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We report evidence of a non-adiabatic Kohn anomaly in boron-doped diamond, using a joint
theoretical and experimental analysis of the phonon dispersion relations. We demonstrate that
standard calculations of phonons using density functional perturbation theory are unable to re-
produce the dispersion relations of the high-energy phonons measured by high-resolution inelastic
x-ray scattering. On the contrary, by taking into account non-adiabatic effects within a many-body
field-theoretic framework, we obtain excellent agreement with our experimental data. This result
indicates a breakdown of the Born-Oppenheimer approximation in the phonon dispersion relations
of boron-doped diamond.

The Kohn anomaly (KA) is one of the most striking
manifestations of the influence of electron-phonon cou-
pling on the lattice dynamics of metals [1]. KAs result
from the screening of lattice vibrations by virtual elec-
tronic excitations across the Fermi surface [2], and man-
ifest themselves through distinctive dips in the phonon
dispersion relations. The existence of KAs was confirmed
by inelastic neutron scattering experiments [3] shortly
after Kohn’s theoretical prediction [1]. Since then KAs
have been observed in a number of metals [4–6], conven-
tional superconductors [7, 8], as well as superconducting
semiconductors [9].
Interest in KAs was recently re-ignited by the dis-

covery of non-adiabatic KAs in carbon materials, such
as graphene [10, 11], carbon nanotubes [12, 13], and
graphite intercalation compounds [14–16]. At variance
with adiabatic KAs, which are well described in the
adiabatic Born-Oppenheimer approximation [1], non-
adiabatic KAs arise when the electronic screening takes
place on timescales which are comparable to the period
of lattice vibrations, and signal the breakdown of the
Born-Oppenheimer approximation. In the majority of
current first-principles calculations, these non-adiabatic
effects are ignored on the grounds that they should be
of the order of m/M , with m the electron mass and M
the characteristic nuclear mass. While the calculations of
non-adiabatic phonon linewidths may be performed us-
ing standard implementations [17], first-principles stud-
ies of renormalization effects on the phonon dispersions
due to non-adiabaticity are extremely challenging, and
have thus far been confined to low-dimensional com-
pounds. In particular, for metallic compounds charac-
terized by a two-dimensional, quasi-two-dimensional, or
one-dimensional structure it has been shown that non-
adiabatic effects can alter significantly the phonon disper-
sion relations [10–16, 18]. Instead, for three-dimensional
bulk metals, it has been suggested that non-adiabatic ef-

fects might be too small to be observable in experiment
[15].
The strong coupling between electrons and longitudi-

nal optical (LO) phonons in diamond, manifested for in-
stance by a 0.6 eV zero-point motion band-gap renor-
malization [19–21] and the emergence of type-II super-
conductivity for sufficiently high B-doping [22], make it
a good candidate for the observation of non-adiabatic
effects in the phonon dispersions. Pristine diamond
has previously attracted considerable interest due to the
anomalous overbending of the optical phonon branch
[23]. In presence of B-dopants, the electron-phonon
interaction induces a softening of the LO phonons at
long wavelengths, and a concomitant broadening of the
spectral lines [9, 24]. These effects are taken to be
the signatures of a doping-induced KA. The measured
softening is found to be between 4 and 7 meV for B-
doping concentrations of 1020-1021 cm−3 [9, 24]. Intrigu-
ingly, first-principles calculations [25–29] gave consider-
ably more pronounced phonon softening, in the range of
20 to 30 meV. This unusually large discrepancy between
experiment and theory remains an outstanding question
in the physics of superconducting diamond [30]. This led
us to formulate the hypothesis that in order to explain
the measured KA in diamond it might be necessary to
invoke non-adiabatic effects.
In this work we analyze the dispersion relations of

the longitudinal-optical (LO) phonons of B-doped dia-
mond using state-of-the-art first-principles calculations
and inelastic x-ray scattering (IXS) measurements. By
comparing theory and experiment we demonstrate that
the non-adiabatic correction to the LO phonon energy is
indeed very large, up to 10 meV. After including non-
adiabatic effects within a field-theoretic framework, we
obtain an unprecedented agreement between theory and
experiment, and we resolve the discrepancy between ear-
lier theoretical works and measured phonon dispersions.
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Our results demonstrate a breakdown of the adiabatic
Born-Oppenheimer approximation in the phonon disper-
sion relations of boron-doped diamond, revealing that
these effects may be sizeable also in three-dimensional
bulk compounds.
The B-doped diamond samples were prepared by

microwave plasma-enhanced chemical vapor deposition
(MPCVD) from a hydrogen-rich gas phase with added
diboran (B2H6). The samples were grown homoepitax-
ially on type Ib synthetic crystals with (001) oriented
surfaces at thicknesses of 25 ± 5 µm [31]. The boron
concentration was determined from secondary ion mass
spectroscopy (SIMS) of 11B−, 12C− and 11B12C− ions.
For a B-doping concentration of 1.4 · 1021 cm−3, the
samples exhibit superconducting behaviour with critical
temperature Tc = 2.8 K. IXS spectra were measured at
beamline ID28 at the European Synchrotron Radiation
Facility (ESRF) with an energy resolution of 3.2 meV.
The samples were aligned with the beam directed paral-
lel to the surface and passing through the substrate or
the B-doped diamond film, for measurements of pristine
diamond and B-doped diamond, respectively. The scat-
tering vector Q was varied from (2.06, 0, 0)2π/a (close to
Γ) to (3,−0.12, 0)2π/a (close to X), with a = 3.67 Å.
The small deviations in the (0, k, 0) direction are given
in Supplemental Table 1 [32]. The measured IXS spectra
are shown in Fig. 1 (c)-(e) as heat maps, and in Supple-
mental Fig. 1 as individual scans [32]. For the undoped
case, our measurements are in excellent agreement with
previous experimental data [33].
Non-adiabatic phonon dispersions were computed from

first-principles within the many-body theory of electron-
phonon coupling. Non-adiabatic effects were accounted
for via the phonon self-energy ΠNA

qν [17]:

~ΠNA
qν (ω) = 2

∑

mn

∫

dk

ΩBZ

gbmn,ν(k,q)g
∗

mn,ν(k,q) (1)

×

[

fnk − fmk+q

ǫmk+q − ǫnk − ~(ω + iη)
−
fnk − fmk+q

ǫmk+q − ǫnk

]

,

where ǫnk and fnk denote single-particle energies
and Fermi-Dirac occupation factors, η is a posi-
tive infinitesimal, and ΩBZ is the Brillouin zone
volume. The screened electron-phonon matrix ele-
ments gmn,ν(k,q) were obtained as gmn,ν(k,q) =
(~/2Mωqν)

1/2〈ψmk+q|∂qνV |ψnk〉, where ψnk denote
Kohn-Sham single-particle eigenstates, M the C mass,
and ∂qνV the derivative of the self-consistent potential
associated with the ν-th phonon mode with wavevec-
tor q and energy ~ωqν . gmn,ν(k,q) is obtained from
the bare matrix element gbmn,ν(k,q) by screening the
variation of the ionic potential using the electronic di-
electric function. Here we calculate gbmn,ν(k,q) by un-
screening gmn,ν(k,q) and neglect local-field effects for
simplicity. Equation (1) accounts for both the screened

and the bare electron-phonon vertices (g and gb) and

it thus avoids the approximation employed in previous
first-principles calculations, whereby the matrix elements
gbmn,ν(k,q)g

∗

mn,ν(k,q) were replaced by |gmn,ν(k,q)|
2

[17]. The non-adiabatic phonon dispersions, that is, the
dispersions modified by the phonon self-energy of Eq. (1),
were extracted directly from the phonon spectral function
[34]:

Aqν(ω) = π−1Im

[

2ωqν

ω2 − ω2
qν − 2ωqνΠNA

qν (ω)

]

. (2)

Equation (2), which constitutes the phonon counterpart
of the electronic spectral function [2], exhibits peaks at
the non-adiabatic phonon frequencies Ωqν given by:

Ω2
qν ≃ ω2

qν + 2ωqνReΠ
NA
qν (Ωqν), (3)

with a full-width at half-maximum Γqν =
2~ ImΠNA

qν (Ωqν). Non-adiabatic phonon spectral func-
tions obtained from Eq. (2) are reported in Fig. 1 (f)-(h),
whereas the phonon dispersions derived from Eq. (3) are
shown in Fig. 1 (i)-(k).
Inspection of Eq. (1) reveals that non-adiabatic ef-

fects may become important whenever the transition
energies between occupied and empty electronic states
(ǫmk+q − ǫnk) approach the characteristic phonon en-
ergy ~ωqν . As in solids ~ωqν is typically . 100 meV,
this condition is only satisfied in metals, doped semicon-
ductors, and narrow-gap semiconductors, whereby low-
energy intra-band transitions may be excited. Therefore,
in these systems one may expect to observe (i) phonon
damping effects, with a characteristic timescale set by
the phonon lifetime τqν = ~/Γqν ; and (ii) a renormal-
ization of the adiabatic phonon frequencies, arising from
the finite value of ReΠNA

qν (Ωqν) in Eq. (3). On the other
hand, the standard Born-Oppenheimer approximation is
recovered in the limit ΠNA

qν = 0.
The phonon dispersions of pristine diamond in the adi-

abatic approximation are presented in Fig. 1 (b) for mo-
menta along the L-Γ-X path. The acoustic and opti-
cal phonon branches, which correspond to the in- and
out-of-phase oscillation of the diamond sublattices, are
denoted as AP and OP in Fig. 1 (b). Pristine di-
amond is an insulator with a fundamental band gap
Eg = 5.4 eV [35, 36] and the large optical phonon energy
of ~ωph = 164 meV reflects the stiffness of its covalent
bonds. Since Eg ≫ ~ωph, non-adiabatic effects are rel-
atively unimportant, and the non-adiabatic corrections
are smaller than 0.4 meV, see Fig. 1 (i). The resulting
phonon dispersions are in excellent agreement with our
measured IXS spectrum in Fig. 1 (c), in line with the no-
tion that phonons in wide band-gap insulators are well
described in the adiabatic approximation.
To quantify the importance of non-adiabaticity for

undoped semiconductors and insulators, we derive a
simple estimate of the energy renormalization. In the
limit of non-dispersive electronic bands, one may replace
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Figure 1. (a) Density-functional theory band structure of diamond for a B concentration of 1.4 · 1021 cm−3. (b) Adiabatic
phonon dispersions of pristine (blue lines) and B-doped diamond (dashed black lines) for momenta along L-Γ-X, as obtained
from density-functional perturbation theory. (c)-(e) Measured IXS spectra of pristine and B-doped diamond. The critical
momentum for the onset of the KA, qc = 2kF, is indicated by vertical dashed lines, see also (a). (f)-(h) Non-adiabatic spectral
function, obtained from Eqs. (1)-(2), for the LO phonon of (c) pristine and (d)-(e) B-doped diamond along Γ-X. The phonon
branch considered here is marked by the red line in panel (b). (i)-(k) Phonon energies obtained from Eq. (3) in the adiabatic
approximation (ΠNA

qν = 0), and from the fully non-adiabatic theory (present theory). Non-adiabatic phonon dispersions of
undoped diamond are reported for comparison. All doping concentrations are in units of cm−3.

ǫmk+q − ǫnk = Eg in Eq. (1). If we further assume an
Einstein model for the optical phonons ~ωqν = ~ωE and
we restrict ourselves to the limit ~ωE ≪ Eg, the term in
squared bracket in Eq. (1) reduces to ~ωE/E

2
g to first

order. An explicit approximation for Eq. (1) then is
promptly obtained: ~Π = 2ǫ∞g

2
~ωE/E

2
g , with ǫ∞ be-

ing the dielectric constant and g the average electron-
phonon matrix element. For diamond, using ǫ∞ = 5.44,
Eg = 5.4 eV, ~ωE = 0.16 eV, and g = 0.1 eV, we ob-
tain ~Π = 0.5 meV, which is consistent with the first
principles calculations shown in Fig. 1 (i).
As compared to the undoped case, the IXS spectra of

B-doped diamond in Figs. 1 (d)-(e) exhibit a red-shift
of the LO phonon energy and an increase of the phonon
linewidth close to Γ, which indicate the emergence of a
doping-induced KA. To quantify the effect of doping on
the phonon energy, we define the phonon softening pa-
rameter ∆Ωqν(n) = Ωqν(0)− Ωqν(n), where Ωqν(n) de-
notes the phonon frequency at a carrier density n. The
softening and linewidth become more pronounced with
the increase of doping concentration. The KA is ob-
served only for wave-vectors smaller than a critical cut-
off value qc = 2kF, with kF being the Fermi momentum,

which corresponds to the maximum momentum transfer
for electron-phonon scattering on the Fermi surface, see
Fig. 1 (a) [1]. Using the Fermi momentum of the homo-

geneous electron gas model, kF = (3π2n/Nm)
1

3 , where
Nm = 3 is the degeneracy of the valence-band top of di-
amond, we obtain qc = 0.3 and 0.5 Å−1 for doping levels
of 3 · 1020 and 1.4 · 1021 cm−3, respectively. These values
are marked by vertical dashed lines in Fig. 1 (d)-(e) and
(j)-(k).
For momenta q < qc we find adiabatic phonon dis-

persions consistent with previous works [25, 28, 29]. As
reported in Refs. 9 and 29, however, the adiabatic ap-
proximation leads to a systematic underestimation of
the phonon energy as compared to experiment, which
becomes more pronounced with the increase of doping
concentration. Conversely, fully non-adiabatic calcula-
tions yield phonon energies in excellent agreement with
IXS, as revealed by the comparison between Fig. 1 (d)-(e)
and (j)-(k). To quantify the importance of non-adiabatic
effects, we compare in Fig. 2 the softening ∆Ωqν and
the lineshapes for the LO phonon of B-doped diamond,
as obtained from IXS, from the adiabatic approxima-
tion, and from fully non-adiabatic calculations. Above
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Figure 2. Energy renormalization of the longitudinal op-
tical phonons of diamond, for doping concentrations of (a)
1.4 · 1021 cm−3 and (b) 3 · 1020 cm−3: experiment (squares),
adiabatic (dashed red line) and non-adiabatic theory (blue
line).

the threshold q > qc for the onset of the KA, theory
and experiment yield a phonon softening smaller than
1 meV for all doping concentrations. For q < qc, in-
stead, the positive phonon softening reflects the red-shift
of the phonon frequency induced by electron-phonon in-
teractions. Figure 2 (a)-(b) reveal that the adiabatic ap-
proximation overestimates the experimental softening by
as much as 300% close to Γ. At a doping concentra-
tion of 1.4 · 1021 cm−3, for instance, the adiabatic LO
phonon energy at Γ is softened by ∆Ωadiab

Γ = 22 meV,
whereas from IXS we have ∆Ωexp

Γ = 5.3 meV. The non-
adiabatic theory, on the other hand, yields a softening
in excellent agreement with experiment: for instance,
we obtain ∆ΩNA

Γ = 7 meV for the same doping level.
These results are further corroborated by considering an
Einstein phonon model coupled to a homogeneous elec-
tron gas with parabolic dispersion ǫk = ~

2k2/2m∗

dos, with
m∗

dos = 1.18 being the density-of-state effective mass of
diamond. Within these approximations Eq. (1) reduces
to ~Π = 2g2ǫ∞[χ0(ωE) − χ0(0)], with χ0(ω) being the
long-wavelength limit (q → 0) of the Lindhard function
[2]. For diamond, using ~ωE = 0.16 eV, g = 0.1 eV,
m∗

dos = 1.18, and ǫ∞ = 5.44, we obtain ~Π ≃ 8 meV
for n = 1.4 · 1021 cm−3, in agreement with our ab initio
calculations.
These features are also nicely reproduced by the

phonon dispersions reported in Fig. 1 (g)-(h), confirm-
ing the non-adiabatic character of the KA. Owing to the
undamped nature of phonons in the adiabatic approx-
imation (here we ignore phonon-phonon interactions),
the adiabatic spectral functions are characterized by in-
finitesimal linewidths. The non-adiabatic spectra, on the
other hand, correctly reproduce (i) the increase of spec-
tral linewidth with doping concentration, and (ii) the de-
crease of the linewidth with phonon momentum as shown
in Fig. 1 (c)-(h) and in Fig. S3 [32]. The resulting spec-
tral lineshapes are in good qualitative agreement with

IXS, suggesting that electron-phonon scattering consti-
tutes the primary mechanism for LO phonon damping in
superconducting diamond.
The pronounced non-adiabatic character of the lattice

dynamics in doped diamond indicates a breakdown of the
adiabatic Born-Oppenheimer approximation. This effect
may be explained by considering the timescales involved:
while LO phonons oscillate with a period τph = 25 fs, the
timescale of electronic screening τs is set by the plasma
frequency ωpl via τs = 2π/ωpl = 2π(4πn/m∗ǫ∞)−1/2,
with m∗ being the carrier effective mass. Using this ex-
pression, we find τs = 9 and 4 fs for n = 3 · 1020 and
1.4 · 1021 cm−3, respectively, which are compatible with
the results of optical measurements [37, 38]. As screening
operates on timescales that approach the characteristic
phonon period, the assumptions underlying the Born-
Oppenheimer approximation are not valid, and we see
the emergence of strong non-adiabatic coupling.
As a first step to explore the consequences of non-

adiabaticity in B-doped diamond, we examine the su-
perconducting critical temperature Tc using McMil-
lan’s formula [39, 40]: Tc = 〈ω〉/1.2 exp{−1.04(1 +
λ)/[λ− µ∗(1 + 0.62λ)]}, where λ is the electron-phonon
coupling strength, and 〈ω〉 the logarithmic average of the
phonon frequency. Following Refs. [40, 41], the Coulomb
pseudopotential µ∗ is set to the standard value of 0.11.
Noting that λ ∝ ω−2

qν [17], a small change in the phonon
frequency as introduced by the adiabatic approximation,
may induce a large modification of Tc. At a doping con-
centration of 1.4 · 1021 cm−3, for instance, the adiabatic
approximation underestimates the LO phonon frequency
in diamond by ∼ 10%. In turn, this results into an over-
estimation of λ by ∼ 20%. This inaccuracy is amplified
by the exponential dependence of Tc on λ, leading to an
overestimation of the critical temperature by up to 50%.
Non-adiabatic effects thus carry important implications
for the theoretical prediction of Tc, and should be con-
sidered in future studies.
In conclusion, by combining first-principles calcu-

lations of the electron-phonon interaction and high-
resolution IXS experiments, we demonstrated the emer-
gence of a non-adiabatic KA in superconducting dia-
mond. Beside resolving a long-standing discrepancy
between theory and experiment, these findings reveal
that a breakdown of the Born-Oppenheimer approxima-
tion may lead to sizeable renormalization effects in the
phonon dispersions of three-dimensional crystals. Our
work calls for a systematic investigation of non-adiabatic
effects and Kohn anomalies in the phonon dispersions of
three-dimensional heavily doped semiconductors as well
as superconducting oxides.
We wish to thank L. Ortéga for help with the x-ray

diffraction characterisation of the samples and F. Jomard
for calibration of the B-concentration by secondary ion
mass spectrometry (SIMS) and depth profiling a few µm.
The research leading to these results has received fund-



5

ing from the Leverhulme Trust (Grant RL-2012-001),
the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No. 696656 -
GrapheneCore1, and the UK Engineering and Physical
Sciences Research Council (Grant No. EP/J009857/1).
Supercomputing time was provided by the Univer-
sity of Oxford Advanced Research Computing facil-
ity (http://dx.doi.org/10.5281/zenodo.22558) and the
ARCHER UK National Supercomputing Service. We ac-
knowledge the ESRF for granting use of beamline ID28,
which contributed to the results presented here.

∗ feliciano.giustino@materials.ox.ac.uk
[1] W. Kohn, Phys. Rev. Lett. 2, 393 (1959).
[2] G. Mahan, Many-Particle Physics (Springer, 2000).
[3] B. N. Brockhouse, K. R. Rao, and A. D. B. Woods, Phys.

Rev. Lett. 7, 93 (1961).
[4] B. N. Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and

A. D. B. Woods, Phys. Rev. 128, 1099 (1962).
[5] Y. Nakagawa and A. D. B. Woods, Phys. Rev. Lett. 11,

271 (1963).
[6] S. H. Koenig, Phys. Rev. 135, A1693 (1964).
[7] A. Q. R. Baron, H. Uchiyama, Y. Tanaka, S. Tsutsui,

D. Ishikawa, S. Lee, R. Heid, K.-P. Bohnen, S. Tajima,
and T. Ishikawa, Phys. Rev. Lett. 92, 197004 (2004).

[8] P. Aynajian, T. Keller, L. Boeri, S. M. Shapiro,
K. Habicht, and B. Keimer, Science 319, 1509 (2008).

[9] M. Hoesch, T. Fukuda, J. Mizuki, T. Takenouchi,
H. Kawarada, J. P. Sutter, S. Tsutsui, A. Q. R. Baron,
M. Nagao, and Y. Takano, Phys. Rev. B 75, 140508
(2007).

[10] M. Lazzeri and F. Mauri, Phys. Rev. Lett. 97, 266407
(2006).

[11] S. Pisana, M. Lazzeri, C. Casiraghi, A. K. Novoselov,
K. S. Geim, A. C. Ferrari, and F. Mauri, Nat. Mater. 6,
198 (2007).

[12] N. Caudal, A. M. Saitta, M. Lazzeri, and F. Mauri, Phys.
Rev. B 75, 115423 (2007).

[13] S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, and
F. Mauri, Phys. Rev. B 75, 035427 (2007).

[14] M. Calandra, M. Lazzeri, and F. Mauri, Physica C 456,
38 (2007).

[15] A. M. Saitta, M. Lazzeri, M. Calandra, and F. Mauri,
Phys. Rev. Lett. 100, 226401 (2008).

[16] M. Calandra, G. Profeta, and F. Mauri, Phys. Rev. B
82, 165111 (2010).

[17] F. Giustino, Rev. Mod. Phys. 89, 015003 (2017).
[18] M. Leroux, I. Errea, M. Le Tacon, S.-M. Souliou, G. Gar-

barino, L. Cario, A. Bosak, F. Mauri, M. Calandra, and
P. Rodière, Phys. Rev. B 92, 140303 (2015).

[19] F. Giustino, S. G. Louie, and M. L. Cohen, Phys. Rev.
Lett. 105, 265501 (2010).

[20] E. Cannuccia and A. Marini, Phys. Rev. Lett. 107,
255501 (2011).
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