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Modal Logic of Transition Systems in the Topos
of Trees

Colin Riba and Guilhem Jaber

ENS de Lyon, Université de Lyon, LIP?

Abstract. We investigate the adjunction between the category of tran-
sition systems (with not nec. bounded morphisms) and the topos of trees
S from the perspective of the basic modal logic K on transition systems.
More specifically, we show how the modal logic K over an object of S
seen as a transition system can be lifted back as a subobject of S . This
relies on the usual mutually transpose formulations of modal satisfaction
as either a map of transition system or as a map of Boolean algebras with
operators. Moreover, thanks to the usual geometric morphism from the
Boolean topos Psh(|N∗|) of presheaves over the discrete category of nat-
ural numbers to S , we can give a characterization of modal satisfaction
within S as a map from formulae to total subobjects of S whose image
in the Boolean topos Psh(|N∗|) is an internal map of Boolean algebras.

1 Introduction

Modal logics over transition systems are widespread languages to express prop-
erties and reason about abstractions of executions of programs, in particular
with automatic methods based on model-checking (see e.g. [3]). Most modal log-
ics used in verification (LTL, CTL, CTL∗, the modal µ-calculus) are extensions
of the basic modal logic K, whose modalities simulate quantifications over the
immediate successors of a state.

In this paper, we investigate the modal logic K over the objects of the topos
of trees S [4], the presheaf category over the total order of natural numbers. The
topos of trees is a versatile structure for semantics of programming languages.
It is for instance a natural setting to formulate and reason about realizability
models or logical relations (called Kripke logical relations) for ML-like languages
with recursive and polymorphic types and higher-order references [4]. It can
also be used to build denotational models, e.g. for the languages PCF [28] and
FPC [25]. Moreover, S is a convenient model to program with and reason about
coinductive types [7].

Each object X of S , as a forest [17], can be seen as a transition system X⊕.
We observe that there is an adjunction (−)⊕ a (−)~ : TS → S (actually a
coreflection1) where TS is the category of t.s.’s with not necessarily bounded

? UMR 5668 CNRS ENS Lyon UCBL INRIA
1 The unit η : IdS → (−)~ ◦ (−)⊕ is a natural iso, or equivalently (−)⊕ : S → TS is

full and faithful (see e.g. [21, Thm. IV.3.1]).
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morphisms. We show how via this adjunction, the modal logic of an object of
S seen as a t.s. can be lifted back to S . This adjunction moreover allows
to see every t.s. with state set |K| as a subobject of the internal type Str|K|
of streams over |K| in S .2 Each type StrS of S , like every coinductive type
for a polynomial functor, admits a representation as an object of S whose set
of global sections (i.e. the set of S -morphisms from 1 to that object) is the
final coalgebra of that functor in Sets [24] (see also [7]). On the other hand,
t.s.’s defined in S arise naturally e.g. with Kripke logical relations for languages
with states, which require the representation of the heap as a transition system.
Besides, in [8] a logic with an S4 modality is used in external reasonings over
Kripke logical relations.

A lot of the power of S comes from the presence of an endofunctor I
equipped with a principle of guarded recursion [26]. The functor I induces a
modality on the subobject classifier of S (i.e. its object of internal truth val-
ues) which satisfies a Löb rule, expressing a well-founded induction principle. In
other words, the recursion principle of I on the one hand gives a great power to
build complex structures in S , but on the other hand makes its internal logic
unsuitable for usual modal logics over descendent relations of transition systems,
which are in general not well-founded.

Our approach rests on the well-established tradition of (co-)algebraic ap-
proaches to modal logics (see e.g. [5, 31, 12]). We start from the usual obser-
vation that the modal satisfaction relation  over a Kripke model K leads to
a TS-map from the t.s. part of K to the t.s. of ultrafilter over modal formulae
modulo logical equivalence (i.e. over the Lindenbaum-Tarski algebra LT ).3 This
gives, via the adjunction (−)⊕ a (−)~, a notion of modal satisfaction for an ar-
bitrary object X of S , which can moreover be expressed as a subobject of X×Λ
for a suitable presheaf Λ representing modal formulae. We then follow the usual
methodology (see e.g. [5, 31, 12]), turning  the other way around as a map of
Boolean algebras with operators (BAO) from LT to the powerset of states of
the t.s. X⊕ induced by X. In order to express the Boolean connectives, we rely
on the left-adjoint part of the geometric morphism from the Boolean topos of
presheaves over the discrete category of natural numbers to S .4 On the other
hand, the modality is captured thanks to the observation that the S -map in-
duced by  from LT (with suitable presheaf structure) to the subobjects of
X factors through the subobjects of X which are total in the sense of [4]. We
moreover show that this completely captures the usual characterization of  as
inducing the unique BAO map from LT to the powerset algebra of a t.s.

The paper is organized as follows. The preliminary §2 introduces notations for
the topos of trees, transition systems and modal satisfaction. Section 3 presents

2 Transition systems are represented by their unfoldings as forests. Note that this is
harmless for modal logics, since modal satisfaction is preserved under bisimulation.

3 This TS-map is a coalgebra map iff the Kripke model K is modally saturated.
4 This geometric morphism is an instance of a general pattern for categorical models

of S4 [9, 29, 19, 2]. However we consider K rather than S4 (no reflexive-transitive
closure is imposed on transitions).
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the adjunction (−)⊕ a (−)~ : TS → S and shows how the induced notion
of modal satisfaction can be lifted back to S . We then introduce some usual
algebraic material in §4, that we use in §5 for our characterization of modal
satisfaction. Finally, §6 presents some extensions of K, namely an adaptation
of [19, 2] to our setting, which gives S4 for reversed (i.e. “past”) modalities, and
sketches an interpretation of the modal µ-calculus.

2 Preliminaries

2.1 The Topos of Trees

Let N∗ be the set of strictly positive natural numbers. The topos of trees S is the
category of presheaves over (N∗,≤). Its objects are functors X : Nop

∗ → Sets, or
equivalently families of sets X(n) indexed over N∗ and equipped with restriction
maps (−)↑ : X(n + 1) → X(n). The morphisms from X to Y are natural
transformations f : X → Y , equivalently families of functions5 fn : X(n) →
Y (n) commuting with restriction: fn+1(x)↑ = fn(x↑) for x ∈ X(n+ 1). If k ≤ n,
we write x|k for the restriction of x ∈ X(n) into X(k), so that x|k = x↑n−k.

As any presheaf category, S is a topos, so it is in particular Cartesian closed.
The product is given by (X × Y )(n) = X(n)× Y (n) and the exponent presheaf
Y X at n is the set of all sequences (f`)`≤n of functions f` : X(`)→ Y (`) which
are compatible with restriction (i.e. (−)↑ ◦ f`+1 = f` ◦ (−)↑), see e.g. [22, §I.6].

A subobject S of X, notation S ↪→ X, is a family of subsets S(n) ⊆ X(n)
such that x↑ ∈ S(n) whenever x ∈ S(n+ 1). The subobject classifier of S is the
object Ω with Ω(n) = {0, . . . , n}, and restriction Ω(n + 1) → Ω(n) mapping k
to min(k, n). The characteristic map χS : X → Ω of a subobject S ↪→ X takes
x ∈ X(n) to max{m ≤ n | x|m ∈ S(m)}, with max ∅ = 0.

Remark 2.1. In S , each object ΩX is isomorphic to the object whose component
at n is the set of sequences (S`)`≤n of sets S` ⊆ X(`) such that x↑ ∈ S` for all
x ∈ S`+1, and with restrictions taking (S1, . . . , Sn, Sn+1) to (S1, . . . , Sn). ut

2.2 Transition Systems

A transition system K = (|K|, ∂K) is given by a set of states |K|, together with
a transition function ∂ : |K| → P(|K|). We may write x →K y for y ∈ ∂K(x).
A morphism of transition systems K → K ′ is given by a function h : |K| →
|K ′| which respects transitions, in the sense that h(y) ∈ ∂K′(h(x)) whenever
y ∈ ∂K(x). We write TS for the category of transition systems and morphisms
of transition systems.

As usual (see [31, 10]), transition systems are Sets-coalgebras for the covari-
ant powerset functor P, and among the morphisms of transitions systems, we
distinguish the bounded morphisms, i.e. the TS-maps h : K → K ′ which are
maps of coalgebras, that is s.t. ∂K′ ◦ h = P(h) ◦ ∂K . We write Coalg(P) for the
category of transition systems and bounded morphisms.

5 We write either fC or f(C) for the component at C of a natural transformation f .
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2.3 Modal Logic

Assume given a set AP of atomic propositions, ranged over by p, q, etc. We take
as basic modal language the formulae defined as follows:

ϕ,ψ ∈ Λ ::= p | ⊥ | ϕ ∨ ψ | ¬ϕ | 3ϕ

We use the following expected defined formulae

ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ) > := ¬⊥ ϕ→ ψ := ¬ϕ ∨ ψ 2ϕ := ¬3¬ϕ

Given a transition system K and a valuation v : AP → 2|K|, the modal satis-
faction relation s v ϕ is defined by induction on formulae as usual:

s v p iff s ∈ v(p) s 6v ⊥ s v ¬ϕ iff s 6v ϕ
s v ϕ ∨ ψ iff s v ϕ or s v ψ s v 3ϕ iff t v ϕ for some t ∈ ∂(s)

We write s  ϕ for s v ϕ when the valuation v is understood from the context.

Remark 2.2. Note that since the relation  is a subset of |K| ×Λ, so we can see
it equivalently as function |K| × Λ→ 2, or as either of its transposes |K| → 2Λ

or J−Kv : Λ→ 2|K|. ut

3 Modal Logic of Transition Systems in the Topos of
Trees

This Section presents the adjunction (−)⊕ a (−)~ : TS → S (§3.1), and
briefly discuss how it specializes to Coalg(P) thanks to notion of open maps
of [16, 18, 17] (§3.2). Then in §3.3 we explain how, for an object X of S , the
modal satisfaction relation induced by (−)⊕ a (−)~ : TS → S leads to a
subobject of X × Λ in S , for a suitable presheaf Λ.

3.1 An Adjunction Between TS and S

There is a functor (−)~ : TS→ S from transition systems to the topos of trees.
On objects, (−)~ takes K to the presheaf K~ with

K~(n) := {(s1, . . . , sn) | ∀i < n. si+1 ∈ ∂(si)} ⊆ |K|n

and restriction mapsK~(n+1)→ K~(n) taking (s1, . . . , sn, sn+1) to (s1, . . . , sn).
On maps, (−)~ takes h : K → K ′ to the natural transformation h~ with com-
ponent at n mapping (s1, . . . , sn) to (h(s1), . . . , h(sn)).

Remark 3.1. The functor (−)~ is faithful, but not full. A S -map f : K~ → K ′~
must be such that fn(s1, . . . , sn) = (t1, . . . , tn) whenever fn+1(s1, . . . , sn+1) =
(t1, . . . , tn+1). It is thus determined by a family of functions K~(n)→ |K|, which
are in general not induced by functions |K| → |K|. ut
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Remark 3.2. Note that K~ is a subobject of the streams Str|K| over |K|, where
following [4, Ex. 2.1], Str|K|(n) = |K|n and (s1, . . . , sn, sn+1)↑ = (s1, . . . , sn).
More generally, its was shown in [24, Thm. 2] (see also [7, Ex. 2.4.(i)]) that for
each polynomial functor T : Sets→ Sets, there is an object AT of S such that
the set of global sections S [1, AT ] is a terminal coalgebra for T . ut

It is known since [17] that the objects of S can be seen as transition systems.
The functor (−)⊕ : S → TS takes a presheaf X to the transition system X⊕

with states |X⊕| :=
∐
n>0X(n) and transitions given by6 y ∈ ∂X⊕(x) iff x = y↑.

On maps, (−)⊕ takes f : X → Y to the function f⊕ :
∐
nX(n) →

∐
n Y (n)

with f⊕(n, x) := f(n)(x). Hence, if y ∈ ∂X⊕(x), then we have y↑ = x, so that
f⊕(n+ 1, y) ∈ ∂X⊕(f⊕(n, x)).

Proposition 3.3. (−)⊕ is left adjoint to (−)~. The unit has component ηX :
X → (X⊕)~ taking x ∈ X(n) to (x|1, . . . , x|n−1, x) ∈ (X⊕)~(n).

Remark 3.4. The adjunction (−)⊕ a (−)~ : TS→ S is a coreflection (the unit
is a natural iso, equivalently (−)⊕ is full and faithful ([21, Thm. IV.3.1])). ut

Remark 3.5. As usual with presheaves, an object X of S can be represented by
its category of elements

∫
X. The objects of

∫
X are pairs (n, x) where n > 0

and x ∈ X(n), and there is an arrow from (n, x) to (k, y) iff n ≤ k and y|k = x.
Note that

∫
X is a partial order. Moreover, the set of objects of

∫
X is exactly∐

nX(n), so that
∫
X is the reflexive transitive closure of (|X⊕|,→X⊕). ut

3.2 Open Maps and Coalgebra Morphisms

The notion of open map, introduced in [16], provides categorical formulations of
bisimulation [18]. The case of t.s.’s and S is already discussed in [17].

Definition 3.6. A S -map f : X → Y is open if for every n > 0 and every
x ∈ X(n), y′ ∈ Y (n + 1) such that y′↑ = fn(x), there is some x′ ∈ X(n + 1)
such that fn+1(x′) = y′ and x′↑ = x.

Note that open maps compose, and that the identity is open. Write O(S )
for the lluf subcategory of open maps. The following result builds on the known
correspondence between open maps and coalgebra morphisms.

Proposition 3.7. The adjunction (−)⊕ a (−)~ of Prop. 3.3 restricts to an
adjunction between Coalg(P) and O(S ).

Remark 3.8. In particular, for a transition system K the transition system K⊕~
is bisimilar to K. Note that the states of K are duplicated in K⊕~ , so that this

does not extend well to valuations v : AP → 2|K|. ut
6 ∐

n>0X(n) is the coproduct of the X(n) for n > 0. Formally, its elements are pairs
(n, x) with x ∈ X(n), but we write x for (n, x) whenever convenient.
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3.3 Representation of Modal Satisfaction in the Topos of Trees

The functor (−)⊕ : S → TS allows to define a modal satisfaction relation on
objects of S seen as transitions systems. Note that this assumes, for an object
X of S , valuations of atomic propositions to be of the form v : AP → 2

∐
nX(n).

They are thus not constrained by the restriction maps of S .

Definition 3.9. Given an object X of S and a valuation v : AP → 2|X
⊕|, the

relations (vn)n ⊆
∏
n(X(n)× Λ) are defined by

x vn ϕ iff (n, x) v ϕ in X⊕

Given a transition system K and a valuation v : AP → 2|K|, the relation
 ⊆ |K|×Λ can be seen as a function |K|×Λ→ 2. We shall now see that for an
object X of S , we can actually represent the relations (n)n ⊆

∏
n(X(n)× Λ)

as a subobject of X × Λ in S , for a suitable presheaf Λ. This relies on a simple
observation underlying the usual construction of ultrafilter frames in modal logic
(see e.g. [5, §2.5]).

Recall from Rem. 2.2 that given a transition system K and a valuation v :
AP → 2|K|, the relation v ⊆ |K| × Λ can be seen as a function

|K| −→ 2Λ

s 7−→ {ϕ | s  ϕ} (1)

Note that if t ∈ ∂(s), then s  3ϕ whenever t  ϕ. In other words, if we equip
2Λ with the transition function

∂2Λ : 2Λ −→ P(2Λ)
F 7−→ {G | ∀ϕ (ϕ ∈ G =⇒ 3ϕ ∈ F )} (2)

then the function (1) becomes a TS-map from K to (2Λ, ∂2Λ). We now devise
an object Λ of S such that for any subobject S ↪→ Λ we have

S(n+ 1) ∈ ∂2Λ(S(n)) for all n > 0 (3)

Definition 3.10. Define the object Λ of S as Λ(n) := Λ for each n > 0, and
with restriction maps (−)↑ : Λ(n+ 1)→ Λ(n) taking ϕ to 3ϕ.

We indeed obtain (3) since the shape of subobjects in S imposes that for S ↪→ Λ,
for all n > 0 we have ϕ↑ = 3ϕ ∈ S(n) whenever ϕ ∈ S(n+ 1). Moreover, given
an object X of S and a valuation v, for all (x, ϕ) ∈ X(n + 1) × Λ(n + 1) such
that x vn+1 ϕ, we have x↑ vn 3ϕ. We thus have shown the following.

Proposition 3.11. Given X and v as above, the family of relations (vn)n is a
subobject of X × Λ in S .

Definition 3.12. Given X and v as above, we write κvΛ : X × Λ → Ω for the
classifying map in S of the family of relations (vn)n ↪→ X × Λ.
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Remark 3.13. As sanity check, note that ΩΛ ' (2Λ, ∂2Λ)~ in S , so that the
object Λ of S indeed represents in S the transition system (2Λ, ∂2Λ). Moreover,
the image under the adjunction (−)⊕ a (−)~ of the map X → (2Λ, ∂2Λ)~
induced by κvΛ is the TS-map X⊕ → (2Λ, ∂2Λ) induced by the the transpose of
v ⊆ |X⊕| × Λ. ut

Remark 3.14. The topos of trees is equipped with a full and faithful endofunc-
tor I, which takes an object X to the presheaf defined as (IX)(1) := 1 and
(IX)(n + 1) := X(n). Moreover, the action of I on subobjects can be repre-
sented by a modality . on Ω [4, §2.2 & Thm. 2.7].

However, the modality 3 does not seem to be easily interpretable via .,
because intuitively I goes “in the wrong direction”. Besides, . satisfies a Löb
rule [4, Thm. 2.7], expressing well-founded induction principle, while on the
other hand 3 quantify over the descendents of a state in transition systems with
possibly infinite descending paths.

The functor I has left-exact left-adjoint J (so that J a I is a geometric
morphism), defined as (JX)(n) = X(n + 1) [4, §2.1 & §6.1]. However, it is not
clear to us how the action of J can be internalized on subobjects. Moreover,
we do not know how to use J a I for our purposes since J(IX)(n + 1) =
I(JX)(n+ 1) = X(n+ 1) for all n > 0 (see also §6). ut

4 Elements of Algebraic Perspectives

So far, given an object X of S and a valuation v : AP → 2|X
⊕|, we have seen

that the modal satisfaction relations v on the t.s. X⊕ can be expressed as a
subobject of X × Λ in S , for a suitable presheaf Λ.

We are going to see how we can characterize this subobject, or more precisely
its classifying map κvΛ : X×Λ→ Ω. This Section discusses some known algebraic
tools on which we rely for this, and §5 presents the characterization itself. We
recall the setting of Boolean algebras with operators in §4.1, and following a
known construction, we present in §4.2 a functor from S to a Boolean topos.

4.1 Boolean Algebras with Operators

Given a t.s. K and a valuation v : AP → 2|K|, we have recalled in §3.3 how we
can equip 2Λ with a transition relation so that the transpose (1) of v ⊆ |K|×Λ
is a TS-map. We now discuss some known structure on this map.

Each set {ϕ | s v ϕ}, for s a state of K, is a complete consistent theory, that
is a set of modal formulae F such that (1) F does not contain falsity ⊥, (2) F is
closed under logical consequence, and (3) F is maximal with these two properties
(so that ϕ /∈ F implies ¬ϕ ∈ F ). Such sets of formulae are best understood as
ultrafilters on Boolean algebras, so we first recall the usual Lindenbaum-Tarski
Boolean algebra over the basic modal language (see e.g. [5, §4.1]).
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Definition 4.1. Lindenbaum-Tarski algebra LT is the quotient of Λ with the
notion of logical equivalence ≡K induced by the following rules7:

ϕ propositional tautology

` ϕ
` ϕ

` ϕ[ψ/p]
(p ∈ AP )

` ψ ` ψ → ϕ

` ϕ

` 2(p→ q)→ (2p→ 2q)

` ϕ
` 2ϕ

LT is of course a Boolean algebra (see e.g. [5, Chap. 5]). We often leave implicit
the function Λ→ LT taking a formula ϕ ∈ Λ to its ≡K-class in [ϕ]K ∈ LT , and
write ϕ ∈ LT for [ϕ]K ∈ LT .

Continuing our discussion, if we look at the transpose (1) of v as function
|K| → 2LT , then for every state s ∈ |K|, its image at s is an ultrafilter on LT .
Recall that an ultrafilter on a Boolean algebra B is a set F ⊆ B such that (1)
⊥ /∈ F , (2) > ∈ F , (3) if a ∈ F and a ≤ b then b ∈ F , (4) if a, b ∈ F then
a ∧ b ∈ F , and (5) if a /∈ F then ¬a ∈ F . Write Uf(B) for the set of ultrafilter
on B. The function (1) induces a TS-map K → Uf(LT ), where ∂Uf(LT ) is the
restriction of the function 2LT → P(2LT ) induced by ∂2Λ (see e.g. [5, Def. 5.40]).

We are now going to see how we can characterize the function modal satis-
faction in this algebraic setting. An interesting thing to notice is that the notion
of coalgebra map does not seem to directly help us here, since as discussed in
Rem. 4.2 below, for a given valuation v, the TS-map K → 2Uf(LT ) is map of
coalgebras exactly when the model (K, v) is modally-saturated.

Remark 4.2. Following the usual terminology, a (Kripke) model is a transition
system K together with a valuation of atomic propositions v : AP → 2|K|. We
say that a model (K, v) is modally saturated (see e.g.[5, §2.5]) whenever for all
state s ∈ |K| and all (possibly infinite) set of formulae Φ, if s v 3

∧
Ψ for all

finite Ψ ⊆ Φ, then there is t ∈ ∂(s) s.t. t v ϕ for all ϕ ∈ Φ. It is well-known
that modally saturated models satisfy the Hennessy-Milner property (see e.g. [5,
§2.5]), and moreover that ultrafilter frames as well as image finite models are
modally saturated.

We note the following property. Given a t.s.K and a valuation v : AP → 2|K|,
the TS-map K → Uf(LT ) induced by v is a map of coalgebras if and only if
the model (K, v) is modally saturated. ut

Moreover, Rem. 4.3 below tells us that we may equally well see modal satisfac-
tion either as a TS-map K → Uf(LT ) or as a Boolean algebra map LT → 2|K|.

Remark 4.3. Consider a Boolean algebra B, a set S and a function f : S×B → 2
together with its transposes f t : S → 2B and tf : B → 2S . Then tf is a map of
Boolean algebras iff for all s ∈ S, the set f t(s) ⊆ B is an ultrafilter. ut

Hence modal satisfaction v leads to a Boolean algebra map LT → 2|K|,
which moreover extends v : AP → 2|K| in the sense that the following diagram

7 So that ϕ ≡K ψ if and only if (` ϕ→ ψ and ` ψ → ϕ).
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commutes:
LT // 2|K|

AP

OO
v

44 (4)

This, however, does not completely characterize modal satisfaction since the
property of being a Boolean algebra map specifies the behavior of the Boolean
connectives, but not of the modalities. In algebraic modal logic, modalities are
handled by Boolean algebras equipped with certain operators.

Definition 4.4. A Boolean algebra with operator (BAO) is a Boolean algebra
B with a function 3B : B → B s.t. 3B⊥ = ⊥ and 3B(a ∨ b) = 3Ba ∨3Bb.

A map of BAO’s form (B,3B) to (B′,3B′) is a map of Boolean algebras
f : B → B′ which preserves the operators in the sense that f ◦3B = 3B′ ◦ f .

Remark 4.5. We have taken in Def. 4.4 the notion of BAO used in [5], but it is
also customary to work with the equivalent notion of a Boolean algebra equipped
with a function 2B which commutes over > and ∧. ut

LT equipped with the operator 3 is a BAO (see e.g. [5, Lem. 4.6 & Thm. 5.33]).
Moreover, the notion of BAO completely characterizes modal satisfaction once
the powerset Boolean algebra 2|K| is equipped with the operator 3K taking a
set A ⊆ |K| to the set 3K(A) of all one-step predecessors of A, i.e. the set of
all s ∈ |K| such that t ∈ ∂K(s) for some t ∈ A (see e.g. [5, §5.2]).

Proposition 4.6. Given a t.s. K and a valuation v : AP → 2|K|, the function
LT → 2|K| induced by v is the unique BAO map extending v (see (4)).

4.2 Mapping S to a Boolean Topos

We now present some categorical machinery that will help us expressing the
characterization of modal satisfaction given by Prop. 4.6 in our setting. We
follow the usual approach when representing algebraic structures in categories.

Remark 4.7 (Algebraic Structures in Categories). We say that an object C of
a category C with finite limits has a given algebraic structure if it is equipped
with maps for each operation of the algebraic structure, which moreover satisfy
diagrams corresponding to the equations of the algebraic structure. See e.g. [21,
pp. 2-5] for the example of monoids. For Boolean algebras we follow the equa-
tional presentation induced by [14, §I.1]. ut

First, we devise an object LT of S in the same way as the object Λ in Def. 3.10.

Definition 4.8. Define the object LT of S as LT(n) := LT for each n > 0, and
with restriction maps (−)↑ : LT(n+ 1)→ LT(n) taking [ϕ]K to [3ϕ]K.

The restriction maps of the object LT are well-defined since 3 preserves logical
equivalence (see e.g. [5, Lem. 4.6]). Given an object X of S and a valuation v,
for each n > 0 we lift vn ⊆ X(n) × Λ to vn ⊆ X(n) × LT in the obvious way,
and Prop. 3.11 trivially extends.
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Definition 4.9. Given X and v as above, we write κv : X × LT → Ω for the
classifying map in S of the family of relations (vn)n ↪→ X × LT.

It is easy to see that since 3 is an operator on LT , the S -object LT is
equipped in S with the structure of an internal ∨-semilattice. It is however not
a Boolean algebra, because the Boolean connectives ∧,>,¬ do not commute with
3. In other words, the restriction maps of LT, which on the one hand allows us
to see modal satisfaction as a subobject in S , on the other hand prevent us from
seeing LT as a Boolean algebra. We shall thus look to a version of LT “without
restriction maps”.

As simple way to “remove restriction maps” from an object of S is to send it
to Psh(|N∗|), the category of N∗-indexed families of sets. The functor ι∗ : S →
Psh(|N∗|) just maps X to the family X∗ := (Xn)n. We shall use the following
properties of ι∗, which are standard categorical material (see e.g. [15, §A.4]).

Lemma 4.10. The functor ι∗ is faithful and preserves limits. It induces for each
object X of S an injective map of lattices ∆X : SubS (X)→ SubPsh(|N∗|)(X

∗).

Lemma 4.11. The object LT∗ = ι∗(LT) is a Boolean algebra in Psh(|N∗|).

The topos Psh(|N∗|) is Boolean since its subobject classifier 2 is an internal
Boolean algebra. In particular, for any objectX of S , the object 2X

∗
of Psh(|N∗|)

is a Boolean algebra, whose connectives (∧,∨,>,⊥,¬) are given by the point-
wise set-theoretic operations (∩,∪, X(n), ∅, X(n) \ −). We will use this fact to
characterize the behavior of the transpose LT→ ΩX on Boolean connectives.

5 Characterization of the Modal Satisfaction Relation

Using the material of §4.2, we can now give an adaptation of Prop. 4.6 to our
context. Let us first set some concepts and notations.

Notation 5.1 (Valuations of Atomic Propositions). We let AP be the ob-
ject of Psh(|N∗|) with constant value AP . Moreover, we write AP→ LT∗ for the
extension with ι∗(Λ→ LT) of the inclusion map AP ↪→ Λ∗.

Up to now, valuations of atomic propositions for an object X of S were
seen as usual Sets functions v : AP → 2|X

⊕|, that is as functions from AP to∐
n>0(X(n))→ 2. But such functions are in bijection with

∏
n>0(AP → 2X(n)),

that is with Psh(|N∗|)-maps AP→ 2X
∗
. From now on, we assume valuations to

be maps AP→ 2X
∗
.

We thus arrive at the first characteristic property of modal satisfaction in S ,
namely that it induces a map of Boolean algebras in Psh(|N∗|). Given an object
X of S and a valuation v, we write ∆(κv) : X∗ × LT∗ → 2 for the image in
Psh(|N∗|) of κv : X × LT→ Ω induced by the map ∆X×LT of Lem. 4.10.
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Proposition 5.2. Given X and v as above, the transpose t∆(κv) : LT∗ → 2X
∗

of ∆(κv) : X∗ × LT∗ → 2 is a map of Boolean algebras in Psh(|N∗|), which
moreover extends v, in the sense that

LT∗
t∆(κv) // 2X

∗

AP

OO
v

44

It remains to characterize the behavior of the map κv : X × LT → Ω on
modalities. We rely on notion of total subobjects of S (see [4, Def. 2.6]).

Definition 5.3. An object of S is total if all its restriction maps are surjective.

Recall from §4.1 that usual modal satisfaction LT → 2X
⊕

is map of BAO
when 2X

⊕
is equipped with the 32X⊕ takes a set of states S to the set of all

states which have a one-step successor in S, that is the set of all x such that
there is y ∈ ∂X⊕(x) with y ∈ S. Actually, for every subobject S ↪→ X, we do
have 3X⊕S(n+ 1) ⊆ S(n) for each n. The converse inclusion corresponds to the
surjectivity of restriction maps.

Lemma 5.4. Consider an object X of S , some n > 0 and subsets S ⊆ X(n),
S′ ⊆ X(n+ 1) which are compatible with restriction (x↑ ∈ S whenever x ∈ S′).
Then 3X⊕S

′ ⊆ S. Moreover, we have 3X⊕S
′ = S iff the restriction of (−)↑ :

X(n+ 1)→ X(n) to S′ → S is surjective.

Given an object X of S , consider the family of sets (TotSubX(n))n>0, where
TotSubX(n) is the set of all sequences (S`)`≤n of sets S` ⊆ X(`) such that the
restrictions of (−)↑ : X(` + 1) → X(`) to S(` + 1) → S(`) are surjective. We
equip TotSubX with restriction maps taking (S1, . . . , Sn, Sn+1) to (S1, . . . , Sn),
so that TotSubX induces a subobject of ΩX via Rem. 2.1. This leads to the
second characteristic property of κv, which specifies its behavior on modalities.

Proposition 5.5. The map tκv : LT→ ΩX factors as LT→ TotSubX ↪→ ΩX .

We can now give our characterization of κv: it is the unique map satisfying
Prop. 5.2 and Prop. 5.5.

Theorem 5.6. Given v : AP → 2X
∗
, the map κv : X × LT → Ω is the unique

map which satisfies all the following conditions:

(i) t∆(κv) : LT∗ → 2X
∗

is a map of Boolean algebras which extends v, and
(ii) tκv : LT→ ΩX factors as LT→ TotSubX ↪→ ΩX .

6 Extensions

We now discuss two extensions of K in our framework. The first one is the logic
S4 with reversed modalities, which corresponds to the direct adaptation of [2, 19]
to our case. The second is a brief discussion on fixpoints. We begin with some
standard categorical material extending §4.2.
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6.1 A Geometric Morphism

The functor ι∗ : S → Psh(|N∗|) of §4.2 takes X : Nop
∗ → Sets to its pre-

composition with ι : |N∗| ↪→ N∗. As usual (see e.g. [15, Ex. A.4.1.4]), ι∗ has a
right adjoint ι∗ given by right Kan extensions along ι. Explicitly, ι∗(A)(n) =∏

1≤k≤nA(k) for A ∈ Psh(|N∗|), and restrictions ι∗(A)(n + 1) → ι∗(A)(n) map
(a1, . . . , an, an+1) to (a1, . . . , an). Since ι∗ preserves finite limits [15, Ex. A.4.1.4],
we have a geometric morphism ι∗ a ι∗ : Psh(|N∗|) → S . This geometric mor-
phism is an instance of a widespread construction in categorical approaches to
S4 (see e.g. [29, 2, 19]).

Lemma 6.1. Consider a geometric morphism f = f∗ a f∗ : F → E. The
inverse image functor f∗ induces for each object A of E an (external) homomor-
phism of subobjects lattices ∆A : SubE(A) → SubF (f∗A), which moreover has
an (external) right adjoint of posets ΓA : SubF (f∗A)→ SubE(A).

Proposition 6.2. In the case of ι∗ a ι∗ : Psh(|N∗|)→ S , given an object X of
S , the map ΓX : SubPsh(|N∗|)(X

∗) → SubS (X) takes a subobject A ↪→ X∗ in
Psh(|N∗|) to ΓX(A) ↪→ X where ΓX(A)(n) = {x ∈ X(n) | ∀k ≤ n. x|k ∈ A(k)}.
Moreover, the composite ΓX ◦∆X is the identity on SubS (X).

In the case of ι∗ a ι∗, the crucial construction of [2, 19] specializes to the follow-
ing, where we write 2∗ for ι∗(2).

Lemma 6.3. The map λ : Ω → 2∗, taking k ∈ Ω(n) to (1k, 0n−k) is a map of
internal lattices. It is an internal left-adjoint to τ : 2∗ → Ω, the classifying map
of ι∗(t) : ι∗(1)→ 2∗ in S . Moreover, τ ◦ λ = idΩ.

In particular, λ ◦ τ induces a left-exact comonad on 2∗.

6.2 Accommodating an S4 Reverse Modality

As a sanity check, we verify here that an obvious adaption of [9, 29, 2, 19] is
compatible with our setting, and gives an S4 reverse modality, that is a reflexive-
transitive modality �∗ quantifying over the predecessors of a state. Consider
formulae Λ�∗ extending Λ with the clause �∗ϕ ∈ Λ�∗ whenever ϕ ∈ Λ�∗ . Given
a t.s. K and a valuation v, write →∗K for the reflexive-transitive closure of →K .
The relation v�∗ extends v with the clause

s v�∗ �
∗ϕ iff ∀t ∈ |K| (t→∗K s =⇒ t v�∗ ϕ)

Following Rem. 2.2, we look at the relation v�∗ ⊆ |K| × Λ�∗ as a function

J−Kv�∗ : Λ�∗ → 2|K|. In the case of an object X of trees, we therefore get

J−Kv�∗ : Λ�∗ → 2|X
⊕|. We now extend the approach of §3.3. Define (v�∗,n)n ⊆∏

n(X × Λ�∗) as

x v�∗,n ϕ iff (n, x) v�∗ ϕ (iff (n, x) ∈ JϕKv�∗)

Defining the object Λ�∗ of S similarly as Λ in Def. 3.10, Prop. 3.11 easily
extends.
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Lemma 6.4. Given X and v, the family of relations (v�∗,n)n is a subobject of
X × Λ�∗ in S .

Write κvΛ�∗
: X × Λ�∗ → Ω for the classifying map of (v�∗,n)n. Consider

now the image ∆(κvΛ�∗
) : X∗×Λ�∗ → 2 of κvΛ�∗

induced by the map ∆Λ�∗×X of
Lem. 4.10. Note that ∆(κvΛ�∗

) is a function
∏
n(X(n)×Λ�∗ → 2), and moreover∏

n

(X(n)× Λ�∗ → 2) ' Λ�∗ → (
∐
n

X(n))→ 2 (5)

Lemma 6.5. The function Λ�∗ → (
∐
nX(n)) → 2 induced by (5) coincides

with the interpretation function J−Kv�∗ : Λ�∗ → 2|X
⊕|.

In other words, the interpretation JϕKv�∗ of a formula ϕ ∈ Λ�∗ is a subobject
of X∗, that we still write JϕKv�∗ . This interpretation is lifted to

X
ηX−→ X∗

ι∗(JϕKv�∗ )−→ 2∗ (6)

where we have written X∗ for ι∗(ι
∗X).

Proposition 6.6. The interpretation of �∗ϕ as the map X → 2∗ of (6) is the
image under the comonad λ ◦ τ of the interpretation of ϕ as a map X → 2∗.

Remark 6.7. The comparison with [2, 19] can be pushed one step further. The
approach of [2, 19] in particular includes the case of the (surjective) geometric

morphism ∗ a ∗ : Sets|K| → SetsK where K is a transition system seen as
a preorder, and where ∗ is precomposition with  : |K| → K and ∗ is given
by right Kan extensions. When restricted to propositional logic over Kripke
structures, a modal formula over K is interpreted as a map 1 → 2K where 2K
is the image by ∗ of the (Boolean) subobject classifier 2 of Sets|K|.

Recall from e.g. [22, Ex. III.8] that given a presheaf category Psh(C), the
slice category Psh(C)/P is equivalent to the category of presheaves over

∫
P .

The part ·̃ : Psh(
∫
P )→ Psh(C)/P of the equivalence takes S : (

∫
P )op → Sets

to (T, θ : T → P ), where T ∈ Psh(C) is given by T (C) =
∐
a∈P (C) S(C, a), and

θC : T (C)→ P (C) is the first projection (taking (a,−) to a ∈ P (C)). Hence, if∫
P is equivalent to the opposite of the reflexive-transitive closure of a transition

system K, then the interpretation of formulae as SetsK-maps 1→ 2K of [2, 19]
induces an interpretation of formulae as Psh(C)/P -maps from 1 to 2̃K → P ,
that is as Psh(C)-maps P → 2̃K since the 1 of Psh(C)/P is idP : P → P .

In the case of S and Kop =
∫
X, recall from Rem. 3.5 that Kop is the

reflexive-transitive closure of (|X⊕|,→X⊕). Note that 2K(n, x) =
∏

(`,y)→(n,x) 2.

But
∫
X-maps (`, y) → (n, x) for fixed (n, x) are completely determined by `

since we must have y = x|`. We thus have 2K(n, x) ' 2n = 2∗(n). It follows

that ·̃ : SetsK → S /X takes 2K to the first projection X × 2∗ → X, so that
a formula 1 → 2K in SetsK is taken to a map K → K × 2∗ whose composite
with the first projection is the identity, that is to a S -map 1→ 2∗. In the case
of a formula ϕ ∈ Λ�∗ with no occurrence of 3, it follows from the correctness
of [2, 19] ([2, Prop. 4.9]) that the induced map X → 2∗ coincides with (6). ut
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6.3 Extension to the Modal µ-Calculus

The modal µ-calculus [20] extends the basic modal language (§2.3) with fixpoints
of monotone formulae. Its formulae ϕ,ψ, . . . ∈ Λµ are obtained by extending
Λ with the clause µp.ϕ ∈ Λµ whenever ϕ ∈ Λµ and p only occurs under an
even number of negations in ϕ.8 Given a transition system K and a valuation
v : AP → 2|K|, the modal satisfaction relation v ⊆ |K| × Λ of §2.3, seen as a
function J−Kv : Λ→ 2|K| (see Rem. 2.2) is extended to J−Kvµ : Λµ → 2|K| with

Jµp.ϕKvµ :=
⋂
{JϕKv[A/p]µ | A ⊆ |K| & JϕKv[A/p]µ ⊆ A}

We now proceed similarly as in §6.2 above. For X an object of S , we define
the relations (vµ,n)n ⊆

∏
n(X × Λµ) as x vµ,n ϕ iff (n, x) vµ ϕ. We let Λµ

be the object of S with the obvious adaptation of Λ, and we get the expected
extension of Prop. 3.11. Similarly as in §6.2 above, writing κvΛµ : X × Λµ → Ω

for the classifying map of (vµ,n)n, we consider the function Λµ → |X⊕| → 2
induced by ∆(κvΛµ) : X∗ × Λ∗µ → 2. Lemma 6.5 is trivially adapted.

Lemma 6.8. The function Λµ → (
∐
nX(n)) → 2 induced by ∆(κvΛµ) : X∗ ×

Λµ → 2 coincides with J−Kvµ : Λµ → 2|X
⊕|.

We can say the following on the interpretation JϕKvµ seen as a subobject of X∗.

Proposition 6.9. Given a formula ϕ monotone in the propositional variable α,
the interpretation Jµα.ϕKvµ coincides with the following subobject of X∗:∧

{A | A ∈ SubPsh(|N∗|)(X
∗) & JϕKv[A/α]µ ≤SubPsh(|N∗|)(X

∗) A} (7)

Remark 6.10. Since ΓX preserves limits, (7) leads in SubS (X) to∧
{ΓXA | A ∈ SubPsh(|N∗|)(X

∗) & JϕKv[A/α]µ ≤SubPsh(|N∗|)(X
∗) A}

ut

7 Conclusion

In this paper, we noticed the existence of a coreflection (−)⊕ a (−)~ : TS→ S ,9

allowing to see every object X as t.s. X⊕, and moreover to lift the modal logic K
over X⊕ as a subobject of X×Λ in S , for a suitable presheaf Λ. We have shown
how the usual (co)-algebraic characterization of modal satisfaction as a mor-
phism of BAO’s can expressed using the left adjoint part of the usual geometric
morphism Psh(|N∗|)→ S for Boolean connectives, and the notion of total sub-
object in S (in the sense of [4]) for the modality. Furthermore, we have sketched
how the usual categorical approaches to S4 instantiate with Psh(|N∗|)→ S to
give an S4 reverse (i.e. past) modality, and we briefly presented the computation
of fixpoints of the modal µ-calculus [20].

8 In this Section, we see atomic propositions as propositional variables.
9 Reminiscent from the coreflection of synchronization trees in labeled transition sys-

tems [32, §4].
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Further Works. First, among the general motivations of this work are the
formulation of logics for verification directly in (fragments of) semantic models,
whether they be denotational or based on realizability (or logical relations). One
track to explore is the application of higher-order model checking [27] (with the
hope that denotational models allow to interpret more structure than Böhm
trees, i.e. fully expanded syntactic trees), but we also aim at devising syntactic
type/proofs system lifted back from S (in the spirit of e.g. [7]).

A second (more exploratory) direction is to look at generalizations. Following
Rem. 3.2, the coreflection (−)⊕ a (−)~ allows to see every object X of S as a
subobject of the internal streams of S over |X⊕|. On the other hand, the carriers
of final coalgebras for polynomial functors are represented in S as the sets of
global sections of the corresponding coinductive types. This might suggest to
look for generalizations to polynomial functors (see e.g. [12]). But our approach
is also reminiscent from [13] (if we see X⊕~ ↪→ Str|X⊕| as representing X by its
traces), and [13, 11] might also present interesting hints.

An other direction concerns completeness, in particular for settings where
algebraic approaches are available, e.g. normal modal logics (see e.g. [5, Chap.
4]), finitary Kripke polynomial functors (see e.g. [12]), or flat fixpoints [30] (a
family of subsystems of the modal µ-calculus which in particular encompasses
CTL). In a more prospective direction, it might be interesting to know if there is
a connection with usual categorical completeness results (see e.g. [23]). Besides,
our way to represent transition systems and modal logic in S (in particular
with the usual cover modality ∇ in mind (see e.g. [30])), when formulated in
first-order logic, is reminiscent from the construction of syntactic sites in topos
theory (see e.g. [22, §X.5]).

Finally, we have shown in §6.3 how the fixpoints of the modal µ-calculus act
on objects of S . But further work is still required in order to see what could
be the corresponding extension of Thm. 5.6. A possibly more accessible step
would be to focus on flat fixpoints [30], because they are equipped with simpler
algebraic structure than the full modal µ-calculus, which seems to require a full
Stone-type approach [1] (see also [6] for modal logics over Vietoris polynomial
functors).
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A Proofs of §2 (Preliminaries)

A.1 Proofs of §2.1 (The Topos of Trees)

Remark A.1 (Rem. 2.1). In S , each object ΩX is isomorphic to the object
whose component at n is the set of sequences (S`)`≤n of sets S` ⊆ X(`) such
that x↑ ∈ S` for all x ∈ S`+1, and with restrictions taking (S1, . . . , Sn, Sn+1) to
(S1, . . . , Sn). ut

Proof. First note that (ΩX)(n) is the set of sequences (χ`)`≤n such that

X(`+ 1) //

χ`+1

��

X(`)

χ`

��
Ω(`+ 1) // Ω(`)

(that is χ`(x↑) = min(`, χ`+1(x))).
For each n > 0, let gn take (χ1, . . . , χn) to (S1, . . . , Sn) where S` is the set

of all x ∈ X(`) such that χ`(x) = `.
Each map gn is surjective, since any (S1, . . . , Sn) is the image of (χ1, . . . , χn)

where χ`(x) = max{k ≤ ` | x|k ∈ Sk}. Finally, each gn is injective since
gn(χ1, . . . , χn) = (S1, . . . , Sn) implies that χ`(x) = max{k ≤ ` | x|k ∈ Sk},
so (χ1, . . . , χn) is completely determined by (S1, . . . , Sn). It follows that each gn
is a bijection, and therefore that g is an iso. ut

B Proofs of §3 (Modal Logic of Transition Systems in the
Topos of Trees)

B.1 Proofs of §3.1 (An Adjunction Between TS and S )

Proposition B.1 (Prop. 3.3). (−)⊕ is left adjoint to (−)~. The unit has
component ηX : X → (X⊕)~ taking x ∈ X(n) to (x|1, . . . , x|n−1, x) ∈ (X⊕)~(n).

Proof. Following [21, Thm. IV.1.2.(ii)], we show that for any S -map f : X →
K~ there is a unique TS-map h : X⊕ → K such that f = h~ ◦ ηX .

Consider f : X → K~, so that fn(y↑) = (s1, . . . , sn) whenever fn+1(y) =
(s1, . . . , sn, sn+1). Define h :

∐
n>0X(n) → |K| as h(n, x) := sn whenever

fn(x) = (s1, . . . , sn). We first show that h is a TS-map. Assume that x =
y↑ ∈ X(n) and let fn+1(y) = (s1, . . . , sn, sn+1). We have fn+1(y)↑ = fn(x) and
we get h(n+ 1, y) ∈ ∂K(h(n, x)) by definition of K~(n+ 1). We now show that
f = h~ ◦ ηX . Given x ∈ X(n), writting fn(x) = (s1, . . . , sn), we have

h~(n)(ηX(n)(x)) = h~(n)(x|1, . . . , x|n−1, x)
= (h(x|1), . . . , h(x|n−1), h(x))
= (s1, . . . , sn)
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It remains to show that h is unique. So let g ∈ TS[X⊕,K] such that f = g~◦ηX .
Given x ∈ X(n) with fn(x) = (s1, . . . , sn), we have

g~(n)(ηX(n)(x)) = (g(x|1), . . . , g(x|n−1), g(x)) = (s1, . . . , sn)

so that g(x) = h(x). ut

Remark B.2 (Rem. 3.4). The adjunction (−)⊕ a (−)~ is a coreflection (i.e. the
unit η is a natural isomorphism). ut

Proof. Fix an object X of S . First, each ηX(n) is obviously injective. On the
other hand, note that (s1, . . . , sn) ∈ X⊕~ (n) iff for all ` < n we have s`+1 ∈
∂X⊕(s`), that is iff s` = s↑`+1. It follows that s` = (sn)|`, so that (s1, . . . , sn) is
of the form (x|1, . . . , x|n−1, x) for some x ∈ X(n), so that ηX(n) is surjective. ut

B.2 Proofs of §3.2 (Open Maps and Coalgebra Morphisms)

Following [16], in a category with pullbacks we say that a commutative diagram

Q //

��

A

��
B // C

is a quasi-pullback if the canonical map Q→ B ×C B is an epi.
Still following [16] (but see also [17, §III.1] and [18, Lem. 17]), in presheaf

topos Psh(C), we say that a map f : P → Q is open if for any k ∈ C[C,D], the
following commutative diagram is a quasi-pullback:

P (D)
P (k) //

fD

��

P (C)

fC

��
Q(D)

Q(k)
// Q(C)

Note that this means that for any q ∈ Q(D), p ∈ P (C) such that Q(k)(q) =
fC(p), there is some p′ ∈ P (D) s.t. P (k)(p′) = p and fD(p′) = q.

In the case of the topos of trees, this leads to Def. 3.6, that we recall here.

Definition B.3 (Def. 3.6). A S -map f : X → Y is open if for every n > 0
and every x ∈ X(n), y′ ∈ Y (n+ 1) s.t. y′↑ = fn(x), there is some x′ ∈ X(n+ 1)
s.t. fn+1(x′) = y′ and x′↑ = x.

Proposition B.4 (Prop. 3.7). The adjunction (−)⊕ a (−)~ of Prop. 3.3 re-
stricts to an adjunction between Coalg(P) and O(S ).

Proof. We first check that (−)⊕ (resp. (−)~) restricts to a functor O(S ) →
Coalg(P) (resp. Coalg(P)→ O(S )).
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– Assume first that f : X → Y is an open map in S . We check that f⊕ is a
map of coalgebras X⊕ → Y ⊕.
Since f⊕ is TS-map, we just have to check the “back condition”, namely
that for every (n, x) ∈ |X⊕| and every (n + 1, y) ∈ ∂Y ⊕(f⊕(n, x)), there is
some (n + 1, x′) ∈ ∂X⊕(n, x) s.t. f⊕(n + 1, x′) = (n + 1, y). But note that
we have x ∈ X(n) and y ∈ Y (n + 1) with y↑ = fn(x), so that since f is
open, there is some x′ ∈ X(n + 1) s.t. x′↑ = x and fn+1(x′) = y, that is
(n+ 1, x′) ∈ ∂X⊕(n, x) and f⊕(n+ 1, x′) = (n+ 1, y).

– Conversely, assume that h is a Coalg(P) map K → L. We check that
h~ : K~ → L~ is open. So consider n > 0, (s1, . . . , sn) ∈ K~(n) and
(t1, . . . , tn, tn+1) ∈ L~(n+ 1) such that

h~(n)(s1, . . . , sn) = (t1, . . . , tn, tn+1)↑

Note that this implies (t1, . . . , tn) = (s1, . . . , sn) and tn+1 ∈ ∂L(tn). Now,
since h is a coalgebra map, there is some sn+1 ∈ ∂K(sn) such that h(sn+1) =
tn+1, and we are done since this implies

h~(n+1)(s1, . . . , sn+1)) = (t1, . . . , tn+1) and (s1, . . . , sn+1)↑ = (s1, . . . , sn)

Moreover, it is easy to see that the unit ηX : X → X⊕~ is open. Indeed, given
x ∈ X(n) and (s1, . . . , sn, sn+1) ∈ X⊕~ (n+ 1), if ηX(n)(x) = (s1, . . . , sn), the we
must have

(s1, . . . , sn) = (x|1, . . . , x) and sn+1↑ = x

It follows that ηX(n+ 1)(sn+1) = (s1, . . . , sn+1) and we are done.
Finally, we have to check that the universal property shown in Prop. 3.3

(Prop. B.1) restricts to O(S ) and Coalg(P), namely that h : X⊕ → K is
a coalgebra map whenever f : X → K~ is open. This amounts to show that
given (n, x) ∈ |X⊕| and sn+1 ∈ ∂K(sn) (for (s1, . . . , sn) = fn(x)), there is some
(n+ 1, x′) ∈ |X⊕| such that x↑′ = x and fn+1(x′) = (s1, . . . , sn, sn+1), and this
directly follows from f being an open map. ut

B.3 Proofs of §3.3 (Representation of Modal Satisfaction in the
Topos of Trees)

Remark B.5 (Rem. 3.13). As sanity check, note that ΩΛ ' (2Λ, ∂2Λ)~ in S , so
that the object Λ of S indeed represents the transition system (2Λ, ∂2Λ). More-
over, the image under the adjunction (−)⊕ a (−)~ of the map X → (2Λ, ∂2Λ)~
induced by κvΛ is the TS-map X⊕ → (2Λ, ∂2Λ) induced by the the tranpose of
v ⊆ |X⊕| × Λ. ut

Proof. Recall the iso g from proof of Rem. A.1 (Rem. 2.1).
First note that we actually have g : ΩΛ → (2Λ, ∂2Λ)~, since given (S1, . . . , Sn)

in the image of gn, we have ϕ ∈ S`+1 whenever 3ϕ ∈ S`, so that S`+1 ∈ ∂2Λ(S`).
So the first part follows from Rem. A.1 (Rem. 2.1).
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As for the second part of the statment, the image under (−)⊕ a (−)~ of a

S -map f : X → K~ is the composite X⊕
f⊕−→ K⊕~

εK−→ K, where εK , the co-unit
of (−)⊕ a (−)~ takes (k, (s1, . . . , sn)) ∈ |K⊕~ | to sn ∈ |K|. Consider now the
composite

X⊕
κv−→ (ΩΛ)⊕

g⊕−→ (2Λ)⊕~
ε−→ 2Λ

It takes (k, x) ∈ |X⊕| to the set of all formulae ϕ such that x vk ϕ, that is such
that (x, k) v ϕ. ut

C Proofs of §4 (Elements of Algebraic Perspectives)

C.1 Proofs of §4.1 (Boolean Algebras with Operators)

Remark C.1 (Rem. 4.2). Following the usual terminology, a (Kripke) model is a
transition system K together with a valuation of atomic propositions v : AP →
2|K|. We say that a model (K, v) is modaly saturated (see e.g.[5, §2.5]) whenever
for all state s ∈ |K| and all (possibly infinite) set of formulae Φ, if s v 3

∧
Ψ

for all finite Ψ ⊆ Φ, then there is t ∈ ∂(s) s.t. t v ϕ for all ϕ ∈ Φ. It is
well-known that modaly saturated models satisfy the Hennessy-Milner property,
and moreover that ultrafilter frames as well as image finite models are modaly
saturated.

We note the following property. Given a t.s.K and a valuation v : AP → 2|K|,
the TS-map K → Uf(LT ) is a map of coalgebras if and only if the model (K, v)
is modaly saturated. ut

The proof of Rem. C.1 (Rem. 4.2) relies on the following well-known fact.

Lemma C.2. Given a BAO (B, g), letting f(a) := ¬g(¬a), and F ∈ Uf(B), if
G0 ⊆ B is such that the set

H := G0 ∪ {a | f(a) ∈ F}

has the finite meet property, then G0 is included in an ultrafilter G ∈ ∂Uf(B)(F ).

Proof (of Lem. C.2). First, we note that

– G ∈ ∂Uf(B)(B) iff a ∈ G whenever f(a) ∈ F .

Proof. If G ∈ ∂Uf(B)(F ) and f(a) ∈ F , we have g(¬a) /∈ F so that ¬a /∈ G
and a ∈ G. Conversely, given a ∈ G, we have ¬a /∈ G so that f(¬a) =
¬g(a) /∈ F and g(a) ∈ F . ut

Returning to our property, it follows from Zorn’s Lemma that H is contained in
an ultrafilter G, and we have G ∈ ∂Uf(B)(F ) because a ∈ G whenever f(a) ∈ F .

ut
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Proof (of Rem. C.1). Write θ : K → Uf(LT ) for the TS-map induced by v.
Note that since θ is a map of TS, we only have to consider the back property of
bisimulation.

Assume first that (K, v) is modaly saturated. Let s ∈ |K| and F := θ(s), and
consider G ∈ ∂Uf(LT )(F ). We have to show that for some t ∈ ∂(s), G is exactly
the set of all ϕ s.t. t v ϕ. But for every finite Ψ ⊆ G, we have

∧
Φ ∈ G since

G is an ultrafilter, so that s v 3
∧
Ψ by definition of ∂Uf(LT ), and by modal

saturation we get some t ∈ ∂(s) s.t. t v ϕ for all ϕ ∈ G. Since G is an ultrafilter,
we have ϕ /∈ G iff ¬ϕ ∈ G, so that t v ϕ iff ϕ ∈ G.

Conversely, assume that θ is a map of coalgebras. Consider a state s ∈ |K|
and a set of formulae Φ ⊆ Λ such that s v 3

∧
Ψ for all finite Ψ ⊆ Φ. We are

going to show that Φ is contained in an ultrafilter G ∈ ∂Uf(LT )(F ) for F := θ(s).
As soon as this holds we are done since θ being a map of coalgebras implies
G = θ(t) for some t ∈ ∂(s). We invoke Lem. C.2, so that we have to show that
the following set H has the finite meet property

H := Φ ∪ {ψ | 2ψ ∈ F}

But note that the finite meet property holds for Φ (since for any finite Ψ ⊆ Φ
we have s v 3

∧
Ψ) as well as for the set of all ψ s.t. 2ψ ∈ F . So we are left

with showing that ϕ ∧ ψ 6≡ ⊥ for ϕ ∈ Φ and 2ψ ∈ F . But this follows from the
fact that ϕ ∈ Φ implies t v ϕ for some t ∈ ∂(s), which must also force ψ since
s v 2ψ. ut

Remark C.3 (Rem. 4.3). Consider a Boolean algebra B, a set S and a function

f : S ×B −→ 2

together with its transposes f t : S → 2B and tf : B → 2S . Then tf is a map of
Boolean algebras iff for all s ∈ S, the set f t(s) ⊆ B is an ultrafilter. ut

Proof. Assume first that tf : B → 2S is a map of Boolan algebra, and consider
s ∈ S. First we have ⊥ /∈ f t(s), since otherwise we would have s ∈ tf(⊥),
contradicting tf(⊥) = ∅. Moreover, we have > ∈ f t(s) since tf(>) = S. Consider
now a, b ∈ B. If a ∈ f t(s) and a ≤ b, then since tf(a) ⊆ tf(b), we have s ∈ tf(b),
so that b ∈ f t(s). Also, if a, b ∈ f t(s), then we have s ∈ tf(a) ∩ tf(b), so that
s ∈ tf(a ∧ b) and a ∧ b ∈ f t(s). Finally, if a /∈ f t(s), we have s ∈ tf(¬a) so that
¬a ∈ f t(s).

Conversely, assume that each f t(s) is an ultrafilter. We have tf(⊥) = ∅ since
⊥ /∈ f t(s) for all s ∈ S. Moreover, we have tf(>) = S since > ∈ f t(s) for
all s ∈ S. Consider now a, b ∈ B. We have tf(a ∧ b) = tf(a) ∩ tf(b) since
tf(a ∧ b) ⊆ tf(a) ∩ tf(b) and since s ∈ tf(a) ∩ tf(b) implies a, b ∈ f t(s), so
that a ∧ b ∈ f t(s) and s ∈ tf(a ∧ b). Finally, tf(¬a) = S \ tf(a) since a /∈ f t(s)
implies ¬a ∈ f t(s) by assumption on f t(s), and a ∈ f t(s) implies ¬a /∈ f t(s),
since a,¬a ∈ f t(s) would lead to ⊥ ∈ f t(s). ut
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C.2 Proofs of §4.2 (Mapping S to a Boolean Topos)

The proof of Lem. 4.10 is defered to §E.

Lemma C.4 (Lem. 4.11). The object LT∗ = ι∗(LT) is a Boolean algebra in
Psh(|N∗|).

Proof. This follows from the fact that each component LT∗(n) = LT is a Boolean
algebra. ut

D Proofs of §5 (Characterization of the Modal
Satisfaction Relation)

Proposition D.1 (Prop. 5.2). Given X and v, the transpose t∆(κv) : LT∗ →
2X
∗

of ∆(κv) : X∗ × LT∗ → 2 is a map of Boolean algebras in Psh(|N∗|), which
moreover extends v, in the sense that

LT∗
t∆(κv) // 2X

∗

AP

OO
v

44

Proof. We have to show that for each n > 0, t∆(κv)n takes [p]nK to vn(p) for
p ∈ AP and satisfy the equations:

t∆(κv)n(⊥) = ∅
t∆(κv)n(ϕ ∨ψ) = t∆(κv)n(ϕ) ∪ t∆(κv)n(ψ)

t∆(κv)n(¬ϕ) =
∏
`≤nX(`) \ t∆(κv)n(ϕ)

where ϕ stands for sequence ([ϕ1]K, . . . , [ϕn]K) (and similarly for ψ), ∪ is point-
wise union and \ pointwise set difference. Note that the equations for > and ∧
follow, since they are defined connectives in Λ.

Then result follows from the fact that by definition of ∆ (a.k.a. ι∗), we have
(x1, . . . , xn) ∈ t∆(κv)n(ϕ) iff (`, x`) v ϕ` for all ` ≤ n. ut

Lemma D.2 (Lem. 5.4). Consider an object X of S , some n > 0 and subsets
S ⊆ X(n), S′ ⊆ X(n+1) which are compatible with restriction (x↑ ∈ S whenever
x ∈ S′). Then 3X⊕S

′ ⊆ S. Moreover, we have 3X⊕S
′ = S iff the restriction of

(−)↑ : X(n+ 1)→ X(n) to S′ → S is surjective.

Proof. If x ∈ 3X⊕S, then for some y ∈ ∂X⊕(x) we have y ∈ S(n+ 1). But y ∈ S
implies y↑ ∈ S(n), and y↑ = x since y ∈ ∂X⊕(x).

As for the second point, if (−)↑ : S′ → S is surjective, then for all x ∈ S there
is some y ∈ S′ with y↑ = x, so that y ∈ ∂X⊕(x) and x ∈ 3X⊕(S′). Conversely,
if S ⊆ 3X⊕(S′) then for all x ∈ S there is some y ∈ S′ such that y↑ = x. ut

Proposition D.3 (Prop. 5.5). The map tκv : LT → ΩX factors as LT →
TotSubX ↪→ ΩX .
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Proof. Recall the iso g from proof of Rem. A.1 (Rem. 2.1).
Given n > 0 and a formula ϕ, let (S1, . . . , Sn) := gn((tκv)n([ϕ]K)) and note

that for all ` ≤ n we have (S1, . . . , S`) = g`((
tκv)`([3

n−`ϕ]K)).
Then for all ` < n and all x ∈ S(`), we have x v` 3n−`ϕ, that is (`, x) v

3n−`ϕ. Since n − ` > 0, there is some y ∈ X(` + 1) such that y↑ = x and
(`+ 1, y) v 3n−`−1ϕ. But this implies y ∈ S`+1 and we are done. ut

Theorem D.4 (Thm. 5.6). Given v : AP → 2X
∗
, the map κv : X × LT → Ω

is the unique map which satisfies all the following conditions:

(i) t∆(κv) : LT∗ → 2X
∗

is a map of Boolean algebras which extends v.
(ii) tκv : LT→ ΩX factors as LT→ TotSubX ↪→ ΩX .

Proof. It follows from Prop. 5.2 and Prop. 5.5 that κv satisfy (i) and (ii). As for
uniqueness, consider two maps f, g : X×LT→ Ω which both satisfy (i) and (ii).
We show by induction on formulae ϕ ∈ Λ that for all n > 0 and all x ∈ X(n),
we have fn(ϕ, x) = gn(ϕ, x).

In the base case ϕ is an atomic proposition p. Then by (i) for all n > 0 we
have t∆(f)n([p]K) = vn(p) = t∆(g)n([p]K), and we conclude by injectivity of ∆
(Lem. 4.10). The Boolean connectives are dealt with similarly, using the I.H. and
the fact that we must have e.g. t∆(f)n([ϕ∨ψ]K) = t∆(f)n([ϕ]K)∪t∆(f)n([ψ]K).

It remains to deal with 3ϕ. Fix n > 0. By (ii), let (S1, . . . , Sn+1) and
(T1, . . . , Tn+1) be the respective images of tfn+1([ϕ]K) and tgn+1([ϕ]K). By I.H.
we have Sn+1 = Tn+1. But this implies (S1, . . . , Sn) = (T1, . . . , Tn) since for all
for all ` ≤ n the restrictions of (−)↑ : X(` + 1) → X(`) to S(` + 1) → S(`)
and T (` + 1) → T (`) are both surjective. It thus follows that tfn([3ϕ]K) =
tgn([3ϕ]K). ut

E Proofs of §6.1 (A Geometric Morphism)

We spell out Lem. 6.1 in details.

Lemma E.1. Consider a geometric morphism f = f∗ a f∗ : F → E.

(a) The inverse image functor f∗ induces for each object A of E, an homomor-
phism of subobjects lattices

∆A : SubE(A) −→ SubF (f∗A)

Moreover, the action of ∆A on classifying maps takes χU : A→ ΩE to

f∗A
f∗(χU )−→ f∗(ΩE)

ρ−→ ΩF

where ρ is the classifying map of f∗(t)� f∗(ΩE).
(b) For each object A of E, ∆A has an (external) right adjoint (of posets)

ΓA : SubF (f∗A) −→ SubE(A)
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which takes v : V � f∗(A) to ΓA(v) : ΓA(V )� A given by the pullback

ΓA(V ) //
��

ΓA(v)

��

y f∗V��

f∗(v)

��
A

ηA
// f∗f∗A

Moreover, the action of ΓA on classifying maps takes χV : f∗A→ ΩE to

A
ηA−→ f∗f

∗A
f∗(χV )−→ f∗(ΩF )

τ−→ ΩE

where τ is the classifying map of f∗(t)� f∗(ΩF ).
(c) Writing λ : ΩE → f∗ΩF for the transpose of ρ : f∗ΩF → ΩE along f∗ a f∗,

we have an internal adjunction of posets λ a τ : ΩE → f∗ΩF .

Proof. (a) Recall from [22, Prop. IV.6.4] that in subobjects lattices, meets are
computed by pullbacks and joins by coproducts and images. So the result
follows form the fact that f∗ preserves colimits and finite limits.
As for the second point, consider for a subobject u : U � A, the diagram

f∗(U)y��
f∗(u)

��

// f∗(1)y
//

��

f∗(t)

��

1��

t

��
f∗(A)

f∗(χU )
// f∗(ΩE) ρ

// ΩF

Since the outer rectangle is a pullback, it follows that ρ ◦ f∗(χU ) classifies
f∗(U), and therefore that χf∗(U) = ρ ◦ f∗(χU ).

(b) We have to show that given subobjects u : U � A and v : V � f∗A, we
have

∆AU ≤ V iff U ≤ ΓAV

– Assume first that∆AU ≤ V , say with h : f∗U → V such that f∗u = v◦h.
Consider the composite map

U
ηU−→ f∗f

∗U
f∗h−→ f∗f

∗V
f∗v−→ f∗f

∗A

Since f∗u = v ◦ h and using the naturality of η we have:

f∗v ◦ f∗h ◦ ηU = f∗(v ◦ h) ◦ ηU
= f∗f

∗u ◦ ηU
= ηA ◦ u

Then the pullback defining ΓA gives a (unique) map U → ΓA(V ) such
that

U
u−→ X = U −→ ΓA(V )

ΓA(v)−→ X

and we are done.
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– Assume now that U ≤ ΓAV , say with k : U → ΓAV such that u =
ΓA(v) ◦ k. We will show that ∆AU ≤ V with

f∗U
f∗k−→ f∗ΓAV −→ f∗f∗V

εV−→ V

that is

f∗U
f∗u−→ f∗A = f∗U

f∗k−→ f∗ΓAV −→ f∗f∗V
εV−→ V

v−→ f∗A

First, by naturality of ε, we have

f∗f∗V
εV−→ V

v−→ f∗A = f∗f∗V
f∗f∗v−→ f∗f∗f

∗A
εf∗A−→ f∗A

Thanks to the diagram defining ΓA, we then have

f∗ΓAV −→ f∗f∗V
f∗f∗v−→ f∗f∗f

∗A = f∗ΓAV
f∗ΓAv−→ f∗A

f∗ηA−→ f∗f∗f
∗A

The triangular equality

f∗A
f∗ηA−→ f∗f∗f

∗A
εf∗A−→ f∗A = f∗A

idf∗A−→ f∗A

implies

f∗U
f∗k−→ f∗ΓAV −→ f∗f∗V

εV−→ V
v−→ f∗A = f∗U

f∗k−→ f∗ΓAV
f∗ΓAv−→ f∗A

and we are done since u = ΓA(v) ◦ k.
The second point on τ follows from the pasting of pullback diagrams

ΓA(V )y��
ΓA(v)

��

// f∗(V )y��
f∗(v)

��

// f∗(1)y
//

��

f∗(t)

��

1��

t

��
A

ηA
// f∗f∗A

f∗(χV )
// f∗(ΩF )

τ
// ΩE

(c) First note that

ΩE
λ−→ f∗ΩF = ΩE

ηΩE−→ f∗f
∗ΩE

f∗ρ−→ f∗ΩF

We will show idΩE ≤ τ ◦ λ and λ ◦ τ ≤ idf∗ΩF . We refer to [22, §IV.9, pp.
205-206] for the precise notion of internal adjunction between partial orders
(see also [22, Prop. IX.6.4]).
First, given U ∈ SubE(A), using the naturality of η, a simple digram chasing
shows that ΓA∆AU is classified by

A
χU−→ ΩE

λ−→ f∗ΩF
τ−→ ΩE

But since U ≤ ΓA∆AU , this implies idΩE ≤ τ ◦ λ.
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Conversely, assume given V ∈ SubF (f∗A). Note that ∆AΓAV is classified
by

f∗A
f∗ηA−→ f∗f∗f

∗A
f∗f∗χV−→ f∗f∗ΩF

f∗τ−→ f∗ΩE
ρ−→ ΩF

We now apply f∗ on the above composite, use the equality f∗f
∗ηA = ηf∗f∗A

and apply the naturality of η twice to obtain

f∗χ∆AΓAV = f∗f
∗A

f∗χV−→ f∗ΩF
τ−→ ΩE

λ−→ f∗ΩF

But ∆AΓAV ≤ V implies f∗∆AΓAV ≤ f∗V (since f∗ preserves limits, hence
monos), so that we must have λ ◦ τ ≤ idf∗ΩF . ut

The following is a detailed version of Prop. 6.2.

Proposition E.2. In the case of ι∗ a ι∗ : Psh(|N∗|)→ S :

(a) The unit of the adjunction ι∗ a ι∗ has components ηX ∈ S [X, ι∗ι
∗X] with

ηX(n) : s ∈ X(n) 7−→ (s|1, . . . , s|n−1, s) ∈
∏
k≤n

X(k)

(b) Given an object X of S , the (external) map ΓX : SubPsh(|N∗|)(ι
∗X) →

SubS (X) takes a subobject A ↪→ ι∗X in Psh(|N∗|) to ΓX(A) ↪→ X where

ΓX(A)(n) = {s ∈ X(n) | ∀k ≤ n. s|k ∈ A(k)}

(c) The composite ΓX ◦∆X is the identity on SubS (X).
(d) The map τ : 2∗ → Ω at n > 0 takes (b1, . . . , bn) ∈ 2n to max{` ≤ n | b1 =
· · · = b` = 1}.

(e) The map ρ : ι∗(Ω) → 2 at n > 0 takes n ≤ n to 1 and k < n to 0. Since
λ = ι∗(ρ) ◦ ηΩ, the map λ : Ω → 2∗ at n > 0 takes k ≤ n to the sequence
(1k, 0n−k) ∈ 2∗(n).

Proof.

(a) This follows from the general form of the unit for a geometric morphisms
f∗ a f∗ : SetsC → SetsD induced by a functor f : C→ D, where the functor
f∗ : SetsD → SetsC is given by precomposition with f , and its right-adjoint
f∗ : SetsC → SetsD is given by right Kan extensions along f . (see e.g. [15,
Ex. A.4.1.4]).
Explicitelly, given Q : C→ Sets and D ∈ Obj(C), f∗(Q)(D) is the set of all
s ∈

∏
g:D→f(C)Q(C) s.t. for k ∈ C[C,C ′], if f(k)◦g = g′ then sg′ = Q(k)(sg).

Then, the unit ηP at P : D→ Sets has component at D ∈ Obj(D) the func-
tion ηP (D) : P (D)→ f∗f

∗P (D) which takes x ∈ P (D) to (Pg(x))g:D→f(C)

(recall that f∗P (C) = Pf(C) for C ∈ Obj(C), and that f∗P (k) = Pf(k)
for k ∈ C[C,C ′]).
In the case of an object X of S , ηX : X → X∗ thus takes x ∈ X(n) to the
family (x|`)`≤n and we are done.
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(b) Since limits in functor cateogries are comupted pointwise (see e.g. [22, pp.
22-23]), we should have

ΓX(A)(n) ' {(x, (s1, . . . , sn)) ∈ X(n)×
∏
`≤n

A(`) | s` = x|`}

This implies that for (x, (s1, . . . , sn)) ∈ ΓX(A)(n), (s1, . . . , sn) is completelly
determined by x, so that we can indeed take

ΓX(A)(n) = {x ∈ X(n) | x` ∈ A(`) for all ` ≤ n}

(c) Let A ↪→ X. Lemma E.1.(b) implies that ΓX∆X(A) ⊆ A. Conversely, assume
that x ∈ A(n). Then since A ∈ SubS (X), we have x|` ∈ A(`) for all ` ≤ n,
so that x ∈ ΓX(A)(n).

(d) By definition, τn takes (b1, . . . , bn) ∈ 2∗ to

max{` ≤ n | (b1, . . . , bn)` = 1`}

that is to
max{` ≤ n | b1 = · · · = b` = 1}

(e) The part on ρ follows directly from the definition of t : 1 → Ω in S as
tn(1) = n. As for the second part, given k ∈ Ω(n), we have

ηΩ(n)(k) = (min(k, 1), . . . ,min(k, n− 1), k)

so that (ι∗(ρ)◦ηΩ)n(k) = (b1, . . . , bn) where b` = 1 iff min(k, `) = ` iff ` ≤ k.
ut

Lemma E.3 (Lem. 4.10). The functor ι∗ is faithful and preserves limits. It
induces for each object X of S an injective map of lattices ∆X : SubS (X) →
SubPsh(|N∗|)(X

∗).

Proof. Preservation of limits (which in particular implies that ι∗ a ι∗ is a geo-
metric morphism) is given by [15, Ex. A.4.1.4]. It follows from [15, Lem. A.4.2.6
& Ex. A.4.2.7.(b)] that ι∗ is faithful since ι is surjective on objects. Moreover,
in the context of a geometric morphism f∗ a f∗ : F → E , by [22, Lem. VII.4.3]
f∗ is faithful iff ∆A is an injective map of lattices, or equivalently iff f∗ reflects
inclusion of subobjects (or equivalently iff the unit of f∗ a f∗ is a mono by [15,
Lem. A.4.2.6]). ut

Lemma E.4 (Lem. 6.3). The map λ : Ω → 2∗, taking k ∈ Ω(n) to (1k, 0n−k)
is a map of internal lattices. It is an internal left-adjoint to τ : 2∗ → Ω, with
moreover τ ◦ λ = idΩ.

Proof. The adjunction λ a τ follows from Lem. E.1.(c) and Prop. E.2.(e). As for
the last part, let k ∈ Ω(n). Then λn(k) = (1k, 0n−k) so that (τ ◦ λ)n(k) = k by
Prop. E.2.(d). ut
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F Proofs of §6 (Extensions)

F.1 Proofs of §6.2 (Accommodating an S4 Reverse Modality)

Lemma F.1 (Lem. 6.5). The function Λ�∗ → (
∐
nX(n))→ 2 induced by (5)

coincides with the interpretation function J−Kv�∗ : Λ�∗ → 2|X
⊕|.

Proof. First, note that ∆(κvΛ�∗
)(n) takes (x, ϕ) to 1 iff (n, x) v�∗ ϕ. It follows

that the induced function Λ�∗ → (
∐
nX(n)) → 2 takes ϕ and (n, x) to 1 iff

(n, x) ∈ JϕKv�∗ and we are done. ut

Proposition F.2 (Prop. 6.6). The interpretation of �∗ϕ as the map X → 2∗
of (6) is the image under the comonad λ ◦ τ of the interpretation of ϕ as a map
X → 2∗.

Proof. Indeed, for a fixed formula ϕ, JϕKv�∗ in Psh(|N∗|) at n takes x ∈ X(n)
to 1 iff x v�∗,n ϕ. It follows that the image of JϕKv�∗ via X → X∗ → 2∗ takes

x ∈ X(n) to the tuple (b1, . . . , bn) ∈ 2n where b` = JϕKv�∗(`)(x|`). The composite

of X → X∗ → 2∗ with �∗ : 2∗ → Ω → 2∗ takes x ∈ X(n) to (1k, 0n−k) where
k = max{` ≤ n | b1 = · · · = b` = 1}. It follows that X → X∗ → 2∗ → Ω → 2∗
takes x ∈ X(n) to the tuple (b1, . . . , bn) ∈ 2∗ where b` = J�∗ϕKv�∗(`)(x|`). ut

Proof (of Rem. 6.7). Fix an object X of S and a valuation v : AP → 2|X
⊕|

(reverting the convention of Not. 5.1). We consider the following formulae:

ϕ,ψ ∈ Λ0
�∗ ::= p | ⊥ | ϕ ∨ ψ | ¬ϕ | �∗ϕ

where p ∈ AP . We also assume the usual defined formulae (see §2.3). This
amounts to the following terms in the language of [2, §2] (where P refer to the
type of propositions):

p : P

ϕ : P ψ : P

ϕ ∨ ψ : P

ϕ : P

¬ϕ : P

ϕ : P

�∗ϕ : P

We first consider the interpretation of formulae following the instance of [2]

for the geometric morphism ∗ a ∗ : Sets|K| → SetsK (see [2, Ex. 2.1.1]).
Following [2, Def. 2.3], formulae ϕ ∈ Λ0

�∗ are interpreted as maps JϕKvK : 1→ 2K
in SetsK for Kop =

∫
X. The interpretation J−KvK is defined by induction on

formulae, with the following clauses from [2, Def. 2.3]:

JpKvK := 1
∗(v(p))−→ 2K

J⊥KvK := 1
f−→ 2K

Jϕ ∨ ψKK := 1
〈JϕKvK ,JψKvK〉−→ 2K × 2K

∨−→ 2K

J¬ϕKK := 1
JϕKvK−→ 2K

¬−→ 2K

J�∗ϕKvK := 1
JϕKvK−→ 2K

λK◦τK−→ 2K

where
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• v(p) : 1→ 2 is a shorthand for

v(p) :

(∐
n>0

X(n)

)
→ 2 '

∏
(n,x)∈Obj(K)

2 ' Sets|K|[1,2]

• ¬ : 2K → 2K is the lift of the ¬ : 2 → 2 of Sets|K| to SetsK , so that ¬ at
(n, x) takes (b1, . . . , bn) to (¬b1, . . . ,¬bn).
• The maps λK and τK are given by Lem. E.1.

It then follows from [2, Prop. 4.9] that for (n, x) ∈ Obj(K) =
∐
n>0X(n), we

have JϕKvK(n, x) = (b1, . . . , bn) where b` = 1 iff (`, x|`) v�∗ ϕ. It follows that

J̃ϕKvK induces the S -map X → 2∗ which at n takes x ∈ X(n) to (b1, . . . , bn)
where b` = 1 iff (`, x|`) v�∗ ϕ, and we are done (reasoning as in the proof of
Prop. F.2). ut

F.2 Proofs of §6.3 (Extension to the Modal µ-Calculus)

Proposition F.3 (Prop. 6.9). Given a formula ϕ monotone in the proposi-
tional variable α, the interpretation Jµα.ϕKvµ conincides with the following sub-
object of X∗:∧

{A | A ∈ SubPsh(|N∗|)(X
∗) & JϕKv[A/α]µ ≤SubPsh(|N∗|)(X

∗) A}

Proof. Since subobjects of X∗ in Psh(|N∗|) conincide with subsets of |X~| =∐
nX(n), and since g.l.b.’s (resp. inclusions) of subobjects in presheaf topos are

pointwise intersections (resp. inclusions) (see e.g. [22, §III.8]), we are left with
showing that for all n > 0, Jµα.ϕKvµ(n) conincides with∧

{A(n) | A : X∗ → 2 & JϕKv[A/α]µ ⊆ A}

But x ∈ Jµα.ϕKvµ(n) iff (n, x) ∈ A for all A : |X⊕| → 2 s.t. JϕKv[A/α]µ ⊆ A, that

is iff x ∈ A(n) for all A :
∏
n(X(n)→ 2) s.t. JϕKv[A/α]µ ⊆ A. ut
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