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ABSTRACT

Numeric musical and artistic creation is in great part based

on well-known patcher softwares: Max, PureData, Open-

Music, vvvv…

Yet, handling temporal evolutions and structures on large

scales remains a central problem: for instance, writing a

song with introduction, chorus, verse, chorus, parts in Max

presents many hurdles to the composer. Hence, multiple

software have introduced tracks and automations to provide

a temporal control of a given set of parameters in a single

or even multiple concurrent time-lines.

We present an extension to the dataflow paradigm used by

patchers that allows to handle the execution of any parts of

a computation in time. That is, instead of sending control

messages to existing patchs, they are run in a time-line

which orchestrates the data bindings between different parts

of the dataflow. This enables dynamic behaviours when

creating temporal compositions. An example is given with

Pure Data patches and an i-score scenario.

1 Introduction

This work explores the association of macroscopic temporal

semantics with the dataflow graphs generally used in music

and signal processing.

We analyze the meanings that can be given to processes

executing in time, when these processes have a data depen-

dency and do not execute at exactly the same time.

For instance, given two processes p1, p2, what can be said
of a programwhere p1 executes from t = 0 to t = 5 seconds,
and p2 from t = 3 to t = 6 when p1 and p2 operate on the
same data?

An example would be an audio filter: p1 is a low-pass and
p2 a reverb; we want the reverb to activate only after an

action of a performer and stop after a few seconds.

The simplest strategy can be to only allow execution when

all processes are active and have been given a definite order

of execution: in this case the overall program will only

execute during the intersection of the activation of p1 and
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p2, which goes from t = 3 to t = 5. While safe from

the point of view of software execution, we will show that

other execution policies leveraging information from the

temporal layout of the processes can provide composers

with new creative capabilities, through an example that uses

Pure Data.

An environment associated with the dataflow graph is

introduced; it contains the values of the inputs and outputs

of the processes in this graph. Then, since a graph may not

always be fully active, we show that it is also meaningful

to have implicit connections between nodes of the graph,

that will use the environment. This allows dynamic routing

of the processes according to their temporal order during

execution, and extends routing to pattern-matched elements

of the environment instead of single values. Three different

behaviors between the input and output parameters of the

dataflow nodes are presented: strict, glutton, and delayed.

Time flow 
direction

Interactive
trigger 

State

Conditional

Synchronization

Span of time

Figure 1: Part of an OSSIA scenario, showcasing the tem-

poral syntax used. A full horizontal line means that the

time must not be interrupted, while a dashed horizontal line

means that the time of this time constraint can be interrupted

to proceed to the following parts of the score according to

an external event.

1.1 Related works

There is a long-standing interest in the handling of time

in programming languages, which is intrinsically linked to

how the language handles dynamicity.

PEARL90[10] 1 provides temporal primitives allowing

1 Not to be mistaken with the Perl language commonly used for text

processing
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for instance to perform loops at a given rate for a given

amount of time. More recently, Céu has been introduced

as a synchronous language with temporal operators, and

applications to multimedia[13].

OpenMusic is a visual environment which allows to write

music by functional composition. It has been recently ex-

tended with timed sequences allowing to specify evolutions

of parameters in time[9].

Likewise, the Bach library for Max [1] allows to define

temporal variations of parameters during the playing of a

note by with the mechanism of slots. The processes con-

trolled by such parameters are then available to use in the

Max patch.

The Max for Live extension to Ableton Live allows to

embedMax patches in theAbleton Live sequencer. Through

the API provided, one can control the execution of various

elements of the sequencer in Max; automations in Live can

also be used to send data to Max patches at a given time.

Amethod for dynamic patching of Max abstractions based

onCommonLisp has been proposed byThomasHummel[11]

to reduce resource usage by enabling and disabling sub-

patches at different points in the execution of a program.

This has the advantage of saving computing power for the

active elements of the score.

Dataflows and especially synchronous dataflows have seen

tremendous usage in the music and signal processing com-

munity. A list of patterns commonly used when developing

dataflow-based music software is presented in [2]. Formal

semantics are given in [4]. Specific implementation aspects

of dataflow systems are discussed in the Handbook of Sig-

nal Processing Systems[5].

Dynamicity in dataflows is generally separated in two

independent aspects: dynamicity of the data, and of the

topology. The first relates to the variability on the streams

of tokens, while the second is about changes to the structure

of the graph. Boolean parametric dataflows[3] have been

proposed to solve dynamicity of topology, by introducing

conditionals at the edges.

1.2 Temporal formalism

This work implicitly uses the OSSIA formalism [7] in its

examples to provide primitives relative to the evolution of

time: time constraints (horizontal lines), time nodes (vertical

lines). The elements of its syntax are presented in fig. 1.

It is important to note that any other system of temporal

relationships between processes could be used instead.

2 Definitions

f1 f2

(a)

f1 f2

(b)

f1 f2

(c)

Figure 2: Possible dataflows between f1 and f2. As can be
seen in fig. 3, there are no relationships between f1 and f2
in the temporal graph.

We call process an entity that consists in a function f , an
associated state, any number of inputs and output ports, and

an activation status. f has a single argument t ∈ R+. The

execution of f may read any number of tokens from the

inputs and write any number of tokens to the outputs.

The function associated to an inactive process may not be

executed.

We rely on two families of graphs for defining the execu-

tion of a program:

• Synchronous dataflow graphs between processes:

Gd(Vd, Ed) where Vd is the set of processes and Ed

the set of data bindings between processes.

• Temporal graphs, based on the OSSIA formalism:

Gt(Vt, Et) where Vt is the set of time nodes and Et

is the set of time constraints in a score. For coherency,

we call these graphs temporal graphs.

In the following, we consider a program consisting in a

dataflow, and a temporal graph.

A program may consist in more than a single temporal

graph: they are defined as processes themselves, which

provides them with time information.

Each time constraint has an associated set of references to

processes. Aprocess may only be executed if it is referenced

at least once in a time constraint, at the exception of a special

“main” process that acts as an entrypoint.

The execution of a program is synchronous and driven by

a scheduler. At each tick, the state of each temporal graph

is updated with the following informations:

• Which processes are currently activated.

• For how long these processes have been activated.

This is done according to the various events that occur and

may change the order of activation of processes.

Processes are then sorted according to their dependencies

and activation status, and finally executed.

Throughout this paper, we will use the execution traces

in fig. 4a and fig. 4b as running example, as well as the

relationships between f1 and f2 present in fig. 2.

f1

f2

Figure 3: The example temporal graph we use: both f1 and
f2 can start at any time. f1 and f2 both have a given, finite
duration.

f1

f2
t0 t1 t2

(a) A possible trace of execu-

tion for f1 and f2

f1

f2
t0 t1 t2

(b) Another trace of execution

Figure 4: Process activation traces corresponding to the graph

given in 3



3 Environment, implicit and explicit

connections

In the data flow paradigm generally used in music software,

nodes are linked together through connections in their re-

spective input and output ports.

This work extends the data flow approach with a perma-

nent external environment, that contains a mapping of key-

value pairs. Such a pair is called a variable.

Keys are specified with OSC-like[8] addresses: /foo/bar
and values can be any kind of data: numbers, strings, etc.

The values of the environment may vary independently of

the execution of the program: for instance elements of the

environment may be changed asynchronously through the

network, graphical widgets or physical controls.

We then have to provide a mean to use the values of this

environment to the dataflow. Thus, we extend the input and

output ports with the following explicitness semantic:

• An explicit port is a port that has been connected

manually to another port. An input port may only

read tokens from the output port it is connected to.

This connection is static and will not change for the

duration of the execution. 2

• An implicit port is a port that has not been connected

to another port. It may dynamically read and write

to any number of addresses from the environment to

perform its work.

During a tick, ports have access to three sets of values,

corresponding to scopes:

• Global scope: The values that were in the environ-

ment at the beginning of the tick. These values are

accessible to every process.

• Local scope: The values produced by previous im-

plicit output ports in the dataflow. Section 4 presents

the various policies that nodes can leverage to use

these values. The local scope is cleared at the begin-

ning of a tick. The values written to it are committed

to the global environment at the end of the tick.

• Connection scope: the explicit scope between two

ports; the data flowing from one output port can only

go to input ports it is connected to. This is the explicit

case.

For a given execution following fig. 2a, the evolution of

such parameters would behave as in table 1.

Address Tick After f1 After f2 Tick

Global /a a0 a0 a0 f2(f1(a0))
Local /a ∅ f1(a0) f2(f1(a0)) ∅

Table 1: Evolution of a variable in the global and local scope

during the execution of a tick, in the case of an implicit

connection. Both f1 and f2 are active. “Tick” indicates

the beginning of a new tick; the temporal progression is

left-to-right.

This mechanism allows for new behaviors during the cre-

ation of a dataflow program.

2 Reactive environments would of course be able to alter such con-

nections at run-time; relevant mechanisms are outside of the scope of this

paper.

4 Relationships

We are interested in the relationships between nodes of

the dataflow graph when they produce compatible tokens,

whether the production is specified implicitly or explicitly,

and when taking into account deactivated nodes. That is,

given a node of the dataflow executing and producing to-

kens, we must define which following nodes, if any, will

receive the tokens and when will they execute.

We propose three relationships: strict, glutton, and de-

layed.

These relationships are expressed between ports of two

nodes of the dataflow.

Two nodes may not always be explicitly connected to each

other through a cable. We have to provide an order between

them since execution requires a total ordering of nodes.

For this, an additional set of directed edges between nodes

of the dataflow is used to provide this order. Methods to set

up these edges are discussed in section 5.

4.1 Strict relationship

In a given tick, an execution of a node engaged in a strict

relationship with another node depends on the other node

being active.

For instance, take the case in fig. 4a where f1 and f2 both
read from a and write to a where a is an address. We use

the dataflow given in fig. 2a.

Let commit(a, x) be the function that commits a value x to

the address a in the local scope, and pull(x) the function that
reads the value of the address x from the global scope. We

assume that f1, f2 always have access to this information.

We will get the following behaviors during each slice:

• During t0: ∅.
• During t1: commit(a, (f2 ◦ f1)(pull(a))).
• During t2: ∅.

A strict relationship between two nodes may only be de-

fined through an explicit connection.

This relationship should be used when a computation does

not make sense on its own.

4.2 Glutton relationship

An execution of a node will happen even if the nodes it is

connected to are not active; instead, data will be read and

written from the environment.

If we take the same case than previously, the behavior is:

• t0: commit(a, f1(pull(a))).

• t1: commit(a, (f2 ◦ f1)(pull(a))).
• t2: commit(a, f2(pull(a))).

This relationship may be explicit or implicit.

In the explicit case, the output of f1 goes to the input of f2
through a cable. If an address has been specified for each

port in addition to the explicit connection:

• If f1 is not active, f2 reads from the local scope in-

stead, or the global scope if the required address is

not available.

• If f2 is not active, f1 writes to the local scope instead.
Such a behavior is conceptually similar to a guitarist’s

pedal board: not all pedals will always be active, but we

want the signal to keep flowing even if a pedal is disabled.



4.3 Delayed relationship

A connection between an output and an input is delayed

through bufferisation in a queue.

The delayed connection can behave in two ways:

• Readers of the buffer always start from the same point:

the beginning of the previous function in the callback

chain. The frame pointer would be located in each

delayed connection, and would not be shared between

processes.

• Readers of the buffer continue from the latest read

position. The frame pointer would be located in the

source port, and would be shared across all processes

reading from it.

This behavior can be useful when multiple functions

should apply successively to a single buffer, as in

fig. 6. However, it would also create concurrent ac-

cesses problems if two nodes happened to read an

output at the same time.

Arumi presents in [2] the advantages and drawbacks of

storing tokens at the output or input ports.

This relationship has to be specified explicitly to allow for

the tokens to be buffered.

If we have a delay connection from f1 to f2, the first call
to f2 will use the first value that was produced by f1.
We also define a strictness level for the delayed connection.

In the strict case, a node will only be able to execute if the

source has produced enough tokens.

That is, in fig. 5, f2 would only execute during t1.

f1

f2

t0 t1 t2

Figure 5: Another execution trace, stemming from a different

score than the one presented in fig. 3. f2’s input corresponds
to f1’s output, delayed: this creates a causality problem.

f1

f2 f3 f4

Figure 6: f2, f3 and f4 read from f1 with a delayed connec-
tion.

5 Default behaviors for orders

We assess here the various mechanisms possible to specify

the dependencies between nodes of the dataflow. Informa-

tion provided in the temporal graph can be leveraged to

connect the nodes at runtime in a fashion that would make

sense to composers & authors.

By default, any node without preceding nodes would strive

to be scheduled at the earliest possible time.

Connections between ports imply a partial ordering be-

tween nodes, hence we only consider the ordering between

implicitly connected nodes of the dataflow.

5.1 Manual ordering

In this case, the author explicitly specifies an order by setting

up an edge between two nodes. This is the slowest process,

but which gives the most precise specification.

5.2 Hierarchical ordering

We follow the hierarchical organization of the temporal

graphs: each time constraint has an ordered list of pro-

cesses, and each time constraint is itself ordered relative

to others in a given temporal graph. This gives an order

between processes, which does not require the composer to

manipulate the dataflow unless a specific data connection

has to be established.

5.3 Temporal ordering

In this case, the temporal order in which objects are executed

becomes the order of chaining in the dataflow.

With the OSSIA semantics, this order could change at each

run of a score, as showcased in fig. 7.

• t0: f1.

• t1: f2 ◦ f1.
• t2: f2.

(a) Glutton execution in the

order of the fig. 4a

• t0: f2.

• t1: f1 ◦ f2.
• t2: f1.

(b) Glutton execution in the

case of fig. 4b

Figure 7: Executions with a temporal ordering

6 Implementation considerations

Multiple points discussed in this article can be left to the

decision of designers of dataflow systems.

6.1 Compromises in dynamicity

A first choice that such a designer ought to make would be

the level of dynamicity of the system. For instance: would

nodes of the dataflow have statically, fixed input and output

addresses, or would they be defined and routed dynamically

at each tick. The first case allows for better performance:

more functional dependencies could be checked and set-up

statically. The second enables new behaviors: for instance,

a node could write a value to a random parameter at each

tick to create fuzzing effects.

A second choice is the use of scopes and the behavior

when a given scope does not have the required value. If

an input port tries to read from an address /a, would the

implementation allow it to read from the global scope if

the value is not available in the local scope? It is up to the

designer of the software to choose whether a port can work

with any permutation of ports:

• When connected explicitly,

• With the local scope,

• With the global scope.

6.2 Pattern matching

More dynamic behaviors could also be achieved by allowing

to use patterns instead of addresses in the port definitions.



(a) f1, f
′
1: note generator. (b) f2: note generator, at a

lower tempo.

(c) f3: synthesizes the input
note, sets the volume.

(d) f4: high-pass filter. (e) f5, f
′
5: low-pass filter.

Figure 8: The functions we use in our example, as defined

in Pure Data.

For instance, instead of accepting data from a single source,

a port can specify an input pattern such as:

/foo.*/bar/b[a-zA-Z], as proposed in the OSC specification.

Upon execution, the input stream of the port would contain

the list of values corresponding to the matching addresses.

Given a global environment with the variables:

/foo/bar/ba 1.0
/foo.1/bob/bu 2.0
/foo.2/bar/be -1.0
/foo.42/bar/bo -3.0

Such a pattern would yield the tokens −1.0 and −3.0 at

the input of the port matching the pattern.

6.3 Default behaviors

Default behaviors can be encoded in any hierarchical unit;

for instance, the global scope. Likewise, each temporal

graph could also be set-up with a default connection type.

We propose a default glutton behavior; however usability

studies should be made to determine the most user-friendly

default.

6.4 Reference implementation

An implementation is being developed as an extension to

the OSSIA library 3 and i-score software 4 . This implemen-

tation uses PureData [12] through libpd [6] to provide func-

tion execution with multiple ports with primitives useful

for musical creation. As such, it allows to work with audio,

midi, and messages.

The C++ implementation of the execution algorithm, pro-

vided in the OSSIA library, is not tied in any way to Pure-

Data or any other environment: PureData is used as an

3 https://github.com/OSSIA/libossia
4 http://www.i-score.org
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/note
f2

f3

f4

f5 f '5

strict

glutton delay
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f '1

Figure 9: The dataflow relationships between instances of

f1,..5 in the program. The global environment contains

variables for /vol and /filt when the execution starts. A

PureData patch with similar semantics would use addition-

ally throw~, catch~, send, receive, delwrite~, delread~,
tabwrite~, tabread~ between nodes, and UDP & OSC re-

ceivers and senders to read and write from the environment.

f1 f2 f ′
1

f3

f4

f5 f ′
5

Figure 10: The temporal relationships between instances of

f1,..5 in the program.

example of implementation of a node to leverage an easy

and well-known method to produce generators and filters

with different kinds of inputs and outputs, which allows

to cover the whole set of features. Other nodes can be im-

plemented through inheritance of a set of C++ classes. As

such, the processes currently available in i-score (automa-

tions, Javascript code, MIDI piano roll) and in i-score-audio

(sound file reading, Faust and LV2 effects) are being ported

to this new execution model.

In terms of user interface, PureData patches appear as

nodes with their inputs and outputs in i-score. There are

two views: the main view, temporal and hierarchical, which

allows to position the nodes in time, draw automations,

etc., and the patching view which allows to connect nodes

together and set the relationship types. The temporal view

instead has easily accessible text fields that allow setting

input and output addresses for each port.

7 Applied example: generative music

We present here an example that leverages patches built

with Pure Data[12]. Figure 8 present the Pd patches used.

https://github.com/OSSIA/libossia
http://www.i-score.org


Fig. 9 presents the data relationships between the Pd patches,

with the mapping of inputs and outputs to addresses of

the environment. The inlets and outlets are ordered so that

audio ports come first and message ports come afterwards.

Finally, fig. 10 presents the temporal score that orchestrates

the execution of the Pd patches.

The execution happens as follows:

1. For a few milliseconds, nothing happens.

2. f3 is started. However, there is a strict dependency
between f3 and f4: no sound is produced; f3 is dis-
abled.

3. f1 is started. Since f3 is disabled, it writes /note to
the environment.

4. f1 stops, and a few milliseconds afterwards, f4 starts,
which allows f3 to execute. f3 uses the last value

of /note that was put in the global scope by f1. f3
fetches the value of /vol in the environment and f4
fetches the value of /filt there as well. Notice that
f3’s parent time constraint is dashed: it will execute

until it is manually stopped.

The sound that can be heard is a single tone with some

amount of high-pass filtering.

5. f2 starts: random notes will be generated at a lower

tempo and put at the /note input of f3 directly, by-

passing the environment.

6. f5 starts: the low-pass filter adds itself after the high-
pass filter.

7. f2 stops: the sound reverts to a continuous tone (the
last that was written, again).

8. f ′
1 starts: tones are generated again, but with a faster

tempo.

9. f4 stops: there is no sound anymore due to the strict

dependency. f5 applies its low-pass filter to silence.
10. f5 stops, and just afterwards f ′5 starts. Since f ′5

was in a delayed relationship with f4, the sound pro-
duced corresponds to the sound that was heard at the

beginning of f4, with both f4’s high pass filtering,

and f ′5’s low-pass filtering.

8 Conclusion

Throughout this paper, the effects of adding macro-temporal

semantics to dataflows were studied. The first step is to in-

troduce an environment that allows execution of a program

to continue if not all the nodes of a dataflow are currently

being executed. Then, we study the new possibilities of-

fered by the presence of the environment by the different

ways to interpret the absence of execution of a node. This

includes matching nodes together through pattern matching,

and distinct policies of execution that can take into account

the evolution of the program in time.

Such global environments have been implicitly present

in multiple dataflow-based software; however they are not

given an explicit existence. For instance, Max externals gen-

erally handle their global state through static C variables.

Making it explicit allows for better understanding of the ex-

ecution of a program, and may enable further optimization

opportunities.

After discussing the various choices left to the implemen-

tor, an example leveraging multiple PureData patches sched-

uled through an i-score score is explained.

A further goal for this work is to extend the definition

not only to work with a single variable of time, but to any

kind of activation mechanism: for instance, evolution of a

position in a 3D space, etc.

The paper mostly centered around a single dataflow. A

meaning has been proposed for multiple dataflows: they

could be used as distinct variable scopes. If the temporal

graph has hierarchical features, its use as a scoping mecha-

nism should also be envisioned.
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