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Abstract

Multi-dimensional Stochastic Differential Equations (SDEs) are a powerful tool to de-
scribe dynamics of several fields (pharmacokinetic, neurosciences, ecology, etc). The es-
timation of the parameters of these systems has been widely studied. We focus in this
paper in the case of partial observations, only a one-dimensional observation is available.
We consider two families of SDE, the elliptic family with a full-rank diffusion coefficient
and the hypoelliptic family with a degenerate diffusion coefficient. The estimation for the
second class is much more difficult and only few references have proposed estimation strate-
gies in that case. Here, we adopt the framework of the optimal control theory to derive
an estimation contrast (or cost function) based on the best control sequence mimicking
the (unobserved) Brownian motion. We propose a full data-driven approach to estimate
the parameters of the drift and of the diffusion coefficient. The estimation reveals to be
very stable in a simulation study conducted on different examples (Harmonic Oscillator,
FitzHugh-Nagumo, Lotka-Volterra).

Keywords Stochastic Differential Equations; Ellipticity; Hypoellipticity; Estimation; Op-
timal Control Theory; Linear-Quadratic Theory; Pontryagin maximum principle;

1 Introduction

We focus on the statistical inference for d-dimensional stochastic dynamical systems modeled
by a stochastic differential equation (SDE). We are interested in the case of partial observations:
only the first one-dimensional coordinate, denoted Vt, of the system is observed while the other
(d− 1)-dimensional coordinates, denoted Ut, are unobserved. The system is written as follows:

dVt = a1(Vt, Ut, t; θ)dt+ σ1dW1t (1)

dUt = a2(Vt, Ut, t; θ)dt+ σ2dW2t
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where a1 and a2 are the two drift functions that depend both on Vt and Ut, θ are the drift
parameters, (W1t)t and (W2t)t are two independent Brownian motions and σ1, σ2 are the two
diffusion coefficients.

We consider two classes of models (1). The first class, called elliptic, corresponds to an SDE
with a full non degenerate diffusion coefficient. This means that denoting Bσ = (σ1, σ2) the
diffusion coefficient, the matrix BσB

T
σ is full rank, XT being the transposed matrix of X. The

second class, called hypoelliptic, corresponds to an SDE with a degenerate stochastic noise: the
diffusion coefficient BσB

T
σ is not invertible. For example when σ1 = 0.

These two specificities, partial observations and hypoelliptic/elliptic properties, are of in-
creasing importance in many applications, and we give some examples below. But before
describing the examples, let us remark that these two specificities are not of the same nature.
The first one is linked to the type of observations. In many examples, the system is complex and
is modeled by a multi-dimensional system, while the experimentalists are only able to measure,
often at discrete times, a one-dimensional signal. As will be recalled later when reviewing the
literature, this increases the difficulty of estimating the parameters of model (1). The second
specificity is not linked to any experimental constraint, but is a mathematical way of describ-
ing the intrinsic noise of the process (Vt, Ut). The two systems, elliptic and hypoelliptic, may
not have the same interpretation depending on the applications (see below examples in neuro-
sciences). It might nevertheless be difficult for the modeler to know in advance if the system
is more likely elliptic rather than hypoelliptic. Unfortunately, estimation methods are often
strongly different depending on the nature of the noise (see more details below), and may fail
down when applied on the ‘wrong’ class of models. This is an advantage of our method which
is the same for elliptic and hypoelliptic SDE.

Let us now give some examples of applications. Partially observed SDEs have been used
in pharmacokinetics for modeling the concentration of a drug in the body, either in a elliptic
or a hypoelliptic version [Ditlevsen et al., 2005, Cuenod et al., 2011, Donnet and Samson,
2013]. In system biology, the famous stochastic Lotka-Volterra model [Lotka, 1925, Meeds and
Welling, 2015, Graham and Storkey, 2017, Mao et al., 2002] describes the interaction between
two species, predator and prey, through a two-dimensional elliptic system. It is often possible
to observe only one of the two species, leading to partial observations. In neurosciences, several
stochastic systems have been proposed to model the dynamic of one single neuron. The first
equation Vt corresponds to the dynamics of the membrane potential of the neuron and Ut
to a recovery variable, or a synaptic conductance, that can not be measured. We can cite the
synaptic-conductance based models [Pospischil et al., 2009, Paninski et al., 2010, 2012, Ditlevsen
and Greenwood, 2013, Ditlevsen and Samson, 2017] or the FitzHughNagumo model [Gerstner
and Kistler, 2002]. These models have been proposed with stochastic noise on the synaptic
conductance dynamic (Ut) only, leading to hypoelliptic SDEs [see e.g. Paninski et al., 2012, and
references therein], or on both coordinates leading to elliptic SDE [Ditlevsen and Greenwood,
2013]. A last class of models is the stochastic hypoelliptic Damping Hamiltonian system where
the first coordinate represents the position of a particle and the second its velocity (d = 2). It
is natural that the (Brownian) noise appears only in the velocity coordinate, the position being
defined as the deterministic infinitesimal integral of the speed. The position can be measured
with precision, but the speed is not directly available. In these models, the first equation of the
dynamical system reduces to dVt = Utdt.

Let us now review the main estimation methods that have been proposed in the literature
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to estimate the drift parameter θ and the diffusion coefficient Bσ.
Estimation of elliptic SDE has been widely studied. In the complete observations cases

(both Vt and Ut observed), we can cite among others Bibby and Sorensen [1995], Pedersen
[1995], Kessler [1997], Aı̈t-Sahalia [2008], Durham and Gallant [2002], Sørensen [2004], Beskos
et al. [2006], Jensen et al. [2012], Ditlevsen and Samson [2014], van der Meulen and Schauer
[2016a]. The case of partial observations has also been considered with several approaches. The
unobserved coordinates are treated as missing data and are imputed, see for examples Elerian
et al. [2001], Bjørn [2001], Golightly and Wilkinson [2006, 2008], Ditlevsen and Samson [2014],
van der Meulen and Schauer [2016b]. Most methods propose to approximate the transition
density by the Euler-Maruyama scheme and consider a Monte-Carlo approximation to impute
and filter the unobserved coordinates. Therefore, they are computationally intensive. We will
show that the methodology we develop is less demanding in terms of time of computation.

Let us now explain why the estimation of hypoelliptic systems is more difficult. Let us
imagine that the complete observations of (Vt, Ut) are available in continuous time. Estimating
θ would be naturally performed through the Girsanov formula, that gives directly the likelihood
[Lipster and Shiryaev, 2001]. However, the Girsanov formula requires the matrix BσB

T
σ to be

invertible. Because of the singularity of Bσ in the hypoelliptic case, this inverse does not
exist and the likelihood is not properly defined. The same problem occurs for the estimation
methods developed for elliptic systems that have been cited above, as they also generally require
BσB

T
σ to be invertible. They can thus not be applied to hypoelliptic systems. There are thus

only few references for hypoelliptic SDEs. The stochastic Damping Hamiltonian system (with
dVt = Utdt) has been the most studied. In the parametric framework, Gloter [2006], Samson and
Thieullen [2012] propose Euler contrasts with a correction of the bias due to partial observations.
Pokern et al. [2009] propose a Gibbs sampling in a bayesian approach, but do not correct
the bias. In the non-parametric framework, Cattiaux et al. [2014a,b], Comte et al. [2017]
consider the estimation of the drift, the diffusion coefficient and the invariant density using
kernel estimators. For hypoelliptic SDEs that are more general than the stochastic Damping
Hamiltonian system, we are only aware of the work of Ditlevsen and Samson [2017]. Their
approach is based on a discretization scheme of order 1.5, a particle filter to approximate the
unobserved coordinate and a maximization of a statistical contrast by stochastic approximation.
The main drawbacks are the computational time induced by the particle filter and the fastidious
calculations to exhibit the sufficient statistics of the likelihood that are then stochastically
approximated. There is thus a need to develop new approaches.

In this paper, we propose a strategy based on the optimal control theory. Let us recall
the main question the optimal control theory aims to address. For a given dynamical system
in a given initial state, which input, or control, do we have to apply to it in order to steer
it to a desired behavior in an optimal way ? This problem is formulated as an optimization
problem under constraint where the optimality is defined through the introduction of a cost
function and the proposed dynamical model belongs to the contraints. Under this theory a
large variety of theoretical and numerical tools have been developed to solve this kind of opti-
mization problems, that is to find the so-called optimal control which minimizes the proposed
cost function. Recently, this theory has been advantageously used for statistical purpose. We
can cite among others the pioneer work of Martin et al. [2001] for non-parametric estimation
of B-splines. Parametric approaches have been proposed more recently by Brunel and Clairon
[2015], Clairon and Brunel [2016, 2017], Iolov et al. [2017], Zhang et al. [2017]. One way of using
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the optimal control theory is to rewrite an estimation criteria, typically a likelihood or a poste-
rior distribution as a tracking problem. Tracking problems are a specific class of optimal control
theory problems: the aim is to find the optimal control which leads a coordinate of the system
the closest possible to a target trajectory, here the observations, on a given observation interval.
A way of solving an optimal control problem is the Pontryagin maximum principle [Pontryagin
et al., 1962, Trelat, 2005, Sontag, 1998] which allows to calculate this optimal control as well
as the corresponding system response.

This idea has already been successfully developed by Brunel and Clairon [2015] to estimate
the parameters of ordinary differential equations. It proves to be numerically efficient and
stable, especially when the problem is ill-conditioned. Moreover, the consistency and the rate of
convergence of the corresponding estimator have been proven [Clairon and Brunel, 2016, 2017].
However, their method, based on the deterministic theory of optimal control, is restricted
to the case of deterministic system. In this paper, we adapt this idea to the problem of
SDE estimation. To do so, we resort to the framework of the discrete optimal control theory.
Theoretical and numerical results have been fully developed for linear model, this is the discrete
linear-quadratic (LQ) theory, a particular case of the Pontryagin maximum principle. Indeed,
this theory ensures the existence, uniqueness and gives the closed form of the solution of the
control problem defining our estimation criteria. The main advantage of this theory is that it
applies without any hypothesis on the diffusion coefficient Bσ. Especially, it applies also to the
hypoelliptic case. This is the approach that we use for linear SDE. When estimating parameters
of a nonlinear SDE, we propose to rewrite the estimation criteria to enter this theory as well.
Unfortunately, the consistency and convergence results presented for ODE models in Brunel
and Clairon [2015] do not apply here and we were not able to prove a theoretical result for our
estimator. Nevertheless, it reveals to be efficient in practice.

Our estimation procedure follows three steps. First we define a criteria to estimate the drift
parameter θ alone, σ being considered known. This criteria is minimized with the help of the
linear-quadratic theory. This method introduces a weighting parameter w which needs to be
selected. The second step consists in constructing an external criteria based on moments of the
Brownian process allowing to data-select the weight w. The third step is the estimation of σ
by profiling the functional used in step 2.

The paper is organized as follows. Section 2 presents the elliptic and hypoelliptic models.
Section 3 introduces the estimation of θ when σ is known. In section 4, the method used to
select the weighting parameter w is presented. Section 5 explains the estimation of σ. Section 6
illustrates the procedure on four elliptic or hypoelliptic models: an elliptic Lotka-Volterra and
FitzHugh-Nagumo model, and then an hypoelliptic Harmonic Oscillator and FitzHugh-Nagumo
model.

2 Models and objectives

As explained in the introduction, the estimation procedure that we propose, based on the
discrete optimal control theory, is fully developed for linear models. We thus introduce a linear
SDE and the corresponding estimation criteria. In the simulation section, we will show an
adaptation of the method for a non-linear SDE.
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2.1 Elliptic and hypoelliptic stochastic differential equations

We consider a d-dimensional state variable Zt ∈ Rd, d ≥ 2, defined for t in a time interval
[0, T ]. We distinguish in the following the first observed state variable denoted Vt ∈ R from the
last d− 1 other unobserved variables denoted Ut ∈ Rd−1. The dynamic of (Zt = (Vt, Ut))t≥0 is
described by the following stochastic dynamical system:(

dVt
dUt

)
= Aθ(t)

(
Vt
Ut

)
dt+Bσ dWt (2)

with a known initial condition (V0, U0) and where Wt is a m dimensional Brownian motion.
The drift is assumed linear with respect to Zt = (Vt, Ut). The d × d-matrix Aθ(t) depends on
the unknown parameter vector θ and may be a function of time t. The d × m-matrix Bσ is
called the diffusion coefficient and depends on an unknown parameter vector σ. We consider
two cases:

• Elliptic SDE: m = d and the d× d matrix Bσ is not singular:

det(BσB
T
σ ) > 0 (3)

• Hypoelliptic SDE: m < d and the matrix Bσ is singular:

Bσ =

(
0m
bσ

)
, (4)

with 0m the m-dimensional row vector of zeros and bσ a (d− 1)×m-matrix such that

det(bσb
T
σ ) > 0

A noticeable feature in the hypoelliptic SDE is that the equation ruling Vt does not contain a
stochastic part. The matrix bσ models the way the stochastic disturbance acts on the unobserved
variables Ut of the system and indirectly on Vt through Ut.

In the hypoelliptic case, we consider the following assumption:

(H1) Let A1j(t) denote the jth element of the first column of Aθ(t) and B,j the jth column of
Bσ. For any t, there exists at least one j = 2, . . . , d such that

A1,j(t)B,j 6= 0

Under assumption (H1), the noise is propagated also to the first coordinate Vt. This property
that the noise generates the entire space Rd is a characteristic of the hypoelliptic property [see
e.g. Mattingly et al., 2002]. Note that the standard assumptions to ensure the hypoellipticity
are different from (H1) [see e.g. Samson and Thieullen, 2012], but it reduces to (H1) for a linear
system.
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2.2 Objectives and issues

The state variables Zt = (Vt, Ut) are split in two because we observe only the first one-
dimensional state variable Vt. We denote t 7−→ Y (t), the realization of Vt. We assume that Y is
discretely observed on the interval [0, T ] at times 0 = t0 < . . . < tn = T without measurement
error and denote (Y0, . . . , Yn) these observations. We thus have Yi = CZti , with C a 1 × d-
matrix C = (1, 0d−1)T and 0d−1 is the row vector of zeros of size d− 1.

The aim of the paper is to estimate the unknown parameters of model (2) in the elliptic and
hypoelliptic cases using the discrete observations (Y0, . . . , Yn). We will distinguish two cases:
1/ σ is known and only θ is estimated; 2/ both θ and σ are estimated.

Before introducing our approach based on the optimal control theory, let us explain why
the estimation problem is difficult. When one wants to estimate θ and σ of an elliptic, partially
observed SDE, the standard approach starts with the discretization of the diffusion (2). The
Euler–Maruyama discretization scheme at time (t1,, . . . tn) is defined as follows for i = 0, . . . , n−
1 and Zi = (Vi, Ui):

Zi+1 = Zi + ∆iAθ(ti)Zi +Bσηi =: Aθ(ti)Zi +Bσηi (5)

where Zi, Ui, Vi stand for Zti , Uti , Vti , ∆i = ti+1 − ti, Aθ(ti) = Id + ∆iAθ(ti) and the ηi are
independent variables distributed as N (0,∆i). When the system is elliptic, that is when BσB

T
σ

is invertible, minus twice the log-likelihood of this discretized process, assuming both Vt and
Ut discretely observed, is then

LEuler((Vi, Ui)i=0,...,n, θ, σ) =

n−1∑
i=0

(Zi+1 −Aθ(ti)Zi)
T (BσB

T
σ )−1(Zi+1 −Aθ(ti)Zi)

+n log(det(BσB
T
σ )). (6)

For partial observations, the log-likelihood (6) has to be integrated with respect to (U0, . . . , Un).
The estimator is thus defined as

arg min
θ,σ

∫
LEuler((Vi, Ui)i=0,...,n, θ, σ)d(U0, . . . , Un)

This integral can be viewed as a filtering problem: the unobserved trajectory (U0, . . . , Un) is
filtered with respect to the observations (V0, . . . , Vn). The Kalman filter can be applied for
linear SDEs. In the non-linear case, the extended Kalman filter or a particle filter has to be
used, at the price of an important computing time. For hypoelliptic SDE, the criteria (6) can
not even be computed, BσB

T
σ being not invertible.

Therefore, there is a need to propose alternatives. In this paper, we take advantage of the
optimal control theory to filter the unobserved coordinate or more precisely to find a surrogate
value for the (unobserved) realization of the Brownian motion, under the form of a control
sequence that drives the trajectory. This sequence allows to define an estimation criteria, that
involves only the non-degenerate part of the stochastic noise. This criteria is thus suitable for
elliptic as well as for hypoelliptic SDEs. The estimation procedure is presented in Sections 3-5.
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3 Estimation of θ via optimal control theory

In this section, we assume σ known and fixed at its true value. We expose our estimation
procedure: its main principle is to turn the statistical problem into an optimal control one.
The procedure is the same whether Bσ is singular or not. We start this section by deriving
the general optimal control problem from which our estimator is defined. The optimal control
problem is then solved by using a result coming from the linear quadratic theory (Section 3.2).

3.1 Optimal control problem and definition of θ̂

The principle of the control problem is to introduce a control sequence such that the data
(Y0, . . . , Yn) are close to a solution of the discretized model (5), close meaning of the order
of the Euler scheme error 4 [Bally and Talay, 1996]. In the context of SDEs, the natural
control sequence is the increment of the Brownian motion. Let us introduce ui = Wi+1 −Wi,
i = 0, . . . , n − 1, which will play the role of the control value at time ti. Note that ui ∈ Rm,
i = 0, . . . , n− 1 with a dimension m that can be different from d, thus allowing the noise to be
degenerate.

The discretized model (5) can be reformulated under the form of a discrete controlled system:(
Vi+1

Ui+1

)
= Aθ(ti)

(
Vi
Ui

)
+Bσui

(Vt0 , Ut0) = (V0, U0)
(7)

We denote:

• u the vector of discrete values taken by the control: u = (u0, . . . un−1).

• Zi,θ,σ,u = (Vi,θ,σ,u, Ui,θ,σ,u), the solution of (7) corresponding to the given θ, σ and u.

When model (2) is true, there exists one realization of the Brownian motion such that
the data (Y0, . . . , Yn) are a sample of model (2). The control sequence u can be viewed as
this specific realization of the Brownian motion. The objective is to infer this sequence u by
extracting knowledge from the data. For that purpose, a cost function C(u, Y ; θ, σ) is defined
such that the optimum in u corresponds to this realization of the Brownian motion. We say
that the sequence u is designed through the cost function C(u, Y ; θ, σ).

A natural cost function is the conditional posterior probability P (u|Y ; θ, σ) of u knowing the
data Y . Filtering consists in computing the conditional expectation of this posterior distribu-
tion. An alternative is to compute the maximum a posteriori (MAP) by maximizing P (u|Y ; θ, σ)
with respect to u. That is the way we consider to compute the control in this paper. A direct
computation of the MAP reveals to be numerically unstable or too strict for SDEs. Therefore,
we introduce a weight to stabilize the optimization problem. Let us introduce the basic MAP
and then the weighted cost function.

For a fixed value of the parameters (θ, σ), the MAP would be defined as follows:

ûMAP = arg max
u

P (u|Y ; θ, σ)

= arg max
u

(
P (Y |u; θ, σ)P (u; θ, σ)

P (Y ; θ, σ)

)
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where P (Y |u; θ, σ) is the density of the data given the u, P (u; θ, σ) is the density of the Brownian
motion and P (Y ; θ, σ), the likelihood, does not depend on u. Let us now detail the two terms
that depend on u. The conditional density P (Y |u; θ, σ) is described by the error induced by
the Euler discretisation of the SDE. It is well known that this error has a variance of order 4
the time step [Bally and Talay, 1996]. The second term P (u; θ, σ) is the density of a discretized
Brownian motion, which has a variance 4. Therefore, one can formulate the MAP as

ûMAP = arg max
u

(
−

n∑
i=0

(Vi,θ,σ,u − Yi)2

4i
−
n−1∑
i=0

uTi ui
4i

)
= arg min

u
C(u, Y ; θ, σ) (8)

with C(u, Y ; θ, σ) =
∑n
i=0

(Vi,θ,σ,u−Yi)2
4i +

∑n−1
i=0

uTi ui
4i .

The optimisation of the MAP (8) reveals to be too strict and intractable in practice. There-
fore, we relax the constraints by introducing a weight between the two terms. To ease the
writing of the cost function, we replace the scaling 1

4i of the first term by a weight w > 0. The
cost function of the control is finally defined as

Cw(u, Y ; θ, σ) = w

n∑
i=0

(Vi,θ,σ,u − Yi)2 +

n−1∑
i=0

uTi ui
4i

.

The weight w has to be chosen by the user. In Section 4 a procedure is proposed to select w
adaptively from the data. To enter the optimal control theory, we exhibit the last observation
Yn which plays a specific role in a control problem. The cost function can thus be rewritten:

Cw(u, Y ; θ, σ) = w (Vn,θ,σ,u − Yn)
2

+

n−1∑
i=0

(
w (Vi,θ,σ,u − Yi)2 +

uTi ui
4i

)
.

For a given weight w, the best control is the sequence u that minimizes Cw(u, Y ; θ, σ) under the
constraint of model (7). It is defined as the solution of the following optimal control problem:

Minimize in u: Cw(u, Y ; θ, σ) = w (Vn,θ,σ,u − Yn)
2

+
∑n−1
i=0

(
w (Vi,θ,σ,u − Yi)2 + 1

4iu
T
i ui

)
Subject to:


(
Vi+1,θ,σ,u

Ui+1,θ,σ,u

)
= Aθ(ti)

(
Vi,θ,σ,u
Ui,θ,σ,u

)
+Bσui

(U0,θ,σ,u V0,θ,σ,u) = (V0, U0) .
(9)

It is called the optimal control and denoted uθ,σ. For a fixed value of σ and given the discrete
observations (Y0, . . . , Yn), we then define the estimator of θ as:

θ̂w(σ) = arg min
θ
Sw(Y ; θ, σ) (10)

where
Sw(Y ; θ, σ) := min

u
Cw(u, Y ; θ, σ) = Cw(uθ,σ, Y ; θ, σ)

is the profiled cost Cw over the set of possible sequences of the Brownian motion increments.
The computations of uθ,σ and Sw(Y ; θ, σ) require to solve the optimal control problem (9).

We thus have to prove the existence and uniqueness of the solution of problem (9), and that this
unique solution is numerically computable to obtain uθ,σ and Sw(Y ; θ, σ). These two results
are given by the linear quadratic theory [Trelat, 2005, Sontag, 1998] and are exposed below.
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3.2 Linear quadratic theory

The linear quadratic theory is derived from the Pontryagin maximum principle [Pontryagin
et al., 1962] in the restricted framework of linear models. For a given (θ, σ), the linear quadratic
theory ensures, for the problem (9):

• the existence and uniqueness of uθ,σ, the solution of (9),

• that uθ,σ and Sw(Y ; θ, σ) can be computed by the introduction of a backward finite
difference equation, called the Riccati equation.

Let us be more precise. For a given (θ, σ), and a given weight w, let us denote the following
matrices, for i = 0, . . . , n− 1:

Ai,θ =

(
Aθ(ti) 0Td

0d 1

)
∈ Rd+1 × Rd+1, Qi =

(
CTC −CTYi
−CYi Y 2

i

)
w ∈ Rd+1 × Rd+1,

and

B0
σ =

(
Bσ
0m

)
∈ Rd+1 × Rm.

Set Rn,θ,σ = Qn and let Ri,θ,σ be the positive solution of the discrete backward Riccati equation,
for i = n− 1, . . . , 0:

Ri,θ,σ = Qi +ATi,θ

(
Ri+1,θ,σ −Ri+1,θ,σB

0
σ

(
1

4i
Im +B0

σ
TRi+1,θ,σB

0
σ

)−1
B0
σ
TRi+1,θ,σ

)
Ai,θ

(11)
We can establish the following theorem.

Theorem 1. The optimal control problem (9) has a unique solution uθ,σ = (u0,θ,σ, . . . , un−1,θ,σ)
with the value ui,θ,σ ∈ Rm at time ti given by:

ui,θ,σ = −
(

1

4i
Im +B0

σ
TRi+1,θ,σB

0
σ

)−1
B0
σ
TRi+1,θ,σAi,θ

(
Vi,θ,σ,uθ,σ
Ui,θ,σ,uθ,σ

)
. (12)

Moreover, the minimum value of Cw is equal to:

Sw(Y ; θ, σ) = min
u∈Rm×(n−1)

Cw(u, Y ; θ, σ) = Cw(uθ,σ, Y ; θ, σ) (13)

= (V0, U
T
0 , 1)R0,θ,σ (V0, U

T
0 , 1)T

The proof is given in Appendix.

Theorem 1 provides a closed expression for Sw that depends on the matrix R0,θ,σ which is
easily obtained by solving the Riccati equation (11) and on (V0, U0) the initial condition which
is assumed to be known. The estimator of θ can thus be rewritten as

θ̂w(σ) = arg min
θ

{
(V0, U

T
0 , 1)R0,θ,σ (V0, U

T
0 , 1)T

}
Note that using the expression of uθ,σ given by (12) in the discretized model (7), the system

dynamics under the optimal control is given by:{
Zi+1,θ,σ,uθ,σ =

(
Aθ(ti)−Bσ( 1

4i Im +B0
σ
TRi+1B

0
σ)−1B0

σ
TRi+1Ai

)
Zi,θ,σ,uθ,σ

Z0,θ,σ,uθ,σ = (V0, U0) .
(14)
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Let us now enlighten the noticeable advantage of our approach. Theorem 1 holds for elliptic
(m = d) SDEs as well as for hypoelliptic (m < d) SDEs. The estimation criteria does not
involve the inverse of the matrix BσB

T
σ , contrary to the standard estimation approaches for

SDEs. Moreover, the linear quadratic theory itself does not require the matrix BσB
T
σ to be

full-conditioned. This can be explained by our choice of the cost function Cω(u, Y ; θ, σ), which
is strictly convex with respect to the sequence u due to the term uTi ui. The cost function is
thus automatically adapted to the dimension of the noise. Once again, it is noticeable that the
solution to the optimal control problem is the same for the two classes of SDEs and that no
specific calculations are required for the hypoelliptic case.

The relaxation made on the original cost C coupled with the Euler-Maruyama discretization
scheme allows us to make our estimation problem fits in the framework of the discrete LQ
theory. This ensures in turn the well posedness nature of the optimization problem (uniqueness,
existence and continuity of the solution w.r.t problem parameters) defining the cost Sw as well
as an efficient method to compute it no matter the elliptic nature of the sde model. However, it
comes with the price that the theoretical methods used for deriving consistency and convergence
rate in Brunel and Clairon [2015] cannot be applied anymore. In Brunel and Clairon [2015],
the control problem was a continuous one, the original cost C was not approximated and the
original ODE model was not discretized, only perturbed by the addition of a control function u.
Thus, the source of error was due to the noisy nature of observation and thus theoretical results
have been derived by classic methods for M-estimator (see van der Vaart [1998] for example).
Nevertheless, our procedure reveals to be efficient in practice, see Section 6.

The next step is the selection of the weight w involved in the definitions of the optimal
control problem (9) and the estimator θ̂w(σ). This is explained in the next section.

4 Adaptive w selection

The choice of the weight w is critical to ensure the stability of the procedure. We propose to
select it adaptively by minimizing an external functional criteria G(Y ;σ,w, θ) that depends on
w, the data and the parameters θ and σ. We propose hereafter two possible choices for G: G(1)

uses a property of the average quadratic growth of a Brownian process and gives importance to
the term of adequacy of the control sequence u; G(2) relies on a new contrast that gives more
importance to the data fidelity term.

For the two functionals G(1) and G(2), the selected weight w and the final estimator of θ are
computed through the following steps.

Definition 1 (Estimator θ̂(σ), σ known). Assume σ known. The estimation of θ is defined as
follows:

1. For any weight parameter w, compute the estimator θ̂w(σ) = arg minθ Sw(Y ; θ, σ).

2. Minimize the functional G = G(1) or G = G(2) with respect to w, using the plugged value
θ̂w(σ), and define

ŵ := arg min
w
G(Y ;σ,w, θ̂w(σ)) (15)

3. Define the final estimator of θ as
θ̂(σ) = θ̂ŵ(σ) (16)
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The two functionals are presented in the next sections.

4.1 w selection via a quadratic growth moment condition

We now present the first functional G(1). It comes from a constraint linked to the distribution
of the control. The control uθ,σ mimics the increments of the Brownian motion. Thus, it is

natural to impose that the values
ui,θ,σ√
4i

are independent and distributed with N(0, Im). We

can then derive constraints related to this distribution. For example, let us denote ui,j,θ,σ the
j−th component of the m dimensional Brownian motion at time ti, for j ∈ J1, mK. The law of
large number implies that, almost surely,

1

n

n−1∑
i=0

u2i,j,θ,σ
4i

−→ 1.

We thus propose the following functional to select w:

G(1)(Y ;σ,w, θ) =

m∑
j=1

(
n−1∑
i=0

u2i,j,θ,σ
4i

− n

)2

. (17)

Here, the dependency of G(1)(Y ;σ,w, θ) w.r.t w is made through the optimal control sequence
uθ,σ. This functional gives importance to the control sequence property.

4.2 w selection via a data fidelity criteria

The second functional is driven by the idea of giving importance to the data fidelity term. We
can show by recurrence that for i = 0, . . . , n− 1 and any integer 0 ≤ l ≤ i− 1:

Zi+1,θ,σ,u =
(∏l

j=0 Aθ(ti−j)
)
Zi−l,θ,σ,u +

∑l
k=0

(∏k−1
j=0 Aθ(ti−j)

)
Bσui−k

where
∏k−1
j=0 Aθ(ti−j) = 1 when k = 0. Thus, by multiplying the left and right hand side by C,

we can explicitly link the observations Y and the control:

Yi+1 − C
(∏l

j=0 Aθ(ti−j)
)
Zi−l,θ,σ,u = C

∑l
k=0

√
4i−k

(∏k−1
j=0 Aθ(ti−j)

)
Bσ

ui−k√
4i−k

.

The functional G(2) is based on the distribution of Yi+1 − C
∏l
j=0 Aθ(ti−j)Zi−l,θ,σ,u. To ease

the reading, let us introduce the m-vector

Γθ,σ (k, ti) = C
√
4i−k

(
k−1∏
s=0

Aθ(ti−s)

)
Bσ

and the sequence of scalars, for i = 0, . . . , n− 1:

Xi,θ,σ,u = Yi+1 − C
l∏

j=0

Aθ(ti−j)Zi−l,θ,σ,u. (18)
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We can derive the law followed by Xi,θ,σ,u =
∑l
k=0 Γθ,σ (k, ti)

ui−k√
4i−k

:

Xi,θ,σ,u ∼ N(0, γ2l,θ,σ(ti)) with γ2l,θ,σ(ti) =

l∑
k=0

Γθ,σ (k, ti) Γθ,σ (k, ti)
T
.

Let us choose l such that γ2l,θ,σ(ti) is non 0. Let us explain the intuition why choosing a

sufficiently large index l yields γ2l,θ,σ(ti) > 0. The idea is to give time to the stochastic elements
ui to diffuse. In other words, after “enough time” (characterized by l), the elements ui are able
to perturb the observations Yi+l+1 and σ becomes univocally identified.

Now set X l
i,θ,σ,u :=

Xi,θ,σ,u
γl,θ(ti)

. Then E
[(
X l
i,θ,σ,u

)2]
= 1. Note that X l

i,θ,σ,u depends on

(ui−l, . . . , ui) and X l
i+l+1,θ,σ,u depends on (ui+1, . . . , ui+l+1) thus they are independent. For

the i.i.d sequence of
{
X l

(l+1)i+1,θ,σ,uθ,σ

}
0≤i≤n−1

l+1

of size L :=
[
n+l
l+1

]
, the law of large number

implies that, almost surely,

1

L

L−1∑
i=0

(
X l

(l+1)i+1,θ,σ,u

)2
−→ 1.

We can now define the functional G(2) as:

G(2)(Y ;σ,w, θ) =

(
L−1∑
i=0

(
X l

(l+1)i+1,θ,σ,uθ,σ

)2
− L

)2

. (19)

In practice, we choose the smallest value l which ensures γ2l,θ,σ(ti) > 0 in order to use the

largest sequence
{
X l

(l+1)i+1,θ,σ,uθ,σ

}
0≤i≤n−1

l+1

.

• For elliptic SDEs, it is sufficient to take l = 0. Indeed Γθ,σ (0, ti) = C
√
4iBσ 6= 0m since

Bσ is of full rank.

• For hypoelliptic SDEs, we have Γθ,σ (0, ti) = C
√
4iBσ = 0m. With l = 1, we have

γ21,θ,σ(ti) = Γθ,σ (1, ti) Γθ,σ (1, ti)
T

= 4i−1CAθ(ti)BσB
T
σAθ(ti)

TCT and assumption (H1)
implies

γ21,θ,σ(ti) > 0

The computations of γ20,θ,σ(ti) and γ21,θ,σ(ti) are detailed in Section 6 for some examples of
SDEs.

5 Estimation of σ

So far, the vector σ of the parameters involved in the diffusion coefficient Bσ has been considered
known. We now present its estimation. The standard estimator of a diffusion coefficient is the
quadratic variation of the stochastic process. It can however not be applied in the context
of partial observations because only the first coordinate is observed. We therefore propose to
minimize an estimation criteria. It turns out that the two functionals G(1) and G(2) presented
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in Section 4 can be used to estimate σ. It might seem counter-intuitive that the same criteria
could be used to estimate a weight parameter and a diffusion coefficient. However, let us recall
that the two functionals have been constructed as constraints of the optimal control problem.
These constraints are not specifically linked to the weight parameter but to the model itself.
They can thus be used judiciously to estimate also the diffusion coefficient Bσ.

Let us now present the procedure. It is a nested procedure that provides the final estimation
of θ, σ and the data-driven selection of the weight w.

Definition 2 (Estimators σ̂ and θ̂). The estimation of (θ, σ) is defined as follows:

1. For any weight parameter w and diffusion coefficient σ, compute the estimator θ̂w(σ) =
arg minθ Sw(Y ; θ, σ).

2. Minimize the functional G = G(1) or G = G(2) with respect to σ, using the plugged value
θ̂w(σ), and define

σ̂(w) := arg min
σ
G(Y ;σ,w, θ̂w(σ)) (20)

3. Minimize the functional G = G(1) or G = G(2) with respect to w, using the plugged value
θ̂w(σ), and define

ŵ := arg min
w

{
G(Y ; σ̂(w), w, θ̂w(σ̂(w)))

}
(21)

4. Define the final estimators of θ and σ as

σ̂ := σ̂(ŵ) (22)

θ̂ := θ̂ŵ(σ̂)

The two functions G(1) and G(2) can be used in this nested procedure.

6 Simulation study

We want to evaluate the two estimation procedures given in definition 1 when σ is known
and definition 2 when σ is also estimated. A simulation study is conducted on several SDEs,
elliptic (Section 6.1) and hypoelliptic (Section 6.2). For each model, a hundred trajectories
with n = 1 000 equidistant points are simulated. Then the mean and standard error (SE) of
the estimators are computed. The mean required CPU time (computed with the MATLAB
function cputime) is also reported.

When σ is known, two estimators are computed using the nested procedure given in defini-
tion 1. We denote θ̂(1)(σ) (θ̂(2)(σ), respectively) the estimator defined by (16) with the weight
w adaptively selected by choosing the functional G = G(1) (G = G(2), respectively). When σ

is also estimated, two estimators are also computed. We denote θ̂(1) and σ̂(1) (θ̂(2) and σ̂(2),
respectively) the estimators given in definition 2 using G = G(1) (G = G(2), respectively).

Three models are used: the Lokta-Volterra model, the FitzHugh-Nagumo model and the
Harmonic Oscillator (HO). The two firsts are non linear and HO is linear. As explained in the
introduction, the procedures that we propose apply to linear SDE only. This allows to take
advantage of the explicit solution to the optimal control problem thanks to the linear-quadratic
theory. For the non-linear SDE, we thus propose strategies to bypass this limit and adapt our
estimators to these non-linear models.
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Figure 1: Lotka-Volterra model: example of a simulation with the dynamics along time of the
number of predators (green plain line) and the number of preys (blue dotted line).

6.1 Simulation study for elliptic systems

Two models are studied in their elliptic version, the Lotka-Volterra system and the FitzHugh
Nagumo model.

6.1.1 Elliptic Lotka-Volterra process

Stochastic versions of the Lotka-Volterra model have been proposed, for examples by Lotka
[1925], Meeds and Welling [2015], Graham and Storkey [2017], Mao et al. [2002, 2003]. Orig-
inally, it is a predator-prey model that describes the dynamics of biological systems with two
populations, named predator and prey, which interact together. The preys are assumed to have
an unlimited food supply. The perturbed model is defined through a system of two differential
equations disturbed by a stochastic noise. Let Vt and Ut denote the number of predators and
preys at time t, respectively. The dynamics of Vt and Ut is described as:

dVt = (−θ1Vt + θ2VtUt)dt+ σdW1,t

dUt = (θ3Ut − θ4VtUt) dt+ σdW2,t

(V0, U0) = (0.5, 1)
(23)

where θ1 is the death rate of the predator, θ2 is the growth rate of the predator population, θ3
is the exponential growth of the prey, θ4 is the rate of predation upon the prey which reflects
the interaction between the two species, (W1,t)t≥0 and (W2,t)t≥0 are two independent Brownian
motions, and σ is the diffusion coefficient assumed to be the same for both coordinates. The
system is thus elliptic.

To simulate the trajectories, a Euler-Maruyama discretization scheme is used with4 = 0.01.
The parameters are set to (θ1, θ2, θ3, θ4) = (0.5, 0.5, 0.5, 0.5) and σ = 0.2. An example of
trajectory for the model (23) is presented in Figure 1.

The objective is to estimate these parameters from discrete observations of the predator
population only. For the sake of parametric identifiability, θ2 is considered as known.

14



The system (23) is non linear due to the interaction term between predators and preys.
The estimation procedure proposed in Section 3 can thus not be applied directly. To deal with
the nonlinear interaction term VtUt, we take advantage of the discrete observations Y of the
first coordinate. The estimation procedure only uses the discretized version of the continuous
model. Instead of a discretized version of model (23), we consider a discrete model where the
interaction term ViUi is replaced by Yi × Ui.

Vti+1
= Vti + ∆i (−θ1Vti + θ2YiUti) + σ

(
W1,ti+1

−W1,ti

)
Uti+1

= Uti + ∆i(θ3Uti − θ4YiUti) + σ
(
W2,ti+1

−W2,ti

)
(V0, U0) = (0.5, 1) .

(24)

The estimation procedures are then applied to the model (24). We have Bσ =

(
σ 0
0 σ

)
. Note

that to ensure that G(2) is well defined, it is sufficient to take l = 0, as γ20,θ,σ(ti) = 4iσ2 > 0.
Results are presented in Table 1. The four procedures give overall good results. The

two procedures with σ known are very similar, in terms of mean, SE of the estimators and
computation time. When σ is also estimated, the second method performs better, especially
to estimate the diffusion parameter σ. This could be explained by the fact that the G(2)-based
procedure relies more on the observations {Yi} than G(1). As the diffusion coefficient is the
same for both coordinates, the estimation of σ is more accurate with G(2). Note that the
computation time of the procedures estimating the σ’s is about hundred times larger for G(1)

and twenty times larger for G(2).

θ1 θ3 θ4 σ CPU
True values 0.5 0.5 0.5 0.2 time (s)
σ known, estimation procedure given in Definition 1

θ̂(σ)(1) 0.64 (0.34) 0.58 (0.15) 0.62 (0.40) – 158.3

θ̂(σ)(2) 0.65 (0.35) 0.59 (0.17) 0.64 (0.42) – 158.5
σ unknown, estimation procedure given in Definition 2

θ̂(1) and σ̂(1) 0.68 (0.35) 0.57 (0.15) 0.65 (0.45) 0.16 (0.01) 11405

θ̂(2) and σ̂(2) 0.68 (0.35) 0.59 (0.16) 0.65 (0.44) 0.19 (0.01) 2438

Table 1: Estimation results for the Lotka Volterra model. From a hundred simulated trajecto-
ries, mean and standard error (in brackets) of the estimators given in Definition 1 (σ known)
and Definition 2 (σ unknown) obtained with the two functionals G(1) and G(2). Mean individual
CPU times are given for each estimation procedure.

6.1.2 Elliptic FitzHugh-Nagumo

The FitzHugh-Nagumo model (FHN) describes the dynamic of an excitable neuron, modeling
the characteristic spikes of the neuron [FitzHugh, 1961, Nagumo et al., 1962]. It is defined by
a system of two differential equations, that we consider perturbed by a random noise. The two
coordinates model the membrane potential of the neuron and a recovery channel mimicking the
opening/closing of ion channels. More formally, let Vt and Ut denote the membrane potential
at time t and the value of the recovery channel at time t, respectively. The stochastic FHN
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Figure 2: Elliptic FitzHugh-Nagumo model: example of a simulation with the dynamics along
time of the membrane potential (left) and the recovery variable (right)

model is defined as:
dVt = 1

ε

(
Vt − V 3

t − Ut
)
dt+ σ1dW1,t

dUt = (γVt − Ut + β) dt+ σ2dW2,t

(V0, U0) = (0, 0)
(25)

where ε is a time scale parameter, γ and β are kinetic parameters, σ1 and σ2 are the two
diffusion coefficients, (W1,t)t and (W2,t)t are two independent Brownian motions. Only the
membrane potential Vt can be measured experimentally.

The trajectories are simulated with a Euler-Maruyama scheme with 4 = 0.02. The param-
eters are set to ε = 0.1, γ = 1.5, β = 0.8, σ1 = 0.1, and σ2 = 0.3. An example of trajectory for
the model (25) is presented on Figure 2. The time scale ε is difficult to estimate and is consid-
ered as known (and set to 0.1) in the following. The objective is to estimate θ = (γ, β, σ1, σ2)
from the discrete observations of the first coordinate (Y1, . . . , Yn).

The estimation procedures require a homogeneous linear model. As done for the Lotka-
Volterra model, we will propose a linear model close to (25) and apply the estimation procedures
to that linearized model. In FHN model, there is a non-linear term (V 3) in the first equation and
a non-homogeneous term (β) in the second equation. Both have to be replaced. The trajectory
V can be replaced by Y , the observed realization of V . As we will see, several choices can be
done to replace the cubic term. For the non-homogeneous term, a strategy is to introduce a
new variable Rt assumed to be constant equal to 1. This can be done by increasing the number
of coordinates by one and stating dRt = 0.

A first attempt to propose a linear model consists in replacing V 3 by Y 3 in a discretized
version of (28). But this reveals to be very unstable, due to the dramatic propagation of the
discretization error committed by using Y 3 instead of V 3. An alternative is replacing V − V 3

by (1− Y 2)V . The non-homogeneous term is replaced by a new variable Zt. We then consider
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the following discretized linear system:

Vti+1
= Vti +4i 1ε

((
1− Y 2

i

)
Vti − Uti

)
+ σ1(W1,ti+1

−W1,ti)
Uti+1

= Uti +4i (γVti − Uti + βRi) + σ2(W2,ti+1
−W2,ti)

Rti+1
= 1

(V0, U0, R0) = (0, 0, 1)

(26)

The estimation procedures are then applied to the model (26) with d = 3, C = ( 1 0 0 )

and Bσ =

 σ1 0
0 σ2
0 0

. To estimate σ̂(2) defined by (19), note that again the index l = 0 is

sufficient as γ20,θ,σ(ti) = 4iσ2
1 > 0.

Results are presented in Table 2. When σ = (σ1, σ2) is known, the two estimators θ̂(σ)(1)

and θ̂(σ)(2) are very close. This is not the case when σ is also estimated. This could be explained
by the fact that the G(1) criteria uses the 2 dimensional control sequence in a direct way to
construct an estimator of (σ1, σ2). At the contrary the G(2) criteria only uses the observation
to estimate the diffusion, the control sequence being used to estimate the parameters of the
unobserved coordinate. As expected, the computational time is much larger when σ is unknown.

γ β σ1 σ2 CPU
true value 1.5 0.8 0.1 0.3 time (s)
σ known, estimation procedure given in Definition 1

θ̂(1) 1.52 (0.16) 0.82 (0.12) – – 84.3

θ̂(2) 1.53 (0.17) 0.82 (0.12) – – 86.3
σ unknown, estimation procedure given in Definition 2

θ̂(1) and σ̂(1) 1.51 (0.15) 0.81 (0.10) 0.06 (0.02) 0.18 (0.10) 12746

θ̂(2) and σ̂(2) 1.57 (0.13) 0.85 (0.11) 0.04 (0.01) 0.12 (0.12) 2800

Table 2: Estimation results for the elliptic FitzHugh-Nagumo model. From a hundred simulated
trajectories, mean and standard error (in brackets) of the different estimators of the estimators
given in Definition 1 (σ known) and Definition 2 (σ unknown) obtained with the two functionals
G(1) and G(2). Mean individual CPU times are given for each estimation procedure.

6.2 Simulation study for hypoelliptic systems

We now compare the estimation procedures on two hypoelliptic systems, the Harmonic Oscilla-
tor and a hypoelliptic FitzHugh-Nagumo neuronal model. As explained before, the estimation
procedures we propose are robust to the hypoellipticity and we thus apply the same four pro-
cedures.

6.2.1 Harmonic oscillator

The Harmonic Oscillator is a mechanistic model describing oscillations governed by a white
noise. It is described by a system of two equations, denoted Vt and Ut, the noise entering only
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the second equation [Pokern et al., 2009]. The model is defined as follows: dVt = Utdt
dUt = (−DVt − δUt)dt+ σdWt

(V0, U0) = (0, 0)
(27)

with D, δ, σ > 0 and (Wt)t a Brownian motion.
The trajectories are simulated with a Euler-Maruyama scheme with 4 = 0.02. The param-

eters are set to D = 4, δ = 0.5 and σ = 0.5. The objective is to estimate θ = (D, δ, σ) from the
discrete observations of the first coordinate (Y1, . . . , Yn).

The four estimation procedures are applied. Again, let us give some details on the procedure

for obtaining σ̂(2). We have Bσ =

(
0
σ

)
and Aθ(ti) =

(
1 +4i 4i
−4iD 1−4iδ

)
. So Γθ,σ (0, ti) =

0, Γθ,σ (1, ti) = 4
3
2
i σ. We can deduce that γ21,θ(ti) = 43

iσ
2 6= 0. This order of variance

for Vt is the true one, as explained in Samson and Thieullen [2012]. Thus our procedure
automatically propagates the noise from the second coordinate to the first one, yielding to a
invertible covariance matrix of the process. In that sense, it is close to what has recently been
proposed by Ditlevsen and Samson [2017].

Results are presented in Table 3. When σ is known, the first approach gives better results
than the second. Especially δ is estimated with bias by θ̂(2) and not by θ̂(1). This is the opposite
when σ is also estimated. The second procedure performs better for δ and more convincingly
for σ which is accurately estimated. As noted for the elliptic case, the computation time is
larger when σ is estimated than when it is fixed at its true value.

D δ σ CPU
true value 4 0.5 0.5 time (s)
σ known, estimation procedure given in Definition 1

θ̂(σ)
(1)

4.12 (0.44) 0.52 (0.13) – 119.3

θ̂(σ)
(2)

4.06 (0.51) 0.16 (0.07) – 117.5
σ unknown, estimation procedure given in Definition 2

θ̂(1) and σ̂(1) 4.11 (0.51) 0.10 (0.12) 0.15 (0.09) 2869

θ̂(2) and σ̂(2) 4.03 (0.50) 0.19 (0.15) 0.50 (0.35) 3067

Table 3: Estimation results for the hypoelliptic Harmonic Oscillator model. From a hundred
simulated trajectories, the mean and standard error (in brackets) of the estimators given in
Definition 1 (σ known) and Definition 2 (σ unknown) obtained with the two functionals G(1)

and G(2). Mean individual CPU times are given for each estimation procedure.

6.2.2 Hypoelliptic FitzHugh-Nagumo

We now consider the FHN model without noise on the first coordinate, as studied by Ditlevsen
and Samson [2017]. The model is thus defined by:

dVt = 1
ε

(
Vt − V 3

t − Ut
)
dt

dUt = (γVt − Ut + β) dt+ σdWt

(V0, U0) = (0, 0)
(28)
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Figure 3: Hypoelliptic FitzHugh-Nagumo model: example of a simulation with the dynamics
along time of the membrane potential (left) and the recovery variable (right)

and we refer to Section 6.1.2 for the description of the variables and parameters.
The trajectories are simulated with a Euler-Maruyama scheme with 4 = 0.02. The param-

eters are set to ε = 0.1, γ = 1.5, β = 0.8, and σ = 0.3. An example of trajectory for the model
(28) is presented in Figure 3. The time scale ε is difficult to estimate and as in the elliptic case,
we consider it known (and set to 0.1) in the following. The objective is to estimate θ = (γ, β, σ)
from the discrete observations of the first coordinate (Y1, . . . , Yn).

Model (28) is non-linear and time-inhomogenous. Thus, we have to consider a linear version,
as done in the elliptic case. For the instability reason evoked in Section 6.1.2, we directly
consider the linear discretized model:

Vti+1 = Vti +4i 1ε
((

1− Y 2
i

)
Vti − Uti

)
Uti+1 = Uti +4i (γVti − Uti + βRti) + σ(Wti+1 −Wti)
Rti+1 = 1
(V0, U0, R0) = (0, 0, 1)

(29)

The four estimation procedures are applied on model (29). Let us give some details on the

procedure σ̂(2) defined by (19). We have C = ( 1 0 0 ), Bσ =

 0
σ
0

 and

Aθ(ti) =

 1 + 4i
ε

(
1− Y (t)2

)
−4iε 0

4iγ 0 β4i
0 0 1

 .

So Γθ,σ (0, ti) = 0, Γθ,σ (1, ti) = −4
3
2
i
σ
ε . We can deduce from that γ21,θ(ti) = 43

i
σ2

ε2 6= 0. This
corresponds to the first term of the exact variance of Vt, as proved by Ditlevsen and Samson
[2017].

Results are presented in Table 4. The most striking and somewhat counter-intuitive result
in the hypoelliptic case is the required computational time, in particular when σ needs to be
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estimated. This computational time is smaller than in the elliptic case. Indeed, for a fixed σ,
the complexity of the optimization problem linked to the drift parameter estimation θ does not
depend on the singularity of Bσ. It only relies on the dimension of θ and the dimension of the
control space. So the smaller the dimension of σ, the quicker the minimizer of S is found. Since
the dimension of σ is smaller in the hypoelliptic example than in the elliptic one, it explains
the observed difference in the computational time.

γ β σ CPU
true value 1.5 0.8 0.3 time (s)
σ known, estimation procedure given in Definition 1

θ̂(σ)
(1)

1.49 (0.10) 0.81 (0.08) – 147.9

θ̂(σ)
(2)

1.49 (0.10) 0.81 (0.08) – 152.2
σ unknown, estimation procedure given in Definition 2

θ̂(1) and σ̂(1) 1.46 (0.34) 0.81 (0.28) 0.38 (0.13) 3151

θ̂(2) and σ̂(2) 1.48 (0.12) 0.79 (0.10) 0.29 (0.20) 3822

Table 4: Estimation results for the hypoelliptic FitzHugh-Nagumo model. From a hundred
simulated trajectories, mean and standard error (in brackets) of the different estimators given
in Definition 1 (σ known) and Definition 2 (σ unknown) obtained with the two functionals G(1)

and G(2). Mean individual CPU times are given for each estimation procedure.

7 Conclusion and discussion

In this work, we propose a new method based on control theory to estimate parameters in SDEs.
Its main feature is to propose a unified framework for both elliptic and hypoelliptic models by
using a criteria focusing on estimating the Brownian motion realization given the observation
rather than solely on the observation. By doing so, we manage to construct a criteria Sw well
defined no matter the structure of Bσ. Another interest of the method is the computational
time. The use of the discrete LQ theory allows to avoid the use of MCMC and/or stochastic
approximation computationally costful. These two points enlighten the benefit of using control
theory for dealing with statistical problems.

However, because of the nested structure of our estimation procedure, we can see that
the computational time drastically increases when σ has to be estimated. In particular it is
very sensitive to the dimension of σ. This can be a limitation for high dimensional systems.
Interestingly, at the contrary to classic statistical approaches, the hypoelliptic nature of a
system is an advantage for us because the dimension of σ is smaller than the one in its elliptic
counterpart. A perspective could be to investigate a criteria which allows us to simultaneously
estimate θ and σ instead of using our current nested procedure. However, so far we did not
manage to find a criteria which fits in the framework of the discrete LQ theory. That leads us
to our second limitation, our method is currently restricted to linear models or non-linear ones
with a specific structure (i.e models only nonlinear w.r.t the observed state variable). Our main
challenge would be to extend our method to general nonlinear SDEs.
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A Discrete LQ theory: Main theorem

In section 3, the theorem which gives us the profiled cost value, as well as the corresponding
control sequence, is a particular case of a more general theorem. This theorem, fundamental in
LQ theory, ensures the existence, uniqueness and gives a closed form for the global minimizer
of a cost under the form:

J(u) = xTNSxN +

N−1∑
i=0

xTi Qixi + uTi Riui (30)

where u = {u0, . . . uN−1} and the state variable sequence x = {x0, . . . , xN} are linked by the
finite difference equation:

xk+1 = Akxk +Bkuk . (31)

The derivation of the next theorem by the optimality principle can be found in Bertsekas [2005].

Theorem 2. Let us assume that S is positive semi–definite, for all i ∈ J0, N − 1K, Qi is positive
semi–definite and Ri is positive definite. Then the cost (30) reaches its global minimum for the
control sequence u∗ given by:

u∗k = −[Rk +BTk Pk+1Bk]−1BTk Pk+1Akxk

and the minimal cost value is equal to:

J(u∗) = xT0 P0x0

where Pk is given by the discrete time Riccati difference equation:

Pk = ATk Pk+1Ak +Qk −ATk Pk+1Bk[Rk +BTk Pk+1Bk]−1BTk Pk+1Ak
PN = S.
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