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Abstract. In this paper, we address the resolution of material decomposition, which

is a nonlinear inverse problem encountered in spectral computed tomography (CT).

The problem is usually solved in a variational framework but, due to the nonlinearity

of the forward operator, the objective function may be nonconvex and standard

approaches may fail. Regularized iterative schemes based on the Bregman distance

have been suggested for improving global convergence properties. In this work, we

analyze the convexity of the material decomposition problem and propose a regularized

iterative scheme based on the Bregman distance to solve it. We evaluate our Bregman

iterative algorithm and compare it with a regularized Gauss-Newton (GN) method

using data simulated in a realistic thorax phantom.

First, we prove the existence of a convex set where the usual data fidelity term is

convex. Interestingly, this set includes zero, making it a good initial guess for iterative

minimization schemes. Using numerical simulations, we show that the data fidelity

term can be nonconvex for large values of the decomposed materials. Second, the

proposed Bregman iterative scheme is evaluated in different situations. It is observed

to be robust to the selection of the initial guess, leading to the global minimum in all

tested examples while the GN method fails to converge when the initial guess is not

well chosen. Moreover, it is found to avoid the selection of the regularization parameter

for little extra computation.

In conclusion, we have provided a suitable initialization strategy to solve the

nonlinear material decomposition problem using convex optimization methods and

evaluated a Bregman iterative scheme for this problem. The improvement in global

convergence of Bregman iterative scheme combined with other interesting properties of

the Bregman distance appears as a compelling strategy for nonlinear inverse problems.

Keywords: Bregman distance, convexity, spectral computed tomography
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1. Introduction

We consider regularized methods for solving nonlinear inverse problems. Successful

methods for linear inverse problems have been generalized for the case of nonlinear

inverse problems. However, in general, objective functions involving nonlinear operators

are nonconvex, so classical optimization procedures may fail. Regularized iterative

procedures have been proposed to ensure that a global minimizer exists. The idea

behind these methods is to replace the original regularized problem with a sequence of

problems, each of which satisfies stronger convergence properties [1, 2].

A popular and efficient iterative regularization procedure for the `1- and total

variation (TV)-problems is based on the use of the Bregman distance and has been

widely studied for linear measurements [3–8]. Replacing a convex regularization

functional with the Bregman distance associated with this functional leads to an iterative

scheme that converges to the solution of the constrained optimization problem. The use

of the Bregman distance provides additional appealing properties. For instance, it has

been shown that minimizing the Bregman distance associated with TV can recover the

contrast lost that may appear when solving the TV problem [9]. The split Bregman

method proposed for image processing and compressed sensing combines the Bregman

distance with a splitting technique to efficiently deal with non differentiable convex

functional, such as total variation [7,10,11]. It has been successfully applied to solve the

total variation problem in image denoising, image impainting, and compressed sensing

[7, 12–17]. The use of Bregman distance for the TV minimization subject to nonlinear

measurements enjoys further benefits but it has not been widely explored [18,19]. In [20],

Bregman iterative schemes based on classical reconstruction methods were proposed to

improve global convergence for nonlinear inverse problems.

In this work, we are concerned with the nonlinear material decomposition

problem that appears in spectral computed tomography (CT). Spectral CT is gaining

increasing attention due to the recent development of energy discriminating photon-

counting detectors that simultaneously count photons and resolve their energy [21, 22].

This technology addresses the limitations of conventional CT and provides material

decomposition capabilities, which allows, for instance, characterizing lesions for breast

imaging [23] and atherosclerotic plaque [24,25].

The spectral CT material reconstruction problem can be solved in one step by

recovering the material mass densities directly from the energy projections [26–29]. A

two-step alternative is first to decompose the energy projections into material projections

and then to perform a tomographic reconstruction from the material projections. The

one-step approach can incorporate prior knowledge about the material density –the

quantity of interest– while determining prior knowledge for the projected mass densities

of the two-step material decomposition is less natural. However, the two-step approach

has several advantages. First, it enables to split a large inversion problem into smaller

problems. Second, it offers a physics-based parallelization scheme where all projection

views are decomposed in parallel and all material are reconstructed in parallel. Third, it
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separates linear (i.e., CT reconstruction) from nonlinear (i.e., material decomposition)

mixing, allowing to reuse state-of-the art CT reconstruction approaches. In this paper,

we focus on the material decomposition problem and adopt a model-based approach

which models source spectrum and energy responses of the detector [30]. For alternative

approaches to material reconstruction see the following works [14, 31–38]. We remark

that most of these approaches adopted some linearized forms or focused on the linear

tomographic problem.

Most previous studies that addressed spectral CT have ignored nonconvexity or

adopted some assumptions to make the problem convex [39]. For dual-energy CT and

for the negative log-likelihood functional, a hybrid first and second order variational

approach was proposed to provide a more robust algorithm [40]. Recently, a regularized

Gauss-Newton (GN) method with specific regularization applied to each material was

applied to solve the material decomposition problem [41]. This method provided

significantly superior results than the non regularized maximum-likelihood method that

is commonly used in practice [30].

The goal of this work is to investigate convexity for the material decomposition

inverse problem and to propose a regularized Bregman iterative scheme to solve this

problem. To this goal we build from the previously proposed regularized GN method [41]

and modify it in order to minimize the Bregman distance associated with the same

regularization functional. We put particular emphasis to study convexity and to provide

a suitable initialization strategy for convex optimization algorithms. In addition, we

assess the benefits of a Bregman iterative algorithm to provide a global minimum by

studying its dependence on the initial guess.

The paper is organized as follows. In section 2, we present the formulation of

the forward and inverse problem. In section 3, we show that the data fidelity term is

convex in a defined set and that the zero solution belongs to this region. In section

4, we describe the numerical approaches adopted to solve this problem, the regularized

Bregman iterative scheme and a regularized Gauss-Newton method. In section 5, we

show the numerical results. First, we analyze convexity using numerical examples.

Then, we assess the Bregman iterative scheme in comparison with the Gauss-Newton

approach using a numerical thorax phantom. Section 6 contains the discussion, further

work and conclusion.

2. Material decomposition in spectral CT

2.1. Spectral CT

Let si,θ ∈ RP represent the photon counts measured in the i-th energy bin of the detector

under the θ-th projection angle and ρm ∈ RN represent the mass density of the m-th

material in the object. Spectral CT consists in recovering the mass densities of the M

materials in the object from the photon counts measured in I energy bins for Θ views.

Solving the spectral CT problem in one step requires the inversion of the nonlinear
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system

s = G(ρ) (1)

where s = (s1,1, . . . , sI,Θ) is the full measurement vector, ρ = (ρ1, . . . , ρM) is the material

vector, and G models both spectral mixing and tomographic acquisition. Alternatively,

the two-step approach [30,41] first decomposes all projection views by inverting

sθ = F(aθ), 1 ≤ θ ≤ Θ, (2)

where sθ = (s1,θ, . . . , sI,θ), aθ = (a1,θ, . . . , aM,θ) represents the projected mass densities

for the θ-th view, and F models spectral mixing only. This material decomposition step

is followed by the tomographic reconstruction of all materials, i.e., the inversion of

am = X (ρm), 1 ≤ m ≤M, (3)

where am = (am,1, . . . , am,Θ) and X is the X-ray transform. While the one-step approach

requires inverting the RMN → RIΘP nonlinear mapping defined in (1), the two-step

approach split it into multiple inversions of RMP → RIP mappings followed by multiple

inversions of RN → RP mappings. The two-step approach not only reduces the size

of the problems, offering a natural parallelization scheme (e.g., decomposing all angles

in parallel, reconstructing all materials in parallel), but also separate nonlinear (i.e.,

spectral) from linear (i.e, tomographic) mixing. In the following, we focus on the

material decomposition problem defined in (2).

2.2. Spectral mixing

We now consider a fixed θ in (2) and drop the θ index for the sake of simplicity. Let

spi represents the photon counts in the p-th pixel of the detector and apm the projected

mass density in the same pixel. Assuming that no inter-pixel spectral mixing occurs,

the system (2) is equivalent to

spi = Fpi (ap1, . . . , a
p
M), 1 ≤ i ≤ I and 1 ≤ p ≤ P (4)

where si = (s1
i , . . . , s

P
i ) and am = (a1

m, . . . , a
P
m). The nonlinear mapping Fpi : RM → R

can be modelled by [30]

Fpi (ap1, . . . , a
p
M) :=

∫
E
n0(E)di(E) exp

[
−

M∑
m=1

apmτm(E)

]
dE (5)

where E = [0, Emax] is the energy range delivered by the X-ray tube, n0(E) is the X-ray

source energy spectrum, di(E) is the energy-dependent response function of the i-th

bin of the detector, and τm(E) is the energy-dependent mass attenuation of the m-th

constituent of the object.
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2.3. Inverse problem

Within a variational framework, material decomposition is formulated as the following

optimization problem

min
a

C(a) = min
a

L(sδ, a) + α̃R(a) (6)

where sδ represents the noisy measurements, L is a data fidelity term, R is a

regularization term encoding a priori knowledge about the solution, and α̃ is the

regularization parameter. Assuming that the measurements are Poisson distributed,

the following approximation of the discretised Kullbach-Leibler divergence is considered

L(sδ, a) =
1

2
‖F(a)− sδ‖2

W , (7)

where ‖x‖W is the weighted norm defined by ‖x‖2
W = x>W>Wx. Here, the weight

matrix W is chosen as

W = diag

(
1

max (
√
sδ, ε)

)
, (8)

where ε is a small parameter that is added to the denominator to avoid division by zeros.

It is important to note that although the regularization functional R is convex the

cost function C in (6) can be nonconvex whenever the data fidelity term L is nonconvex,

which usually occurs with nonlinear measurements.

2.4. Gauss Newton method

A wide variety of approaches can be used to solve the nonlinear problem (6) [42, 43].

Among them the Gauss Newton method has fast (quadratic) convergence and has been

recently shown to be very effective for material decomposition [40, 41]. The Gauss

Newton update is computed as

an+1 = an − λnH−1(an)C ′(an) (9)

where λn is the step length, C ′ is the gradient of C, and H is an approximation for the

Hessian of C, which is given by

H(an) = F ′(an)>W>WF ′(an) + α̃R′′(an) (10)

where F ′ denotes the Jacobian of F and R′′ the Hessian of R. The step length is

usually found by a line search strategy, i.e., minimizing the cost function along the

descent direction provided by H−1(an)C ′(an).

3. Analysis of the convexity of the problem

In this section, we study the convexity of the material decomposition problem. In

particular, we show that the weighted least squares data fidelity term is convex on a
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convex set that includes a = 0. This provides an initialization point that guarantees

that unconstrained optimization algorithms converge to the global minimizer.

Convexity of the problem is analyzed deriving the following properties for the

Hessian of the data fidelity functional. For simplicity, the analysis is conducted

considering one pixel only (i.e. for P = 1) and the index p has been dropped. Since

the data fidelity term L is separable with respect to pixels, the results bellow can be

generalized to any pixel number (i.e., P > 1).

Definition 1. Let gi(a,E) be the number of incident photons seen at energy E in the

i-th energy bin of the detector. It is given by

gi(a,E) = n0(E)di(E) exp

[
−

M∑
m=1

amτm(E)

]
(11)

Proposition 1. The Hessian of L is given by

H(a) = −
∑
i

w2
i (s

δ
i −Fi(a))T>Gi(a)T + F ′>W>WF ′ (12)

where T = (τj,m) ∈ RJ×M is the mass attenuation matrix defined by τj,m = τm(j∆E),

1 ≤ j ≤ J and Gi(a) = diag (gi(a,E1), . . . , gi(a,EJ)) ∆E.

Proof. The functions Fi : RM → R, 1 ≤ i ≤ I are twice continuously differentiable and

the Hessian of L takes the following matrix form [44]

H(a) = −
∑
i

w2
i (s

δ
i −Fi(a))Hi(a) + F ′>W>WF ′ (13)

where Hi denotes the Hessian of Fi. It can be shown that Hi(a) = T>Gi(a)T (see

section Appendix A), which completes the proof.

Proposition 2. The data fidelity functional L is convex on the (possibly nonconvex)

set A defined by

A = {a ∈ RM | Fi(a) ≥ sδi , ∀i} (14)

Proof. While F ′>W>WF ′ is clearly positive semi-definite, some or all the terms

w2
i (s

δ
i − Fi(a))T>Gi(a)T can contribute against convexity. Since Gi(a) is a diagonal

matrix with positive elements, T>Gi(a)T is positive definite. If sδi −Fi(a) is negative for

all i, then H(a) is the sum of positive definite matrices, hence it is positive definite.

Proposition 3. (Exact Data) Let atrue be the solution and sδ = strue = F(atrue). The

data fidelity functional L is convex on the convex set B defined by

B = {a ∈ RM | am ≤ atrue
m , ∀m} (15)

Proof. Noting that all Fi : am 7→ Fi(am) are monotonically decreasing, choosing

am ≤ atrue
m for all m guaranties that Fi(a) ≥ Fi(atrue).

Remark 4. (Exact Data) The particular point a = 0 lies within the convex region, i.e.,

0 ∈ B.

Proof. Physically, solutions are positive.
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4. Resolution of the problem

4.1. Iterative regularization scheme based on the Bregman distance

The Bregman distance generalizes the concept of distance for convex regularization

functionals R [45]. The generalized Bregman distance associated with the functional R

for two points a and ã is defined as

DR
ξ (a, ã) = R(a)−R(ã)− 〈ξ, a− ã〉, (16)

where ξ is a subgradient of R at ã. Even DR
ξ (a, ã) ≥ 0, it is not a distance in a strict

sense as in general it is not symmetric and it does not satisfy the triangle inequality.

The use of Bregman distance became popular after its application to construct

iterative regularization schemes for total variation regularization [3]. Since then, it

has been widely applied to image restoration, deconvolution and compressed sensing

problems with linear measurement operators and with convex regularization functional

[4,5,7,9,13,46]. A generalization of the Bregman distance for nonconvex regularization

functionals has been also suggested [47]. However, its application to solve problems with

nonlinear measurements is less known.

In [20], authors proposed to replace the problem (6) by a sequence of problems

ak+1 = arg min
a

1

2
‖F(a)− sδ‖2

W + αDR
ξk(a, ak), (17a)

ξk+1 = ξk − α−1(WF ′(ak+1))>(WF(ak+1)−Wsδ), (17b)

where α > 0 is an hyperparameter, which is not a regularization parameter and that

can be chosen as a large constant. The iterative scheme (17) turns to be a natural

extension of the Bregman iterative method for linear measurements [3]. Each of the

subproblems (17a) is an optimization problem that has the same form as (6) but

where the regularization functional R is replaced by the Bregman distance between

the unknown, a, and its previous estimate, ak. Equation (17b) provides un update of

the subgradient derived from the first order optimality condition of (17a), which enforces

the data fidelity term iteratively [7].

The Bregman iterative scheme (17) constitutes then a sequence of subproblems

where each of them has the same complexity as the original problem (6), but there

is a substantial gain, as each subproblem is locally convex for sufficiently large values

of α [20]. This provides a scheme to find a global minimizer for nonconvex functional

associated with nonlinear operator equations.

An additional modification to the iterative scheme (17) was proposed in [20] to

ensure local convexity for total variation regularization. A zero-order Tikhonov term
κ
2
‖a‖2

2 is added to the original total variation regularization functional R to ensure local

convexity around the current estimate ak. The value of κ must be sufficiently small in

order not to modify the properties of the regularization functional R. Substituting the
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Bregman distance (16) into (17a), the iterative scheme is rewritten as

ak+1 = min
a

Ψk(a) = min
a

1

2
‖F(a)− sδ‖2

W + αR(a)− α < ξk, a > +α
κ

2
‖a‖2

2, (18a)

ξk+1 = ξk − α−1(WF ′(ak+1))>(WF(ak+1)−Wsδ). (18b)

A key point in the construction of these iterative schemes is to select efficient

methods for solving the subproblem (18a) [20]. We propose to solve (18a) using the

Gauss-Newton method (9)–(10), which results in Algorithm 1. We refer to our approach

as GN-Bregman (GNB). MATLAB code for material decomposition using GN and GNB

is available from [48].

Algorithm 1 Regularized Gauss Newton Bregman (GNB) Algorithm

Set α, κ, tol, ψ, a0

k ← 1

while 1
2
‖F(ak)− sδ‖2

W > tol do . Outer iteration

ak ← ak−1

for n = 1 to Nk do . Inner iteration

Hk ← (WF ′(ak))TWF ′(ak) + αR′′(ak) + ακI

gk ← (WF ′(ak))TW (F(ak)− sδ) + αR′(ak)− αξk + ακak

p← −(Hk)−1gk

λ← arg minλ Ψ(ak + λp)

ak ← ak + λp

ξk ← ξk − α−1(WF ′(ak))T (WF(ak)−Wsδ) . Subgradient update

k ← k + 1

4.2. Algorithm stopping criterion

Note that GNB (algorithm 1) numerically involves two iterative procedures: the (outer)

Bregman iteration indexed by k and the (inner) Gauss Newton iteration that we denote

with the index n. We define Nk the total number of GN iterations required to minimize

Ψk and N tot =
∑

kN
k the total number of GN iterations of the GNB algorithm. The

stopping criterion for the minimization of Ψk is based on the relative cost function

decrease, i.e, the algorithm is stopped at Nk iterations when the relative cost function

is smaller than ψ. The stopping criterion for the Bregman iterative scheme is the

discrepancy principle, i.e., the algorithm is stopped when 1
2
‖F(ak)− sδ‖2

W ≤ tol [7, 20].

4.3. Selection of the initial guess

Proposition 3 and remark 4 provide a suitable initialization point for convex optimization

algorithms. In particular for GNB, setting a0 = 0 and ξ0 = 0 ∈ ∂R(a0) leads to

Dξ0

R (a, ak) = R(a) and Ψ0(a) = L(a, s) + αR(a), so the first inner problem in GNB

(algorithm 1) is equivalent to the original unconstrained problem (6) but with a large
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regularization parameter. As a0 belongs to the convex region, the first iterate a1 is an

excessively regularized solution that lies in the convex region and is closer to atrue. In [20]

it is shown that when solving subproblem (17a) exactly, iterates ak satisfy monotonicity

of the residuals and of the error, so ak for k > 1 remain in the convex region and get

monotonically closer to atrue.

The Bregman iteration enjoys additional properties that improve global convexity

for nonlinear inverse problems. In section 5.4, we show using numerical simulations

that GNB converges to an optimal solution even if the initial guess is on the nonconvex

region.

4.4. Regularization functional

In this work, we consider the separable regularizer proposed in [41] and defined by

R(a) =
∑
m

Rm(am), (19)

where Rm is the regularization functional for the m-th material. This choice allows

to incorporate a-priori information for each material independently. Here, we consider

Tikhonov regularization to promote smooth materials, i.e.,

Rm(am) = ‖D`am‖2
2 (20)

where D` represents the `-th spatial derivative operator, and a smooth approximation

of total variation to promote piecewise constant materials, i.e.,

Rm(am) =
√

(Dam)2 + ε2 − ε. (21)

where ε is a small hyperparameter. Although only differentiable regularizers are used,

Bregman iterative algorithms are also valid for the space of functions of bounded

variations and other convex sparse regularization functional that uses `1-norm to impose

sparsity in a given orthonormal basis, such as wavelet transform or framelets.

5. Numerical simulations and results

5.1. Numerical phantom data

We used numerical simulations to illustrate the (non) convexity of the problem and

evaluate the proposed algorithms. Different datasets were simulated using realistic

X-ray tube and photon-counting detector with four energy bins (see figure 1) and

considering numerical phantoms made of soft tissue, bone and gadolimium (Gd). This is

a relevant example in K-edge imaging for characterizing atherosclerotic plaque [24, 25].

The linear mass attenuation coefficients for the three materials are provided in figure 1c.

Data for the thorax phantom are publicly available from SPRAY (Spectral X-ray

image reconstruction) toolbox, a MATLAB toolbox for simulation and nonlinear image

reconstruction in spectral X-ray imaging [41,48].
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Two numerical phantoms were created: a one-pixel phantom (only used to study

convexity) and a realistic thorax phantom built from a segmented thoracic-abdominal

CT scan [49, 50]. For the realistic phantom, a 611 × 167-pixel detector is simulated,

leading to P = 102, 037. Two projection images for two different projection angles were

evaluated. For each view, the dataset comprised I = 4 projection images corresponding

to the different energy bins and M = 3 unknowns projected mass density images were

recovered. Decreasing measurement signal-to-noise ratios were considered by lowering

the number of incident photons from 108 to 105. To get away from the inverse crime

and further asses the robustness of our algorithm, we considered the mixed noise model

sδ ∼ P(λ = s) + N (µ, σ2), where P is the Poisson distribution and N the normal

distribution whose mean µ can be calibrated to be zero [51]. We used a concentration

of gadolinium equal to 1 g·cm−3 unless otherwise stated.

We have used specific regularization for each material as described in section

4.4. We used first- and second-order Tikhonov regularization for bone and soft tissue,

respectively, and smooth total variation regularization for the gadolinium image.

(a) (b) (c)

Figure 1. Forward model parameters used in the numerical simulations. (a) Source

spectrum n0(E). (b) Detector response function di(E) for each of the I = 4 energy

bins. (c) Linear mass attenuation coefficients τm(E) for each of the M = 3 materials.

5.2. Numerical study of the data fidelity convexity

We have shown in section 3 that the problem is convex in a certain region of the

solution space (proposition 3) and that the zero mass density image belongs to this

region (remark 4). This is a relevant result as it can serve as a guide to initialize convex

optimization algorithms. Nevertheless, there may be regions of the solution space where

the data fidelity term is nonconvex. In this section, we examine convexity numerically

by computing the data fidelity term (7) for two typical numerical phantoms. Figure 2

shows the data fidelity term for a one-pixel mass density image a while figure 3 displays

the data fidelity term for the multiple-pixel thorax phantom. In the latter simulation,

we consider only constant images for the three materials, i.e., the same value is assigned
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to the entire image for each material. This has been done for simplification but it is

actually relevant as constant images are commonly used as initial guesses.

These examples show that the zero mass density image belongs to the convex region

and that the problem is nonconvex for large values of the three materials. It can be

noticed that the data fidelity term becomes asymptotically flat for increasing values of

the three materials, i.e., lima→∞ L(a) = 1
2
‖sδ‖2

W .

(a) (b) (c)

Figure 2. One dimensional plot of the data fidelity term for a one-pixel image a ∈ RM .

The ground truth solution is set to atruesoft = 10 g/cm3, atruebone = 1 g/cm3, and atruegd = 0.1

g/cm3 (see red circle). Data fidelity is displayed versus the value of one material while

the other two materials remain fixed and equal to the ground truth solution.

(a) (b) (c)

Figure 3. Data fidelity term for the realistic thorax phantom where the three materials

are set to a constant image atruesoft = 10 g/cm3, atruebone = 1 g/cm3, and atruegd = 0.1 g/cm3.

Data fidelity is displayed versus the value of one material while the other two materials

remain fixed and equal to (a) abone = 0.15 g/cm3 and agd = 0.007 g/cm3, (b) asoft = 4

g/cm3 and agd = 0.007 g/cm3, and (c) asoft = 4 g/cm3 and abone = 0.15 g/cm3.

Figure 4 displays the two characteristic sets A and B that are introduced in

proposition 2 and 3, respectively, for the one-pixel mass density phantom (same as

figure 2). The colormap represents the number of energy bins 1 ≤ i ≤ I satisfying

Fi(a) ≥ si. The solution is set to atrue
soft = 10 g/cm3, atrue

bone = 1 g/cm3, and atrue
gd = 0.1

g/cm3 (see red circle). The data is computed using the parameters plotted in figure 1.



Nonlinear material decomposition 12

The set A is depicted in yellow (all bins satisfy Fi(a) ≥ si) while the set B is indicated

by the grey dashed line.

(a) (b)

Figure 4. Characteristic sets included in the solution space. The colormap represents

the number of energy bins 1 ≤ i ≤ I satisfying Fi(a) ≥ si. The solution is set to

atruesoft = 10 g/cm3, atruebone = 1 g/cm3, and atruegd = 0.1 g/cm3 (see red circle). The data

is computed using the parameters plotted in figure 1. The set A is depicted in yellow

(all bins satisfy Fi(a) ≥ si) while the set B is indicated by the grey dashed line. Sets

are displayed versus the value of two materials while the other material remain fixed

and equal to the ground truth solution.

5.3. Convergence of GNB

Solution error and data fidelity versus the number of iterations are shown in figure 5

for GNB for different values of α. GNB leads to an optimal solution as long as α is

sufficiently large, where the larger α the more iterations it requires [7, 13]. For these

results, we used κ = 10−6, initial guess a0 = 0 and tolerance tol = 1.12 · 105. As a

comparison, we also provide the solution error for GN for the value of the regularization

parameter (α̃ = 0.23) that led to the lowest solution error. For GN we set initial guess

to a0 = 0 and tolerance to ψ = 10−4, which corresponded to a value of the data fidelity

term of 1.12 · 105. GN converged in N tot = 16 iterations for α̃ = 0.23 (see figure 5(b)).

GNB solves a sequence of subproblems, so it needs a larger number of iterations. It

needed N tot = 28 and N tot = 40 for α = 2 and α = 10, respectively.

Figure 6(a) shows the solution error versus the regularization parameter α̃ for GN

and versus the parameter α for GNB. While GNB provides the same solution for all α’s

larger than 0.5, GN depends dramatically on the choice of α. Although GN converged

in only N tot = 16 iterations (for α̃ = 0.23, see figure 5(b)), extra decompositions for

different regularization parameters are required. On the contrary, GNB can be used

with a large α̃ chosen a priori.

Figure 6(b) shows that the number of Bregman iterations is almost constant with

α and equal to k = 15 in the cases investigated here. Figure 6(c) shows that the total

number of Gauss Newton iterations N tot is linearly related to the parameter α.
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(a) (b)

Figure 5. Convergence of the algorithms. (a) Solution error versus the number of

Gauss Newton iterations for GNB (full line) and for GN (dotted line). (b) Data fidelity

decrease for GNB (α = 10) and for GN (α̃ = 0.23). We used a0 = 0 as initial guess.

(a) (b) (c)

Figure 6. Influence of the hyperparameter α. (a) Solution error for GN and GNB.

(b) Total number of Bregman iterations for GNB. (c) Total number of Gauss Newton

iterations for GNB.

Figure 7 shows the number of Gauss Newton iterations Nk needed to minimize Ψk,

for different values of α. An important remark is that GNB required nearly only one

iteration Nk = 1 to solve each subproblem for k > 1, so it adds just few iterations with

respect to GN.

Figure 8 shows decomposed images by GN and GNB. Second row in figure 8 gives

decomposed images by GN for an optimal regularization parameter α̃ = 0.23. Third to

fifth rows are the decomposed images by GNB for different number of iterations, setting

α = 10, κ = 1 · 10−6 and a0 = 0. Third and fourth rows correspond to an intermediate

and final solution of the first subproblem (k = 1). The solution of the first subproblem
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Figure 7. Number of Gauss Newton iterations, Nk, needed at each Bregman iteration,

k, for different values of α.

provides a good approximation of the decomposed materials but images are smooth

given the large value of α. Further Bregman iterations (k = 25) are needed to find the

optimal solution (bottom row in figure 8).

We evaluated two different strategies for the initialization of the inner problem in

GNB (algorithm 1) (figure 9). Using the solution found in the previous subproblem as

initial guess in the next subproblem, i.e., setting ak,n=0 = ak−1,Nk−1 , led to an optimal

solution in N tot = 120 iterations for α = 100. Initializing each Bregman iteration to

a zero image, i.e., setting ak,n=0 = 0, led to larger solution error and diverged quickly

after few updates of the Bregman distance.

Figure 10 shows the influence of the number of inner iterations in GNB. Previous

results correspond to full convergence of the inner problem. Taking only one iteration

for the inner problem (N1 = 1) resulted in unstable subgradient update and did not

converge. However, setting Nk = 1 for k > 1 (after the first subproblem is solved to

high accuracy) almost halved the number of iterations with respect to Nk = 2. We

remark that convergence of the inner iteration required N1 = 15 for k = 1 and at most

Nk = 3 for k > 1.
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Figure 8. (a) Reference image for the thorax phantom comprising three materials:

soft tissue, bone and portal vein marked with gadolinium. A particular projection view

at angle of 60◦ is considered. (b) Material images decomposed by GN for α̃ = 0.23 and

a0 = 0. (c)-(e) Material images decomposed by GNB at different iterations: (c) k = 1,

n = 5, N tot = 5, (d) k = 1, n = 15, N tot = 15 and (e) k = 25, n = 1, N tot = 44, which

is the optimal decomposition with GNB. k indicates the (outer) Bregman iteration, n

the (inner) Gauss Newton iterations, and N tot is the total number of Gauss-Newton

iterations. We set α = 10, κ = 1 · 10−6 and a0 = 0.
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Figure 9. Influence of the initialization of the Bregman iteration. The solution error

is plotted for two types of initialization for the minimization of Ψk: using the solution

found at the previous Bregman iteration (full line) and using a zero image for all

Bregman iteration (dotted line). We used α = 100, κ = 1 · 10−6 and a0 = 0.

(a) (b)

Figure 10. Influence of the number of inner iterations Nk in GNB. a) Data fidelity, L,

and Bregman distance, DR
ξ , versus the total number of inner iterations in the algorithm

considering all subproblems, for Nk = 1 and Nk = 2 for k > 1 (the first subproblem

is solved at full convergence with N1 = 15). b) Solution error norm for the same

parameters used in (a).
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Figure 11. Influence of the initial guess. (a) Reference image and decomposed images

by using (b) GN with α̃ = 0.23 and (c) GNB with α = 10 and κ = 10−6. The initial

guess was a0 = 10 for both methods.

5.4. Influence of the initial guess

In previous sections the initial guess was set to a zero constant image for all materials,

which belongs to the convex part of the data fidelity term. To assess now the effect

of the Bregman distance on global convergence, we set the initial guess to large values

(a0 = (10, 10, 10)) in order to make sure it belong to the nonconvex region. GNB

converged to the optimal solution independently of the initial guess. On the contrary,

GN did not converge, stopping at the first iteration as a descent direction could not be

found (figure 11).

GNB presented a dependence on κ when the initial guess belonged to the nonconvex

region. In this case, κ was critical as the Hessian was ill-conditioned, which occurred for

a large value of the initial guess. We used κ = 10−6. When the initial guess belonged

to the convex region, GNB led to same results independently of the value of κ as long

as it was small enough κ ≤ 10−4.
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Figure 12. Material decomposed images by GNB for different number of photons n0.

Pure Poisson noise is considered, i.e., σ = 0. (a) Reference images and decomposed

images for (b) n0 = 107, (c) n0 = 106 and (d) n0 = 105. We used the following

parameters: α = 10, κ = 10−6, and initial guess a0 = 0.

5.5. Influence of noise and phantom

In spectral CT, an important problem is the low photon count in each energy bin

corresponding to noisy data. To illustrate the impact of noise on GNB, we consider first

pure Poisson noise. Figure 12 shows decomposed material images by GNB for different

number of incident photons from n0 = 108 to n0 = 105. The lower the number of incident

photons the more regularized the solution. The tolerance tol was set to 1.3 ·105, 1.5 ·105

and 1.8 · 105 for n0 = 107, n0 = 106 and n0 = 105, respectively.

Figure 13 shows material decomposed images by GNB for mixed Poisson noise

model with n0 = 107 and different values of σ ranging from 5 to 50. GNB is able to

decompose materials even with large σ but for σ larger than 20, images are noisier,

which impacts the recovered concentration of gadolinium.

We also show the decompositions obtained for a different projection angle (here

180◦) in figure 14.



Nonlinear material decomposition 19

Figure 13. Material decomposed images by GNB for mixed Poisson noise model,

sδ ∼ P(λ = s) + N (µ, σ2), for n0 = 107 and concentration of gadolinium of 0.1

g·cm−3. (a) Reference images and decomposed images for (b) σ = 5, (c) σ = 20, and

(d) σ = 50. We used the following parameters: α = 10, κ = 10−6, tol = 1.23 · 105 and

initial guess a0 = 0.

6. Discussion

We proposed and assessed a regularized iterative scheme based on the Bregman distance

(GNB) for the solution of the material decomposition problem in spectral CT, which is

a nonlinear inverse ill-posed problem and for which we consider the minimization of a

regularized functional. First, we proved that the problem is convex in a region of the

solution space and that the zero solution belongs to this region. Then, using numerical

examples we showed that the problem is nonconvex for large values of the decomposed

materials.

Using a numerical thorax phantom, we showed that zero initialization is a suitable

initialization strategy for convex optimization methods such as a regularized Gauss-

Newton algorithm method [41]. GN led to an optimal solution as long as the initial

guess belonged to the convex region of the data fidelity term. On the contrary, GN led

to a wrong solution when the initial guess is chosen far from the convex region.
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Figure 14. Material decomposed images provided for a different projection view (for

an angle of 180◦). (a) The ground truth. (b) Decomposed data provided by GNB.

The measurement vector is simulated for n0 = 108 photons and the decomposition is

performed using the following parameters: α = 10, κ = 10−6, and initial guess a0 = 0.

We then assessed a regularized iterative scheme based on the Bregman distance.

The proposed method has some advantages with respect to more standard approaches.

It is robust to the choice of the initial guess, as it led to global minimum even when

the initial guess was in the nonconvex region. On the contrary, Gauss-Newton method

failed in this case. This is a relevant feature of the Bregman distance, which makes

each subproblem locally convex around the current estimate. This makes Bregman

iterative algorithms more robust but at the price of requiring more iterations than an

equivalent Gauss-Newton method. Nevertheless, we found that the number of iterations

required was not very large: around ten inner iterations to solve the first subproblem

(k = 1) but generally only one to three inner iterations for k > 1. In addition,

standard approaches such as Gauss-Newton method requires optimal selection of the

regularization parameter using the L-curve or similar method [52,53]. In this work, we

selected the solution provided by GN method that led to the lowest solution error by

assessing a large number of regularization parameters. As Bregman iterative methods

do not require optimal selection of the regularization parameter, the extra iterations

needed by these methods may not translate in much larger computational demand than

standard regularization methods. In addition, we found a linear relation between the

number of total iterations and the parameter α, which has been previously shown for

linear measurement operators [7,13]. Hence, α can be tuned to decrease the number of

required iterations. The smaller α the lower the number of iterations but a very low

value may be less robust.

A key point in the construction of these iterative schemes is to select efficient

methods for solving the subproblem (17a). We have proposed an efficient Gauss-Newton

step and found that it required only few inner iterations for k > 1 (algorithm 1). This

may indicate that subproblems are approximately linear when close to the solution.
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Reconstructed images show that the first subproblem leads to a good estimate of the

decomposed materials and then further Bregman iterations are used to improve the

solution. This could be then further exploited to reduce computationally complexity.

In fact, fixing the number of inner iterations to one for k > 1 (after the first subproblem

is solved to high accuracy) converged to the optimal solution and almost halved the

number of iterations with respect to taking two inner iterations.

In [20], authors proposed two iterated methods based on approximating the

subproblem (17a): a Levenberg-Marquardt-type (ILM) method that linearized the

forward operator, and a Landweber-type method that linearized the least square data

fidelity term. There are similarities between GNB and ILM with only one inner iteration.

ILM replaces (17) by the iterated scheme

ak+1 = arg min
a

1

2
‖F(ak) + F ′(ak)(a− ak)− sδ‖2

W + αDR
ξk(a, ak), (22a)

ξk+1 = ξk − α−1
(
WF ′(ak)

)>
W
(
F(ak) + F ′(ak)(ak+1 − ak)− sδ

)
. (22b)

Doing only one inner iteration on GNB (algorithm 1) and ILM (22) provides the

same solution update ak+1 but subgradient updates are different. In order to compare

subgradient updates given by the two methods, we rewrite ILM’s update as ξk+1 '
ξk − α−1

(
WF ′(ak)

)>
W (F (ak+1)− s). While the Jacobian in ILM is evaluated on the

previous estimate ak, as the forward operator has been linearized in the data fidelity

term, the Jacobian in GNB is evaluated on the current estimate ak+1. This difference

seems to have a significant impact when approximating the inner problem, as discussed

below.

An unexpected result in the analysis was to find that fixing the number of inner

iterations to one in GNB resulted in an unstable subgradient update. We observed that

after the first subgradient update, the Bregman distance becomes negative and then the

algorithm diverges. As the Bregman distance is given by DR
ξk

(a, ak) = R(a)−R(ak)− <

ξk, a − ak >≥ 0 for ξk ∈ ∂R(ak), then we assume that ξk /∈ ∂R(ak). To further

understand this issue, we computed GNB and ILM when taking one inner iteration for

all k. While GNB did not converge, ILM converged to a solution close to the optimal

one but results were slightly worse than those provided by GNB when solving exactly

the first subproblem. Further work is needed for a rigurous comparison between GNB

and ILM. From these results and the difference between GNB and ILM discussed above,

it seems that given the nonlinearity, taking only few inner iterations for GNB may not

be stable in general. However, if the first inner problem is solved to high accuracy, it is

then feasible to take only one inner iteration. This may be due to the fact that solving

the first subproblem brings the first iterate close to the optimal solution and the rest of

subproblems are approximately linear.

Initialization of each Bregman iteration for GNB was critical. Using the solution

found at the previous iteration led to robust convergence. On the other hand, a zero

initialization strategy for each subproblem required a large number of iterations to solve

each subproblem and became unstable as the number of Bregman iterations increased.
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This can be explained by the fact that the problem is nonlinear and that as the number

of Bregman iterations increases, the solution is further away from the zero initial guess.

Nevertheless, for linear problems, zero initialization was a valid strategy for Bregman

iterative methods in a wide variety of applications [13,46].

In [20] authors included an extra `2-term (weighted by κ in (18)) to make the

functional associated with total variation convex on each subproblem. Here we found

a dependence on κ. When the initial guess was in the nonconvex region, this term

was essential to reach to a global minimum. An optimal solution was found by using a

sufficiently small value of κ (κ ≤ 10−4). The effect of κ can be explained by the fact that

when the initial guess is in the nonconvex region the Hessian is ill-conditioned, where

the nonconvex region in this problem corresponds to large values of the materials. For

the case where the initial guess was in the convex region, this term did not play a role

and any small value of κ (including κ = 0) led to the same solution.

In conclusion, we have studied convexity for the material decomposition problem

and showed that an iterative scheme based on the Bregman distance had a positive

effect to find a global minimum. In addition to this, the Bregman distance presents

other benefits. For instance, it can efficiently minimize nonsmooth functional such as

total variation or impose a nonnegativity constraint, which has been exploited for linear

measurements [7, 12, 13]. Two variants of the proposed GNB algorithm, GNB with

a nonnegativity constraint and GNB with a nondifferentiable convex functional, are

included in the appendix B. Another benefit of using the Bregman distance is to correct

for the lost of contrast that affects total variation [9]. This is crucial for quantitative

imaging techniques such as spectral CT. In future work we will investigate these other

benefits of the Bregman distance for solving the material decomposition problem in

spectral CT.
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Appendix A. Hessian of the forward mapping

Let Hi(a) be the Hessian matrix of the operator Fi. It is defined as
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(Hi)m,m′ =
∂2Fi

∂am∂am′
. (A.1)

The operator Fi is continuously twice differentiable and its second derivative is given

by

∂2Fi
∂am∂am′

(a) =

∫
E
τm(E)τm′(E)gi(a,E) dE (A.2)

where gi(a,E) is given by (11). Discretising the energy interval E = [0, Emax] with an

energy step ∆E, the integral (A.2) can be approximated by

∂2Fi
∂am∂am′

(a) =
∑
j

τm(Ej)τm′(Ej)gi(a,Ej)∆E. (A.3)

Hence, it can be noted that the Hessian takes the following matrix form

Hi(a) = T>Gi(a)T, (A.4)

where Gi(a) = diag (gi(a,E1), . . . , gi(a,EJ)) ∆E is the vector of photons incident on

the detector, and T = (τj,m) ∈ RJ×M is the mass attenuation matrix defined by

τj,m = τm(Ej).

Appendix B. Extensions of GNB

Appendix B.1. GNB with nonnegativity constraint

Including a nonnegativity constraint in GNB can be done by combining the Bregman

distance with a splitting technique, which leads to the split Bregman method [12], [13].

Proceeding as in [12], let 1a≥0 be the indicator function of the set RN≥0 and add an

auxiliary variable b to allow for the splitting, the material decomposition problem with

a nonnegativity constraint can be posed as follows:

arg min
a,b

R(a) + 1b≥0 st.
1

2
‖F(a)− sδ‖2

W ≤ σ, b = a. (B.1)

Defining the convex functional U(a, b) = R(a) + 1b≥0 and the Bregman distance

associated with this functional

DU
ξk(a, ak, b, bk) = U(a, b)− U(ak, bk)− < ξka , a− ak > − < ξkb , b− bk >, (B.2)

the constrained problem (B.1) can be solved by the following iterative scheme:

(ak+1, bk+1) = arg min
a,b

αDU
ξk(a, ak, b, bk) +

1

2
‖F(a)− sδ‖2

W +
1

2
‖b− a‖2

= arg min
a,b

α
(
R(a) + 1b≥0− < ξka , a− ak > − < ξkb , b− bk >

)
+

1

2
‖F(a)− sδ‖2

W +
1

2
‖b− a‖2 (B.3a)

ξk+1
a = ξka − α−1(WF ′(ak+1))>(WF(ak+1)−Wsδ)− α−1(ak+1 − bk+1) (B.3b)

ξk+1
b = ξkb − α−1(bk+1 − ak+1). (B.3c)



Nonlinear material decomposition 24

Variables a and b in (B.3a) are de-coupled, so they can be solved in two alternating

steps:

ak+1 = arg min
a

Ψk(a) +
1

2
‖bk − a‖2 (B.4a)

bk+1 = arg min
b

1

2
‖b− ak+1‖2 + α1b≥0 − α < ξkb , b− bk > . (B.4b)

Subproblem (B.4a) is a slight variation of subproblem (17a) where a quadratic term

is added to the previous cost function Ψk(a) and where ξa has an extra term. Hence,

minimization of (B.4a) can be also done with GN as in algorithm 1. Subproblem (B.4b)

can be solved analytically by using a thresholding operation [12], [13].

Appendix B.2. GNB for nondifferentiable functional

The minimization of convex nondifferentiable functional such as total variation can be

solved efficiently using the split Bregman method, which has been widely exploited for

linear measurements [7]. In specific, the split Bregman method is very efficient for

solving L1-regularized problems. Let R(a) be a nondifferentiable convex functional of

the form R(a) = ‖Φ(a)‖1, ie. total variation R(a) = ‖∇a‖1, we replace Φ(a) by d and

consider the following constrained problem:

arg min
a,d

‖d‖1 st.
1

2
‖F(a)− sδ‖2

W ≤ σ, d = Φ(a). (B.5)

Proceeding as above, we define U(a, d) = ‖d‖1, the constrained problem (B.5) can be

solved by the following iterative scheme:

(ak+1, dk+1) = arg min
a,d

αDU
ξk(a, ak, d, dk) +

1

2
‖F(a)− sδ‖2

W +
1

2
‖d− Φ(a)‖2

= arg min
a,d

α
(
‖d‖1− < ξka , a− ak > − < ξkd , d− dk >

)
+

1

2
‖F(a)− sδ‖2

W

+
1

2
‖d− Φ(a)‖2 (B.6a)

ξk+1
a = ξka − α−1(WF ′(ak+1))>(WF(ak+1)−Wsδ)− α−1Φ′(a)T (Φ(ak+1)− dk+1)

(B.6b)

ξk+1
d = ξkd − α−1(dk+1 − Φ(ak+1)). (B.6c)

Variables a and d in (B.6a) are de-coupled, so they can be solved in two alternating

steps:

ak+1 = arg min
a

1

2
‖F(a)− sδ‖2

W +
1

2
‖dk − Φ(a)‖2 − α < ξka , a− ak > (B.7a)

dk+1 = arg min
d

α‖d‖1 +
1

2
‖d− Φ(ak+1)‖2 − α < ξkd , d− dk > . (B.7b)

Subproblem (B.7a) is easier to solve than subproblem (17a) as it does not depend on

R(a) and a quadratic term is added to the previous cost function. Subproblem (B.7b)

can be solved analytically by using a thresholding operation [12], [13].
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