atruem for all m guaranties that Fi(a) ≥ Fi(atrue).

Remark 4. The particular point a = 0 lies within the convex region, i.e., 0 ∈ B.

Proof. Physically, solutions are positive.

4. Resolution of the problem

4.1. Iterative regularization scheme based on the Bregman distance

The Bregman distance generalizes the concept of distance for convex regularization

functionals R [41]. The Bregman distance associated with the functional R for two

points a and ã is defined as

DR
ξ (a, ã) = R(a)−R(ã)− 〈ξ, a− ã〉, (14)

where ξ is a subgradient of R at ã.

The use of Bregman distance became popular after its application to construct

iterative regularization schemes for total variation regularization [3]. Since then, it

has been widely applied to image restoration, deconvolution and compressed sensing

problems with linear measurement operators and with convex regularization functional

[4, 5, 7, 9, 13, 42]. A generalization of the Bregman distance for nonconvex regularization

functionals has been also suggested [43]. However, its application to solve problems with

nonlinear measurements is less known. In [19] authors proposed to replace the problem

(4) by a sequence of iterative problems

ak+1 = arg min
a

1

2
‖F(a)− sδ‖2W + αDR

ξk
(a, ak), (15)

ξk+1 = ξk − α−1(WF ′(ak+1))
>(WF(ak+1)−Wsδ), (16)

where α > 0 is an hyperparameter, which is not a regularization parameter and that can

be chosen as a large constant. Each of the subproblems (15) is an optimization problem

that has the same form as (4) but where the regularization functional R is replaced by

the Bregman distance between the unknown, a, and its previous estimate, ak. Equation

(16) provides un update of the subgradient derived from the first optimality condition

of (15), which enforces the data fidelity term iteratively [7].

The Bregman iterative scheme (15-16) constitutes then a sequence of subproblems

where each of them has the same complexity as the original problem (4), but there

is a substantial gain, as each subproblem is locally convex for sufficiently large values

of α [19]. This provides a scheme to find a global minimiser for nonconvex functional

associated to nonlinear operator equations.
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An additional modification to the iterative scheme (15-16) was proposed in [19] to

ensure local convexity for total variation regularization. A zero-order Tikhonov term
κ
2
‖a‖22 is added to the original total variation regularization functional R to ensure local

convexity around the current estimate ak. The value of κ must be sufficiently small in

order not to modify the properties of the regularization functional R. Substituting the

Bregman distance (14) into (15), the iterative scheme is rewritten as

ak+1 = min
a

Θk(a)

= min
a

1

2
‖F(a)− sδ‖2W + αR(a)− α < ξk, a > +α

κ

2
‖a‖22, (17)

ξk+1 = ξk − α−1(WF ′(ak+1))
>(WF(ak+1)−Wsδ). (18)

The minimization problem (17) can be efficiently solved using a Gauss Newton algorithm

and (18) is the update of the Bregman iteration [3, 7]. Therefore, the iterative scheme

(17-18) is referred to as GN-Bregman (GNB).

4.2. Algorithm stopping criterion

Note that GNB algorithm numerically involves two iterative procedures: the (outer)

Bregman iteration indexed by k and the (inner) Gauss Newton iteration that we denote

with the index n. We define Nk the total number of GN iterations required to minimise

Θk and Ntot =
∑

kNk the total number of GN iterations of the GNB algorithm. The

stopping criterion for the minimisation of Θk (17) is based on the cost function decrease,

i.e, the algorithm is stopped when (Θk(a
n−1)−Θk(a

n))/Θk(a
n−1) < θ, and the stopping

criterion for the Bregman iterative scheme is the discrepancy principle, i.e., the algorithm

is stopped when 1
2
‖F(ak)− sδ‖2W < tol [7, 19].

4.3. Regularization functional

In this work, we consider the separable regulariser proposed in [37] and defined by

R(a) =
∑
m

Rm(am), (19)

where Rm is the regularization functional for the m-th material. This choice allows

to incorporate a-priori information for each material independently. Here, we consider

Tikhonov regularization to promote smooth materials, i.e.,

Rm(am) = ‖D`am‖22 (20)

where D` represents the `-th spatial derivative operator, and a smooth approximation

of total variation to promote piecewise constant materials, i.e.,

Rm(am) =
√

(Dam)2 + ε2 − ε. (21)

where ε is a small hyperparameter. Although only differentiable regularisers are used,

Bregman iterative algorithms are also valid for the space of functions of bounded

variations and other convex sparse regularization functional that uses `1-norm to impose

sparsity in a given orthonormal basis, such as wavelet transform or framelets.
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5. Numerical simulations and results

5.1. Numerical phantom data

We used numerical simulations to illustrate the (non) convexity of the problem and

evaluate the proposed algorithms. Different datasets were simulated using realistic X-ray

tube and photon-counting detector with four energy bins (see figure 1) and considering

numerical phantoms made of soft tissue, bone and gadolimium (Gd). This is a relevant

example in K-edge imaging for characterizing atherosclerotic plaque [23, 24]. The linear

mass attenuation coefficients for the three materials are provided in figure 1c.

Two numerical phantoms were created: a one-pixel phantom (only used to study

convexity) and a realistic thorax phantom built from a segmented thoracic-abdominal

CT scan [44, 45]. For the realistic phantom, a 611 × 167-pixel detector is simulated,

leading to P = 102, 037. Two projection images for two different projection angles were

evaluated. For each view, the dataset comprised I = 4 projection images corresponding

to the different energy bins and M = 3 unknowns projected mass density images were

recovered. Increasing levels of Poisson noise were considered by lowering the number of

incident photons from 108 to 105. The datasets are publicly available from [37].

We have used specific regularization for each material as described in section

4.3. We used first- and second-order Tikhonov regularization for bone and soft tissue,

respectively, and smooth total variation regularization for the gadolinium image.

(a) (b) (c)

Figure 1. Forward model parameters used in the numerical simulations. (a) Source

spectrum n0(E). (b) Detector response function di(E) for each of the I = 4 energy

bins. (c) Linear mass attenuation coefficients τm(E) for each of the M = 3 materials.

5.2. Numerical study of the data fidelity convexity

We have shown in section 3 that the problem is convex in a certain region of the

solution space (proposition 3) and that the zero mass density image belongs to this

region (remark 4). This is a relevant result as it can serve as a guide to initialize convex

optimization algorithms. Nevertheless, there may be regions of the solution space where
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the data fidelity term is nonconvex. In this section, we examine convexity numerically

by computing the data fidelity term (5) for two typical numerical phantoms. Figure 2

shows the data fidelity term for a one-pixel mass density image a while figure 3 displays

the data fidelity term for the multiple-pixel thorax phantom. In the latter simulation,

we consider only constant images for the three materials, i.e., the same value is assigned

to the entire image for each material. This has been done for simplification but it is

actually relevant as constant images are commonly used as initial guesses.

These examples show that the zero mass density image belongs to the convex region

and that the problem is nonconvex for large values of the three materials. It can be

noticed that the data fidelity term becomes asymptotically flat for increasing values of

the three materials, i.e., lima→∞ L(a) = 1
2
‖sδ‖2W .

(a) (b) (c)

Figure 2. One dimensional plot of the data fidelity term for a one-pixel image a ∈ RM .

The ground truth solution is set to atruesoft = 10 g/cm3, atruebone = 1 g/cm3, and atruegd = 0.1

g/cm3 (see red circle). Data fidelity is displayed versus the value of one material while

the other two materials remain fixed and equal to the ground truth solution.

(a) (b) (c)

Figure 3. Data fidelity term for the realistic thorax phantom where the three materials

are set to a constant image atruesoft = 10 g/cm3, atruebone = 1 g/cm3, and atruegd = 0.1 g/cm3.

Data fidelity is displayed versus the value of one material while the other two materials

remain fixed and equal to (a) abone = 0.15 g/cm3 and agd = 0.007 g/cm3, (b) asoft = 4

g/cm3 and agd = 0.007 g/cm3, and (c) asoft = 4 g/cm3 and abone = 0.15 g/cm3.
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Figure 4 displays the two characteristic sets A and B that are introduced in

proposition 2 and 3, respectively, for the one-pixel mass density phantom (same as

figure 2). The colormap represents the number of energy bins 1 ≤ i ≤ I satisfying

Fi(a) ≥ si. The solution is set to atruesoft = 10 g/cm3, atruebone = 1 g/cm3, and atruegd = 0.1

g/cm3 (see red circle). The data is computed using the parameters plotted in figure 1.

The set A is depicted in yellow (all bins satisfy Fi(a) ≥ si) while the set B is indicated

by the grey dashed line.

(a) (b)

Figure 4. Characteristic sets included in the solution space. The colormap represents

the number of energy bins 1 ≤ i ≤ I satisfying Fi(a) ≥ si. The solution is set to

atruesoft = 10 g/cm3, atruebone = 1 g/cm3, and atruegd = 0.1 g/cm3 (see red circle). The data

is computed using the parameters plotted in figure 1. The set A is depicted in yellow

(all bins satisfy Fi(a) ≥ si) while the set B is indicated by the grey dashed line. Sets

are displayed versus the value of two materials while the other material remain fixed

and equal to the ground truth solution.

5.3. Convergence of GNB

Solution error and data fidelity versus the number of iterations are shown in figure 5

for GNB for different values of α. GNB leads to an optimal solution as long as α is

sufficiently large, where the larger α the more iterations it requires [7, 13]. For these

results, we used κ = 10−6, initial guess a0 = 0 and tolerance tol = 1.12 · 105. As a

comparison, we also provide the solution error for GN for the value of the regularization

parameter (α̃ = 0.23) that led to the lowest solution error. For GN we set initial guess

to a0 = 0 and tolerance to θ = 10−4, which corresponded to a value of the data fidelity

term of 1.12 · 105. GN converged in Ntot = 16 iterations for α̃ = 0.23 (see figure 5(b)).

GNB solves a sequence of subproblems, so it needs a larger number of iterations. It

needed Ntot = 28 and Ntot = 40 for α = 2 and α = 10, respectively.

Figure 6(a) shows the solution error versus the regularization parameter α̃ for GN

and versus the parameter α for GNB. While GNB provides the same solution for all α’s

larger than 0.5, GN depends dramatically on the choice of α. Although GN converged

in only Ntot = 16 iterations (for α̃ = 0.23, see figure 5(b)), extra decompositions for
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(a) (b)

Figure 5. Convergence of the algorithms. (a) Solution error versus the number of

Gauss Newton iterations (n) for GNB (full line) and for GN (dotted line). (b) Data

fidelity decrease for GNB (α = 10) and for GN (α̃ = 0.23). We used a0 = 0 as initial

guess.

different regularization parameters are required. On the contrary, GNB is can be used

with a large α̃ chosen a priori.

Figure 6(b) shows that the number of Bregman iterations is almost constant with

α and equal to k = 15 in the cases investigated here. Figure 6(c) shows that the total

number of Gauss Newton iterations Ntot is linearly related to the parameter α.

(a) (b) (c)

Figure 6. Influence of the hyperparameter α. (a) Solution error for GN and GNB.

(b) Total number of Bregman iterations for GNB. (c) Total number of Gauss Newton

iterations for GNB.

Figure 7 shows the number of Gauss Newton iterations Nk needed to minimize Θk,

for different values of α. An important remark is that GNB required nearly only one

iteration Nk = 1 to solve each subproblem for k > 1, so it adds just few iterations with
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Figure 7. Number of Gauss Newton iterations, Nk, needed at each Bregman iteration,

k, for different values of α.

respect to GN.

Figure 8 shows decomposed images by GN and GNB. Second row in figure 8 gives

decomposed images by GN for an optimal regularization parameter α̃ = 0.23. Third to

fith rows are the decomposed images by GNB for different number of iterations, setting

α = 10, κ = 1 · 10−6 and a0 = 0. Third and fourth rows correspond to an intermediate

and final solution of the first subproblem (k = 1). The solution of the first subproblem

provides a good approximation of the decomposed materials but images are smooth

given the large value of α. Further Bregman iterations (k = 25) are needed to find the

optimal solution (bottom row in figure 8).

We evaluated two different strategies for the initialization of each subproblem (17)

for GNB (figure 9). Using the solution found in the previous subproblem as initial guess

in the next subproblem, i.e., setting ak,n=0 = ak−1,Nk−1 , led to an optimal solution in

Ntot = 120 iterations for α = 100. Initializing each Bregman iteration to a zero image,

i.e., setting ak,n=0 = 0, led to larger solution error and diverged quickly after few updates

of the Bregman distance.
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(a)

(b)

(c)

(d)

(e)

Figure 8. (a) Reference image for the thorax phantom comprising three materials:

soft tissue, bone and portal vein marked with gadolinium. A particular projection view

at angle of 60◦ is considered. (b) Material images decomposed by GN for α̃ = 0.23 and

a0 = 0. (c)-(e) Material images decomposed by GNB at different iterations: (c) k = 1,

n = 5, Ntot = 5, (d) k = 1, n = 15, Ntot = 15 and (e) k = 25, n = 1, Ntot = 44, which

is the optimal decomposition with GNB. k indicates the (outer) Bregman iteration, n

the (inner) Gauss Newton iterations, and Ntot is the total number of Gauss-Newton

iterations. We set α = 10, κ = 1 · 10−6 and a0 = 0.
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Figure 9. Influence of the initialization of the Bregman iteration. The solution error

is plotted for two types of initialization for the minimization of Θk: using the solution

found at the previous Bregman iteration (full line) and using a zero image for all

Bregman iteration (dotted line). We used α = 100, κ = 1 · 10−6 and ak=0,n=0 = 0.
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5.4. Influence of the initial guess

In previous sections the initial guess was set to a zero constant image for all materials,

which belongs to the convex part of the data fidelity term. To assess now the effect

of the Bregman distance on global convergence we set the initial guess to large values

in order to make sure this belong to the nonconvex region (a0 = (10, 10, 10)). GNB

converged to the optimal solution independently of the initial guess. On the contrary,

GN did not converge, stopping at the first iteration as a descent direction could not be

found (figure 10).

(a)

(b)

(c)

Figure 10. Influence of the initialization of the Gauss-Newton iteration. (a) Reference

image and decomposed images by using (b) GN with α̃ = 0.23 and (c) GNB with α = 10

and κ = 10−6. The initial guess was ak=0,n=0 = 10 for both methods.

GNB presented a dependence on κ when the initial guess belonged to the nonconvex

region. In this case, κ was critical as the Hessian was ill-conditioned, which occurred for

a large value of the initial guess. We used κ = 10−6. When the initial guess belonged

to the convex region, GNB led to same results independently of the value of κ as long

as it was small enough κ ≤ 10−4.
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5.5. Influence of noise and phantom

In spectral CT, an important problem is the low photon count in each energy bin

corresponding to noisy data. To illustrate the impact of noise on GNB, figure 11 shows

decomposed material images by GNB for different number of incident photons from

n0 = 108 to n0 = 105. The lower the number of incident photons the more regularized

the solution. The tolerance θ was set to 1.3 · 105, 1.5 · 105 and 1.8 · 105 for n0 = 107,

n0 = 106 and n0 = 105, respectively.

(a)

(b)

(c)

(d)

Figure 11. Material decomposed images by GNB for different number of photons n0.

(a) Reference images and decomposed images for (b) n0 = 107, (c) n0 = 106 and (d)

n0 = 105. We used the following parameters: α = 10, κ = 10−6, and initial guess

a0 = 0.

We also show the decompositions obtained for a different projection angle (here

180◦) in figure 12.

6. Discussion

We proposed and assessed a regularized iterative scheme based on the Bregman distance

(GNB) for the solution of the material decomposition problem in spectral CT, which is

a nonlinear inverse ill-posed problem and for which we consider the minimization of a
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(a)

(b)

Figure 12. Material decomposed images provided for a different projection view (for

an angle of 180◦). (a) The ground truth. (b) Decomposed data provided by GNB in

the bottom row. The measurement vector is simulated for n0 = 108 photons and the

decomposition is performed using the following parameters: α = 10, κ = 10−6, and

initial guess a=0.

regularized functional. First, we proved that the problem is convex in a region of the

solution space and that the zero solution belongs to this region. Then, using numerical

examples we showed that the problem is nonconvex for large values of the decomposed

materials.

Using a numerical thorax phantom, we showed that zero initialization is a suitable

initialization strategy for convex optimization methods such as a regularized Gauss-

Newton algorithm method [37]. GN led to an optimal solution as long as the initial

guess belonged to the convex region of the data fidelity term. On the contrary, GN led

to a wrong solution when the initial guess is chosen far from the convex region.

We then assessed a regularized iterative scheme based on the Bregman distance.

The proposed method has some advantages with respect to more standard approaches.

It is robust to the choice of the initial guess, as it led to global minimum even when

the initial guess was in the nonconvex region. On the contrary, Gauss-Newton method

failed in this case. This is a relevant feature of the Bregman distance, which makes

each subproblem locally convex around the current estimate. This makes Bregman

iterative algorithms more robust but at the price of requiring more iterations than an

equivalent Gauss-Newton method. Nevertheless, we found that the number of iterations

required was not very large: around ten Gauss-Newton iterations to solve the first

subproblem (k = 1) but generally only one iteration for k ≥ 2. This may indicate

that subproblems are approximately linear when close to the solution. Reconstructed

images show that the first subproblem leads to a good estimate of the decomposed

materials and then further Bregman iterations are used to improve the solution. This

could be then further exploited to reduce computationally complexity, for instance, by

using a linearization of the data fidelity term for k > 1 as suggested in [19]. In addition,

standard approaches such as Gauss-Newton method requires optimal selection of the
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regularization parameter using the L-curve or similar method [46, 47]. In this work, we

selected the solution provided by GN method that led to the lowest solution error by

assessing a large number of regularization parameters. As Bregman iterative methods

do not require optimal selection of the regularization parameter, the extra iterations

needed by these methods may not translate in much larger computational demand than

standard regularization methods. In addition, we found a linear relation between the

number of total iterations and the parameter α, which has been previously shown for

linear measurement operators [7, 13]. Hence, α can be tuned to decrease the number

of required iterations. The smaller α the lower the number of iterations but a very low

value may be less robust.

Initialization of each Bergman iteration for GNB was critical. Using the solution

found at the previous iteration led to robust convergence. On the other hand, a zero

initialization strategy for each subproblem required a large number of iterations to solve

each subproblem and became unstable as the number of Bregman iterations increased.

This can be explained by the fact that the problem is nonlinear and that as the number

of Bregman iterations increases, the solution is further away from the zero initial guess.

Nevertheless, for linear problems, zero initialization was a valid strategy for Bregman

iterative methods in a wide variety of applications [13, 42].

In [19] authors included an extra `2-term (weighted by κ in (17)) to make the

functional associated to total variation convex on each subproblem. Here we found

a dependence on κ. When the initial guess was in the nonconvex region, this term

was essential to reach to a global minimum. An optimal solution was found by using a

sufficiently small value of κ (κ ≤ 10−4). The effect of κ can be explained by the fact that

when the initial guess is in the nonconvex region the Hessian is ill-conditioned, where

the nonconvex region in this problem corresponds to large values of the materials. For

the case where the initial guess was in the convex region, this term did not play a role

and any small value of κ (including κ = 0) led to the same solution.

In conclusion, we have studied convexity for the material decomposition problem

and showed that an iterative scheme based on the Bregman distance had a positive

effect to find a global minimum. In addition to this, the Bregman distance presents

other benefits. For instance, it can efficiently minimize nonsmooth functional such as

total variation, which has been widely exploited for linear measurements [7]. Another

benefit of using the Bregman distance is to correct for the lost of contrast that affects

total variation [9]. This is crucial for quantitative imaging techniques such as spectral

CT. In future work we will investigate these other benefits of the Bregman distance for

solving the material decomposition problem in spectral CT.
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Appendix A. Hessian of the forward mapping

Let Hi(a) be the Hessian matrix of the operator Fi. It is defined as

(Hi)m,m′ =
∂2Fi

∂am∂am′
. (A.1)

The operator Fi is continuously twice differentiable and its second derivative is given

by

∂2Fi
∂am∂am′

(a) =

∫
E
τm(E)τm′(E)gi(a,E) dE (A.2)

where gi(a,E) is given by (9). Discretising the energy interval E = [0, Emax] with an

energy step ∆E, the integral (A.2) can be approximated by

∂2Fi
∂am∂am′

(a) =
∑
j

τm(Ej)τm′(Ej)gi(a,Ej)∆E. (A.3)

Hence, it can be noted that the Hessian takes the following matrix form

Hi(a) = T>Gi(a)T, (A.4)

where Gi(a) = diag (gi(a,E1), . . . , gi(a,EJ)) ∆E is the vector of photons incident on

the detector, and T = (τj,m) ∈ RJ×M is the mass attenuation matrix defined by

τj,m = τm(Ej).
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