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Convex Optimization for the Synthesis of Matching

Filters

G. Bose∗ F. Ferrero† L. Lizzi† D. Martinez∗ F. Seyfert∗

Abstract — In this work we study a particular fil-
ter synthesis problem in order to minimize the re-
flection coefficient of the global system consisting of
filter and antenna. The matching problem is formu-
lated as an optimization problem involving the min-
imization of a pseudo hyperbolic distance and the
solution to this problem using H∞ approach yields a
lower bound for the matching criterion related to the
computation of a matching filter, with prescribed fi-
nite degree, under selectivity constraints.

1 INTRODUCTION

In classical communication systems, antennas used
in the reception or emission chain are often associ-
ated with a matching network followed by a band-
pass filter so as to select a proper frequency chan-
nel, to reject unwanted signals and to maximize the
power transfer. In the last years, to fulfill the con-
straints imposed by modern applications (e.g., the
internet-of-things (IoT), wireless sensor networks,
e-health, etc.), wireless communicating devices are
required to be compact and energy autonomous to
enable easy integration and long-lasting operation.
In order to improve the energy efficiency as well
as the footprint of the transmission chain we pro-
pose to design, in a single circuit, the filter and
the matching network. This matching filter has
to be design accordingly to the antenna. This co-
design approach amounts to tackle a particular fil-
ter synthesis problem where one of the filter’s port
is loaded by a frequency varying load, namely the
antenna (Fig. 1).

The matching problem, is a rather old one, and
goes back to the foundational work of Fano and
Youla in the fifties [1]. This theory develops a syn-
thesis procedure for matching networks, based on
the derivation of a 2 port loss-less scattering ma-
trix representing the filter chained to the antenna.
However unlike in the Darlington’s insertion-loss
synthesis, this framework does not translate into
a convex or quasi-convex optimization problem of
Zolotariov type yielding an optimal response. This
is mainly due to the interpolation constraints that
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†Université Côte d’Azur, CNRS, LEAT, Campus Sophi-

aTech Bâtiment Forum Haut, 930 Route des Colles, 06410
Biot , France, e-mail: fabien.ferrero@unice.fr, tel.: +33
4 92 94 28 04, fax: +33.(0)4.92.94.28.99.

LF

S22 L11S11 L22G11 G22

Figure 1: Matching Filter (S) and Load (L)

needs to be added to the two port’s description
to take into account the presence of the antenna.
For this reason, this theory was progressively aban-
doned to the benefit of a non-convex optimiza-
tion method called real frequency technique and
originally introduced by Carlin [2]. Although this
heuristical approach seems to give reasonable re-
sults in practice, no result is known about the global
optimality or near-optimality of the so obtained
matching network. More recently J.W Helton pro-
posed an H∞ approach to the problem where an in-
finite dimensional matching network is being sought
for [3]. The matching problem is recast as a quasi-
convex optimization problem involving the mini-
mization of a pseudo hyperbolic distance. The
absence of any degree constraint on the circuital
response is here traded for the guaranteed global
optimality of the obtained response. The relative
mathematical complexity of this procedure coupled
to the impossibility to realize in practice an infinite
dimensional H∞ response have severely limited its
impact in electronics.

In this work we study a practical implementa-
tion of J.W Helton’s approach based on the reso-
lution of a bounded extremal problem in H∞. De-
tails are in particular given about the effective com-
putation of the best approximation operator from
L∞ → H∞ via Nehari’s theory. We show that the
solution to this problem furnishes a lower bound for
the matching criterion related to the computation
of a matching filter, with prescribed finite degree,
under selectivity constraints. When the antenna’s
reflection parameter admits a rational approxima-
tion of degree one in the frequency band of interest,
we have recently shown that the best matching fil-
ter synthesis problem admits a convex formulation.
This approximation well applies to miniature and
narrowband antennas suitable for compact IoT de-
vices requiring the transmission of a limited amount
of data. We studied on concrete antenna examples



the computation and behaviour of the best finite
dimensional matching filter response using Helton’s
approach.

2 MATCHING PROBLEM

We consider the synthesis of a matching filter for a
given frequency varying load. Given a passband B
the matching filter is designed so as to minimize,
when plugged on the load, the power reflected by
the load. The global system (G) consisting of fil-
ter together with the load is represented in Fig. 1.
The parameters G11, S11 and L11 denote the input
reflection coefficient of the global system, match-
ing filter and load respectively whereas G22, S22

and L22 represent the output reflection coefficient
of the same respectively.

If the filter is considered lossless, the output re-
flection coefficient of the global system (at each fre-
quency ω) can be computed as [5] :

G22 = L22 +
L12L21S22

1− S22L11

=
L22 − S22det(L)

1− S22L11

= det(L)
L∗11 − S22

1− S22L11
(1)

Hence the modulus of the output reflection coeffi-
cient of the global system is obtained as the pseudo
hyperbolic distance between S22 and L∗11 :

|G22| =
∣∣∣∣ S22 − L∗11

1− S22L11

∣∣∣∣ = δ (S22, L
∗
11) (2)

2.1 Optimization Problem

In the infinite dimensional setting, where the
filter’s scattering parameters are sought for in the
Hardy space H∞ of bounded analytic functions of
the lower half plane [6], the matching problem over
a frequency band B can be formulated as follows.

Problem 1 : Minimize the pseudo hyperbolic
distance between S22 and L∗11.

min max
ω∈B

δ(S22(ω), L∗11(ω)) (3)

subject to: S22(ω) ∈ H∞ and |S22(ω)|ω∈R ≤ 1
(4)

where B is the desired matching band (passband).

2.1.1 Practical Algorithm

We suppose that we possess a passive rational
model f of the antenna’s reflection parameter L11,
obtained for example via rational approximation
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Figure 2: Reference Functions

techniques at hand of scattering measurements. We
form a family of rational reference functions {kα}
parametrized by α ∈ R+, the modulus of which
mimic an ideal step function kopt:

kopt(ω) =

{
L ω ∈ B 0 ≤ L ≤ 1
1 ω /∈ B (5)

There are multiple ways to approach rationally a
step function. We choose here to follow the clas-
sical Darlington insertion loss synthesis for filters.
Consider the Belevitch form of a general loss-less
rational scattering matrix,

G =
1

q

[
εp∗ −εr∗
r p

]
(6)

where ε is a unimodular constant, q satisfies the
spectral equation qq∗ = pp∗ + rr∗. The modulus
square of G22 can be expressed as :

|G22|2 =
pp∗

qq∗
(7)

=
pp∗

pp∗ + rr∗
=

1

1 + rr∗

pp∗
(8)

For simplicity, we will consider here the case where
r is of degree zero. We fix α = rr∗, and define kα
to be the rational outer factor verifying:

|kα|2 =
1

1 + α| 1p |2
(9)

If we take for p, p = TN the Tchebyschev polyno-
mial of degree N in the interval B, {kα} forms a
family of Tchebyschev rational reference functions
whose modulus can be varied monotonously using
the parameter α.



Alternatively, if we take p = TN + c, where c
is a positive constant the {kα}′s form a family
of rational functions with monotonously decreasing
moduli, that equi-oscillate on B between the values
1/(1 +α/(c+ 1)2) and 1/(1 +α/(c)2). Fig. 2 shows
some examples of reference functions where Ref 1
and Ref 2 are equi-oscillating references whereas
Ref 3 and Ref 4 are pure Tchebyschev references.

2.1.2 Bound for the reflection level using
H∞ approach

After deriving the rational function f and forming
the family of rational reference functions {kα}, we
approach Problem 1 as follows :

Problem 2 : Find a g ∈ H∞ such that:

sup
ω∈R

δ(f∗(ω), g(ω)) ≤ |k(ω)| (10)

where k runs over the family {kα}.
Solution : The hyperbolic disk, δ(f∗, g) ≤ |k|

with centre f∗ and radius |k| translates to the fol-
lowing euclidean disk :∣∣∣∣g − (1− |k|2)

1− |k|2|f |2
f∗

∣∣∣∣ ≤ (1− |f |2)

1− |k|2|f |2
|k| (11)

Now, if we factorize (1−|f |2)
1−|k|2|f |2 = uu∗, where u is

an outer function and consider the outer function
v = u2k,

|v| =
∣∣∣∣ (1− |f |2)

1− |k|2|f |2

∣∣∣∣|k| (12)

Now dividing (11) by |v|,∣∣∣∣gv − 1

v

(1− |k|2)

1− |k|2|f |2
f∗

∣∣∣∣ ≤ 1 (13)

yields a classical Nehari problem. Let G = g
v and

F = 1
v

(1−|k|2)
1−|k|2|f |2 f

∗.

The function v being invertible in H∞, the prob-
lem reduces to

min ||G− F ||∞ (14)

subject to : G ∈ H∞ and finding the G at which
the infimum is attained. The solution to (14) can
be obtained using the classical operator theoretic
approach of Nehari [6],

G = F − HF (V )

V
(15)

where HF is the Hankel operator with symbol F
and V one of its maximizing vectors.

For numerical reasons we chose to implement
Nehari’s solution to the extremal problem (14) in

the framework of Hardy spaces of the unit disc D.
This is done classically using the conformal map
z → j(z − 1)/(z + 1) sending the unit disk to the
lower half plane. Given a rational function F , in
order to find the maximizing vector of the Han-
kel operator, HF : H2(D) → H̄2(D), we follow the
steps below:

(i) Let {zj} be the poles of F inside the unit disk.

(ii) gj = { 1
1−zz̄j } form the basis of (Ker(HF ))⊥

and hj = { 1
z−zj } form a basis of the image of

HF in H̄2.

(iii) Let the gram matrix of the {gj}′s be,

G1 = [ai,j ] =< gi, gj >=

[
1

1− z̄jzi

]
(16)

and the gram matrix of the {hj}′s,

G2 = [bi,j ] =< hi, hj >=

[
1

1− z̄izj

]
(17)

(iv) Denote the matrix of the Hankel operator by A
in the basis {gj} and {hj}, and solve the gener-
alized eigenvalue problem: A∗G2Au = λG1u.

The eigenvector corresponding to the largest
eigenvalue will provide the maximizing vector of
the Hankel operator and the square root of largest
eigenvalue will provide the value of the minimum in
(14). The function g is obtained multiplying back
by the outer factor v, that is g = vG.

So for a given f , the solution to Problem 2, when
one exists, provides the output reflection coefficient
S22 of a matching filter for a given reference kα. As
shown by equation (13), there exists a solution to
Problem 2, if and only if the operator norm of HF

is less-than or equal to unity. Increasing the param-
eter α lowers the level of reference, implying that
||HF || is an increasing function of α (when k = kα
is set). Ruling out the case where f is a constant,
and noting that an anti-analytic function can not
be approached uniformly and arbitrarily close by
an analytic one, implies that there exists α0 such
that ||Hf || = 1. For α = α0, equality holds in equa-
tion (10). We call the so obtained reflection coef-
ficient, an approximate solution to Problem 1 with
respect to the family of rational references {kα}. A
remarkable property of the latter is that its degree
is comparable to that of the reference kα0 (proof of
this goes beyond the objective of this paper).

3 Results

For α = α0, the modulus of the global system’s re-
flection parameter equals that of kα0

. Fig. 3 shows
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Figure 3: Optimal System reflection with degree 9
equi-oscillating reference for an antenna of degree
1 with Fano Bound = -6.20.
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Figure 4: Optimal System reflection with degree 6
Tchebyschev reference for an antenna of degree 2
with Fano Bound = -13.64.

the optimal overall system reflection for an antenna
of degree one using equi-oscillating references of de-
gree nine, while Fig. 4 shows the same for an an-
tenna of degree two using Tchebyschev references of
degree six. Optimal system reflection level obtained
using equi-oscillating references of various degrees
were computed for a given antenna of degree one
(Fig. 5).

4 Conclusion

Helton’s H∞ approach to matching theory, sup-
posed to yield a guaranteed optimal response at the
cost of an infinite degree matching network, can be
successfully adapted to yield finite degree matching
networks by using families of finite degree ratio-
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Figure 5: Optimal System reflection for different
degrees of filters using equioscillating references
(Degree 1 antenna with Fano Bound = -6.20).

nal references. The procedure can therefore be put
into practice to derive matching networks for mis-
matched antennas. Whether the one dimensional
families of reference functions can be extended to
broader functional manifolds, while preserving the
underlying convexity of the optimization problem
to solve is currently under study.
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