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Introduction

The aim of this paper is to construct an efficient metamodel used in robust optimization. In the context of computer experiments, metamodels are largely used to represent the output of computers codes see e.g. [START_REF] Troian | Methodology for the Design of the Geometry of a Cavity and its Absorption Coefficients as Random Design Variables Under Vibroacoustic Criteria[END_REF]. Gaussian process regression (kriging) is very efficient see e.g [START_REF] Snelson | Flexible and efficient Gaussian process models for machine learning[END_REF]. Lots of examples of the use of a metamodels can be found in literature see e.g. [START_REF] Antoniadis | Spatio-temporal metamodeling for West African monsoon[END_REF], [START_REF] Marrel | An efficient methodology for modeling complex computer codes with Gaussian processes[END_REF] and [START_REF] Sudret | Meta-models for structural reliability and uncertainty quantification[END_REF]. Then, we can use the metamodel to predict the moment 1 of the function see e.g. [START_REF] Martínez-Frutos | Robust shape optimization of continuous structures via the level set method[END_REF] and to find the optima see e.g. [START_REF] Shimoyama | Multi-objective design optimization for a steam turbine stator blade using LES and GA[END_REF]. The idea of these papers is to optimize with a classical genetic algorithm like NSGA II see e.g. [START_REF] Deb | A fast and elitist multiobjective genetic algorithm : NSGA-II[END_REF] the Expected Improvement (EI see e.g. [START_REF] Villemonteix | Global optimization of expensive-to-evaluate functions : an empirical comparison of two sampling criteria[END_REF]) of the prediction function. However, solutions to optimization problems can be sensitivity to perturbations in the parameters of the problem. The idea of robust optimization is to find an optimum that is the less perturbed as possible by the variation of parameters. The figure 1 shows a 2D function with two optima. The optimum represented by a square is more robust in all direction than the one represented by a circle. Indeed, a little perturbation in the first direction gives the gray points. We notice that the loss for the robust optimum is really small compared to the non-robust optimum. [START_REF] Troian | Methodology for the Design of the Geometry of a Cavity and its Absorption Coefficients as Random Design Variables Under Vibroacoustic Criteria[END_REF] propose to represent the robustness with the approximation of the variance function at an optimum point. Lot of evaluations of the function are needed in each point of observation to catch this variance. In our context, it is impossible to use directly the function to approximate the variance. In this paper we propose to consider the Taylor approximation in each point of the conception space as the robustness criterion. This criterion is used as the replacement of the variance.

Theory

Derivative kriging metamodel

In this section we take a classical metamodel named kriging to model f : R p → R be a 2 times differentiable function. The difficulty is the modeling of the derivatives. First of all, we introduce the link between the kernel of f and the kernel of its derivatives.

We take the process (Y (x)) x∈R p with a covariance function k(x, x), ∀(x, x) ∈ R p × R p . This process is differentiable in mean square at point (x, x) if and only if ∂ 2 k ∂x i ∂ xj (x, x) exists ∀i, j ∈ {1, . . . , p} and it finites at point (x, x) = (t, t) in addition :

cov ( Y (x), ∂Y (x) ∂ xj ) = ∂k(x, x) ∂ xj cov ( ∂Y (x) ∂x i , ∂Y (x) ∂ xj ) = ∂ 2 k(x, x) ∂x i ∂ xj
We write the first derivatives of the process (Y (x)) x∈R p in direction i :

(Y x i (x)) x∈R p = ( ∂Y ∂x i (x)
)

x∈R p
and the second derivatives in direction i, j :

( Y x i ,x j (x) ) x∈R p = ( ∂ 2 Y ∂x i ∂x j (x)
) x∈R p . Let p be the number of input variables. Then each observation x is a vector with p coordinates, such as x = (x 1 , . . . , x p ), x ∈⊂ R p . The outputs is denoted by y ∈ R, y x i ∈ R and y x i ,x j ∈ R, where i ∈ {1, . . . , p} and j ∈ {i, . . . , p} such as,

y = (y 1 , . . . , y n ) ′ y x i = (y 1 x i , . . . , y n x i ) ′ y x i ,x j = (y 1 x i ,x j , . . . , y n x i ,x j ) ′
In kriging we assume that y, y x i and

y x i ,x j are d = 1 + 3p/2 + p 2 /2 vectors of n realizations of d gaussian processes (Y (x)) x∈R p , (Y x i (x)) x∈R p and ( Y x i ,x j (x) ) x∈R p , i ∈ {1, .
. . , p} and j ∈ {i, . . . , p}, at points (x 1 , . . . , x n ) ′ such as x k ∈ R p , k ∈ {1, . . . , n}. We write the Gps as :

Y (x) = µ + η(x) Y x i (x) = η x i (x) Y x i ,x j (x) = η x i ,x j (x)
for more convenience we write a processes vector of size d at point x :

Z(x) = (Y (x), Y (x) x 1 , . . . , Y (x) xp , Y (x) x 1 ,x 1 , . . . , Y (x) x i ,x j , . . . , Y (x) xp,xp )
with i ∈ {1, . . . , p} and j ∈ {i, . . . , p}. Then, the modelisation became :

Z(x) = m + ϵ(x) (1) 
where m = (µ, 0, . . . , 0) ′ ∈ R d is the trend, the process (ϵ(x)) x∈R p is a centered gaussian process with a stationary covariance function that depends to the vector of range parameters θ ∈ R p + . In this paper the trend m is assumed to be constant. We suppose that parameters (θ) are known and we want a linear prediction that minimizes the meansquared prediction error and that guarantees uniform unbiasedness. Under these two constrains, the prediction (see [START_REF] Cressie | Statistics for spatial data[END_REF]) at point x 0 ∈ R p is given by :

Z(x 0 ) = m + c θ (x 0 ) ′ Σ -1 θ (z -m′ I dn ) (2) 
and the mean square error (MSE) at point x 0 ∈ R p is given by :

s(x 0 ) = σ 2 -c θ (x 0 ) ′ C -1 θ c θ (x 0 ) ′ ( 3 
)
where

I dn = (I n , . . . , I n ) ′ ∈ M n×dn , I n ∈ M n×n is the identity matrix, θ = (θ 1 , . . . , θ p ) ∈ R p + . σ 2 is the variance of the process Y (x) such as cov(Y (x), Y (x)) = σ 2 . Σ θ ∈ M dn×dn
is the covariance matrix of the outputs at observation points such as,

Σ =         Σ Y,Y Σ Y,Y xj Σ Y,Y xj xk Σ Y,Y x2 j Σ Yx i ,Y Σ Yx i ,Y xj Σ Yx i ,Y xj xk Σ Yx i ,Y x2 j Σ Yx i x l ,Y Σ Yx i x l ,Y xj Σ Yx i x l ,Y xj xk Σ Yx i x l ,Y x2 j Σ Y x 2 i ,Y Σ Y x 2 i ,Y xj Σ Y x 2 i ,Y xj xk Σ Y x 2 i ,Y x2 j        
where i, j, k, l ∈ {1, . . . p} with l > i and k > j. For instance

Σ Yx i ,Y xj = cov(Y x i , Y xj ) = ∂ 2 k(x,x) ∂x i ∂ xj . c θ (x 0 ) ∈ M dn×1
the covariance vector between z(x 0 ) and z. In practice θ are estimated by maximum likelihood and plugged in the equation 2.

We notice that

Z = ( Y , Y x 1 , . . . , Y xp , Y x 1 ,x 1 , . . . , Y x i ,x j , . . . , Y xp,xp ) ∈ R dn and s ∈ R dn

Robustness criterion

In an industrial context, the products are constructed by the engines. Often, the engines make a gaussian error in the construction with a specific variance. The experts gives the characteristics of the gaussian law associate to each input parameter construct by the engines. Let x ∈ R p , x represents an observation of a p parameters vector. Let X the random variable associate. Then X ∼ N (x, ∆ 2 ) where :

∆ 2 =        δ 2 1 0 . . . 0 0 δ 2 2 . . . 0 . . . . . . . . . . . . 0 . . . 0 δ 2 p       
We define the variance of the function f around x by

σ 2 f (x) = V ar (f (x)). A point x 1 ∈ R p is considered less robust than a point x 2 ∈ R p if σ 2 f (x 1 ) > σ 2 f (x 2 )
. This concept are illustrated in figure 2. Usually, the variance

σ 2 f (x) is estimated by Monte Carlo. Let N realizations x 1 , . . . , x N , x j ∈ R p , j = 1, . . . , N of X ∼ N (x, ∆ 2 ) : σ 2 f (x) = 1 N -1 N ∑ j=1 ( f (x j ) -f (x) ) 2 (4) 
where

f (x) = 1 N ∑ N j=1 (f (x j )
) is the mean. In the context of time consuming simulation, we can't directly estimate from the real function this variance by Monte Carlo, it is too expansive. The idea of this paper is to use the Taylor approximation and the derivative metamodel to construct a robust criterion realizable in this context. Let f : R p → R be a 2 times differentiable function at the point x ∈ R p . There exists h ∈ R p such that :

f (x + h) = f (x) + ∇f (x) • h + 1 2 h T H(x)h + o(∥h∥ 2 ) (5) 
Let

H ∼ N (0, ∆ 2 ) then (x + H) ∼ N (x, ∆ 2 ). Let N realizations h 1 , . . . , h N , x j ∈ R p , j = 1, . . . , N of H ∼ N (0, ∆ 2 ) : σ 2 f (x) = 1 N -1 N ∑ j=1 ( f (x + h j ) -f (x + h) ) 2 (6) 

Optimization procedure

The optimization problem is to find a robust minimum. We can write it as :

Find vectors x 0 such as

x 0 = argmin x∈X is pareto optimal {f, σ 2 f }
The approach to solve this optimization problem in the context of time consuming simulation is almost the same as the one explain in [START_REF] Shimoyama | Multi-objective design optimization for a steam turbine stator blade using LES and GA[END_REF]. The Step 0 generates the initial samples (n points) uniformly in the p design variables space. The response surfaces is obtained with the derivative metamodel based on the observations. Then, the optimization problem based on the prediction of the derivative metamodel is :

Find vectors x 0 such as

x 0 = argmin x∈X is pareto optimal { Ŷ , σ 2 Ŷ }
where

σ 2 Ŷ = 1 N -1 ∑ N j=1 ( Ŷ (x + h j ) -Ȳ (x + h) ) 2
. The Step 1 searches for non-dominated solutions on the response surfaces through the optimizations using NSGA II. Step 2 : Based on the stochastic features expressed by Z and s, accuracy improvements in the present Kriging derivative model are accomplished by iteratively adding points choosen in the Pareto front with maximum value of expected improvement (EI). This value corresponds to the probability that the function approximation may achieve a new global optimum on a response surface, which will be reconstructed with the additional point x. In an f (x) minimization problem, the EI value of y and σ 2 y is expressed, respectively, as :

EI y (x) = E [ (min x (Y (X) -Y (x)) + |Y (X) = y(X) ] EI σ 2 y (x) = E [ (min x (σ 2 Y (X) -σ 2 Y (x)) + |σ 2 Y (X) = σ 2 y (X) ]
To select several representatives points from the Pareto front,we perform cluster analysis using the kmeans method. This study determines the locations of cluster centroids and then employed the centroids as additional sample points.The Step 3 consists in adding the sample points determined in the previous step to the set of initial samples, the response surfaces are reconstructed and the multi-objective optimization is performed again. The sample set continues to be updated until obtaining a sufficient number of samples points.

The size of the initial sample set, the number of updates and the number of points added in each updates are to be given.

Application

The function studied is the well-known Six-Hump Camel, defined by :

f (x, y) = ( 4 -2.1x 2 + x 4 3 
) x 2 + xy + ( -4 + 4y 2 ) y 2 , (x, y) ∈ [-2; 2] × [-1; 1]
In this application, we consider that the random variable associates to the input parameters follow a gaussian law with a standard deviation of 0.15 i.e. X = (x + H) ∼ N (x, (0.15) 2 I 2 ).

Bias introduced by the Taylor approximation

The Taylor approximation introduced an error of approximation. In the equation 5 the error is in a o(∥h∥ 2 ). This approximation is correct if ∥h∥ 2 < 1. In our case H ∼ N (0, (0.15) 2 I 2 ) , the probability :

P(∥h∥ 2 < 1) = ϕ(0.5) -ϕ(-0.5) = 0.9991
where ϕ in the distribution of N (0, (0.15) 2 ). So, the approximation error will be small. This bias could be quantify and visualizes in the Pareto front of the studied function. The figure 3 shows the location of the robust optima given by the M2 criterion in red and the Taylor criterion in black. The figure 4 shows the Pareto fronts obtained by the two criteria in the objectives and inputs space. We observe that the Taylor approximation give good results, the euclidean distance to the front is 0.016. The important things to understand is that with the derivative metamodel we could not be better than the Taylor approximation. 

Results

We apply the procedure described previously in the Six-Hump Camel function. The initial sample set has 5 points. We make 9 updates and we add 5 points by update. We use the NSGA II optimizer coupled with the kriging model. Using this optimizer, populations of 100 solutions evolve through 50 generations.

Conclusion

The method describes in this paper is use to find a robust optimum in the case of multiple inputs. We propose a new criterion of robustness based on the Taylor approximation. This criterion is inspired by the M2 criterion non-realizable in our context of time consuming simulation. However, the calculation of the derivatives at the same evaluation point is less expensive than the calculation of a new point. Then, we use a kriging derivative metamodel to model and predict the function (moment 1) and its derivatives. The application in the Six_Hump Camel function gives good results in sense of Pareto front. The time of estimation is quite long dues to the size of the covariance matrix. The application in the industrial case is actually on work.
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 1 Figure 1 -Example of two optima of a function. The optimum represented by a square is more robust than the one represented by a circle. The gray points is given by a little perturbation of the black points in direction x 1 .
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 2 Figure 2 -Illustration of the robustness. The red points are less robust than the blue.
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 324 Figure 3 -Visualization of the Six_Hump Camel function. The points represent the robust optima with the M2 criterion in black and the Taylor criterion in red. Where X = (x + H) ∼ N (x, (0.15) 2 I 2 )
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 1 Figure 5 -Optima found at each update in the Six-Hump function (top left). Pareto front observed at each update (top right). Distance to the real front (bottom left). The true front is represented by the black points. Sample size, mean distance to the points in the real Pareto front and estimation time for each update .
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