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This article deals with an important task for the processing of morphologically rich languages. Unsupervised learning of morphology mainly consists of learning a grammar that enables word segmentation into morphemes without any prior knowledge of the analysed language. It is usually assumed that the origins of such a task date back to the times of Zellig Harris, an assumption which ignores the important contribution of his contemporary, the Soviet linguist Nikolaj Dmitrievič Andreev, who developed a statistico-combinatorial model to learn morphology in the 1960s. We propose a critical description of Andreev's model and attempt to bring to light its pioneering aspects as well as its weaknesses. Finally, we show results over several European languages. Our implementation of the model can be downloaded from https://github.com/franckbrl/stat_comb_model.

Introduction

The task of unsupervised learning of morphology generally consists of learning a model that segments words into smaller units: morphemes 1 . It assumes as input a text segmented into words and produces a model that is similar to a grammar learned without prior linguistic knowledge, according to which the words of the same text are split into grammatically relevant morphological units. It is usually assumed that the origins of such an important task date back to the times of Zellig Harris, an assumption which ignores the important contribution of his contemporary, the Soviet linguist Nikolaj Dmitrievič Andreev (1920Andreev ( -1997)), who spent his career at the Institute of Linguistics of the Academy of Sciences in Leningrad. In the 1960s, he has developed the statistico-combinatorial model to learn morphology in an unsupervised way, mainly described in two books: [START_REF] Andreev | Statistiko-kombinatornoe modelirovanie jazykov[END_REF] and [START_REF] Andreev | Statistiko-kombinatornye metody v teoretičeskom i prikladnom jazykovedenii[END_REF]. This model, making Andreev a pioneer in the domain, has nevertheless remained unknown internationally, and the first citations of his works in the literature are rather recent. Firstly, his work on the learning of morphology has never been translated from Russian into any other language. Secondly, the model is described in his work in a rather fragmentary manner. Indeed, when reading Andreev's descriptions of the algorithm, the impression is that it was never fully implemented and those descriptions are different pieces that we sometimes had a hard time trying to put together in our implementation. These difficulties, noticed earlier in [START_REF] Hammarström | Unsupervised learning of morphology[END_REF] 2 and [START_REF] Goldsmith | Unsupervised learning of the morphology of a natural language[END_REF], seem to be a serious obstacle to the success Andreev's work deserves. Besides, there exists, to our knowledge, only one attempt to implement his model, by [START_REF] Cromm | Affixerkennung in deutschen wortformen[END_REF]. Unfortunately, this short paper does not give a better understanding of the statistico-combinatorial model than the original books. We argue in this paper that such difficulties are not a good enough reason for taking away from Andreev the important place he should be holding in the history of the task. For the sake of clarity, this article also presents our implementation of the model, that can be downloaded from https://github.com/franckbrl/stat_comb_model. We first describe Andreev's statistico-combinatorial model and comment on our attempt to implement it. We then report experimental results obtained with this implementation. Finally, we put Andreev's findings into perspective by bringing their pioneering aspects to light and by investigating what is still used nowadays in state-of-the-art systems.

The statistico-combinatorial model

The first step of Andreev's algorithm consists of identifying the bootstrap affix (see 2.2.), which is used to identify stems that can associated to it. The comparison of the different affixes seen with these stems enables the identification of the first class, grouping together stems sharing a set of affixes (see Table 1). By repeating these steps, we obtain as output: 1) a model that segments the words from the corpus into stems and affixes; 2) a categorization of each analysed token (that shall belong to a class). typ, not 10: Go to 4: with ing as bootstrap affix and the new class stem set (e is the second affix selected in 5:). 11: Go to 1: and select the next informant from the list (n at position -2).

Table 1: Accepting the first two affixes of the class (on a toy corpus of 9 tokens) using as first informant d at position -1. See text for details.

The algorithm starts by collecting a few statistics over the corpus. We obtain the unigram character probability p(char) and the average word length, which is used to formulate two assumptions: 1) words shorter than 2 3 of the average length are ignored and remain unsegmented;

JADT 2016 : 13èmes Journées internationales d'Analyse statistique des Données Textuelles 2) the hypothetical affix length does not exceed the average word length. Within this affix length limit, the probability of characters conditioned on their absolute position in the word p(char|pos) 3 can be computed. Once this is done, it is possible to make more specific assumptions about the words in the corpus. The examples illustrating this description are obtained with our own implementation over the first 40,000 sentences of the News Crawl 2014 corpus. 4

Informants

In [START_REF] Andreev | Statistiko-kombinatornye metody v teoretičeskom i prikladnom jazykovedenii[END_REF], the term informant refers to characters at a certain position in the words that are either potential affixes by themselves (such as s at the end of a word), or need to be extended with additional characters in order to form an affix (e.g. g is extended to ing). To obtain such informants, characters in the hypothetical affix zone of the words need to be filtered by their conditional probability. At each position in the word, Andreev keeps the characters for which the conditional probability is higher than half the maximum conditional probability for that position. For each character remaining at a given position, the next step computes what the author calls the correlative function (CF), 5 which measures the degree of dependency of the character with respect to its position in the word (Equation ( 1)). 

CF(char) = p(char|pos) p(char) (1) 
The character that has the highest correlative function becomes the first informant, thanks to which we obtain the bootstrap affix. In our experiments with English (Table 2), the first three informants do not seem likely to be part of any affix and we have to wait for the fourth (d at position 1), which may very well extend to the suffix forming the verbal past tense ed (as in segment-ed). The progressive ending ing comes into right with the eighth informant i at position -3, followed by the third person (or plural) suffix: s at word end (position -1).

The bootstrap affix

The goal of the next step is to decide whether the informant already forms an affix (such as the 9 th informant s in Table 2), or if the character needs to be extended, considering that at this point in time we have no reason to consider that ed (in segment-ed) is a better suffix than nted (in segme-nted).

In [START_REF] Andreev | Statistiko-kombinatornye metody v teoretičeskom i prikladnom jazykovedenii[END_REF], the author constrains the affix extension by setting a maximum affix length of ⌃ L 2 /S ⌥ (where L is the average word length and S the average sentence length), although he does not explain why the affix length should depend on those values. According to this formula, the maximum affix length in our English experiment is 1, which would be problematic. 6 No 3 The position index (pos) starts at 1 from the beginning of the word (prefix) and at -1 from its end (suffix). 4 http://www.statmt.org/wmt15/translation-task.html 5 The similarities between the correlative function and the pointwise mutual information are discussed in 4.2. 6 First, such a constraint would prevent extending -d into -ed. Second, the author does not specify what happens when informant i is located at position -3 (see Table 2), which is two characters above the maximum affix length (the suffix found from this informant cannot be shorter than three characters).
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Texte such constraint appears in [START_REF] Andreeva | Algoritmičeskoe formirovanie razrjada suščestvitel'nogo v russkoj morfologii[END_REF] and we set this limit to 4 in our implementation. In order to find the right extension of the affix, [START_REF] Andreev | Statistiko-kombinatornye metody v teoretičeskom i prikladnom jazykovedenii[END_REF] resorts to what he calls the gradient rate. The idea is to compare the frequencies (p i=1 and p i=2 ) of the two most frequent characters near the affix in construction. Therefore the gradient rate of a given affix GR(aff) is: GR(aff) = P 1 P 2 ; where

⇢ P i = p(char = c, pos = x + 1|aff = a, pos = x) (Extend rightwards) P i = p(char = c, pos = x 1|aff = a, pos = x) (Extend leftwards)
Note that [START_REF] Baklušin | Statistiko-kombinatornoe vydelenie pervogo morpfofonematičeskogo tipa v russkom jazyke[END_REF] describes this measure as negentropy. Indeed, as we shall mention in 4.1., the gradient rate has a lot in common with entropy, since it estimates the degree of predictability of the closest character to the informant. Andreev compares this measure to a threshold, which he sets to 1.5 (again without any explanation):

• GR(aff) > 1.5: the most frequent neighbour of the informant is added to the starting affix in construction and we can iterate the procedure. • GR(aff) < 1.5: we stop the affix extension.

If the informant is at position 1 or -1, the extension is directed towards the inside of the word. Otherwise, the affix is extended towards the end or the beginning. If, at this last step, the gradient rate rejects all extensions, the informant is rejected. GR values obtained in our experiments for the informant i at position -3 are in Table 3 and help identify the bootstrap affix ing.

c 1 , c 2 pos P 1 P 2 GR Result n, t
-2 0.33 0.12 2.69 > 1.5 n accepted: in g, e -1 0.81 0.07 12.48 > 1.5 g accepted: ing t, d -4 0.14 0.11 1.25 < 1.5 t refused

Table 3: Extension of the informant i at position -3 (c 1 and c 2 are its most frequent neighbours).

CF(aff) = p(aff|pos) ' char2aff p(char)
(2)

The search for paradigms

Once the bootstrap affix has been found, we identify all the stems that were seen with it in the corpus. The resulting set of stems is smoothed by removing the most infrequent elements.

The set affixes associated with these stems in the corpus are similarly computed, and smoothed. Note that this initial set of stems (see the class stem set of step 3 in Table 1) will be used until the end of the search for the paradigm and reduced each time a new affix is accepted (step 9).

Candidate affixes are sorted by their correlative function, which is computed as the relation of the conditional probability of the affix to its marginal probability. The conditional probability of the affix is obtained as the count of words that contain it at the corresponding position (pos being either the beginning or the end of the word), normalized by the vocabulary size. The marginal probability is seen by the author as the random co-occurrence of the characters it is composed of, computed as the product of the unigram probabilities of each character in the affix (Equation ( 2)). In our experiments, the bootstrap affix ing first helps the identification of the candidate affix ed, which has a conditional probability of 0.06 and a marginal probability of 0.004, giving the highest CF (11.82). Those two affixes can enter the paradigm, provided that they come under inflection (as opposed to derivation). The author's strategy to implement such a distinction relies on the observation that the number of stem types observed with one affix JADT 2016 : 13èmes Journées internationales d'Analyse statistique des Données Textuelles

Texte

is not too different from the number of stem types seen with the second one, if both express inflection. 7 Besides, Andreev specifies that this difference should take into consideration the corpus size in order to address data sparsity issues. He introduces a coefficient K that should allow the relation of both quantities to be better adapted to a specific corpus. Without further explanation, he recommends Equation (3), obtained after several experiments that he does not describe (L is the average word length and V the vocabulary).

log 10 K = log 10 L 1 + 0.02 log 10 V (3) R = |M 1 | |M 2 | K ⇥ |M 1 | (4)
This reduction coefficient K is used to compute the reduction rate R of both affixes, based on the length of the sets of stems seen in the corpus with the bootstrap affix (M 1 ) and with the second candidate affix (M 2 , see Equation ( 4)). R is compared to the reduction threshold T , which is set to 1/L (without explanation), which leads to two situations:

• R > T : The second affix does not become part of the paradigm.

Step 5 (see Table 1) is repeated with the next second candidate affix identified by the bootstrap affix;8 • R < T : Both affixes are added to the paradigm. The second candidate affix becomes the bootstrap affix, according to which we search for the new second affix. In this case, this next step is performed only with the stems that are common to both accepted affixes and the class stems (step 9 in Table 1).

These steps are repeated until one of three situations occurs: 1) there are only two stems left;

2) there are no more second candidate affixes; 3) if several affixes in a row have a gradient rate above the threshold. We added an extra condition for accepting a new affix: the class stem set must contain at least 1 10 elements from the previous remainder set, right before the new affix is accepted. This constraint should ensure a certain consistency of the type. 4: Reduction rate for the affixes obtained using ing as a bootstrap affix. The last column indicates the number of class stems that are common to both affixes.

After this procedure, we obtain a class composed of a set of affixes corresponding to a set of stems. Note that the latter is often rather small, since each time an affix is accepted, we only keep the stems that appear with this affix and the bootstrap affix.

Andreev does not reveal how such classes are used to tag and segment the corpus. Indeed, sticking to the stems that belong to one class might result in a very low recall. On the other hand, segmenting all the words containing an affix from a class might hurt precision. The class in Table 4 obviously corresponding to verbs, if we segment all words ending in e, not only will we tag nouns as verbs, but we will also segment words that should not be split (e.g. tre-e).

Once the first class is obtained, we can process the next informant character. We finally repeat those steps until all the informants have been processed. Note that the algorithm we describe does not take into account more than one affix in a row and thus ignores situations like the Russian verb sad-iš-sja. Although [START_REF] Andreev | Statistiko-kombinatornye metody v teoretičeskom i prikladnom jazykovedenii[END_REF] claims to address complex cases such as agglutination (p.42), he describes the procedure in rather fuzzy terms, and we were not able to implement this function. The author also mentions a way to split certain types into sub-types (p.49), and finally claims to process Russian palatalization, where a consonant varies with the suffix, as in gljadet'gljažu. Unfortunately, his descriptions of those procedures are very short and unclear (p.49). [START_REF] Cromm | Affixerkennung in deutschen wortformen[END_REF] introduces Andreev's model as an affix identifier. The statistico-combinatorial model is in fact a lot more ambitious than this and Andreev claims to perform a word clustering task by assigning a type to each word in the corpus, while performing in parallel a segmentation task. [START_REF] Andreev | Statistiko-kombinatornye metody v teoretičeskom i prikladnom jazykovedenii[END_REF] finally describes a way to add to existing classes words that were so far undefined, by exploring the context of the words already belonging to a class. However, from this part of the algorithm on, the author stops giving empirical results and we have no reason to believe that he actually ever implemented it.

Experimental results

We provide experimental results of Andreev's model for English, French and Russian. In those experiments, we consider only suffixes, since we know that inflection only concerns word endings. Without this constraint, a few prefixes would be accepted and lead for example to a class composed of pro and the null prefix applied to stems such as tested, grams, vision, etc. We also set the minimum number of stems to 10, as opposed to 2 suggested by Andreev, because we observed that the last accepted affixes were often inconsistent with the class. The English classes reported in Table 5 account for the two plural forms (2, 3) and the regular verb conjugation for stems ending in e (1). The model adds the agentive -er to this class, even though is not a verbal inflection. In the process of the third type construction, affixes t and ts were accepted, but we applied one of Andreev's rules stating that if all the suffixes of the class start with the same letter (t here), this common letter should be transfered to the stem (tex-ts, text-s). Therefore the stems in this class all end with the letter t.

For the French experiments (Table 6), we used 1M sentences from the Europarl corpus [START_REF] Koehn | Europarl: A Parallel Corpus for Statistical Machine Translation[END_REF]. The model found the full paradigm of French regular adjectives (1) and nouns (2), although the latter was obtained through the validation of affixes re and res for which the first two characters were transfered to the stem. (3) contains derivational endings, although we notice that inflection distinguishes both ions from ion (plural and singular) and ive from if (feminine and masculine with a consonant shift between v and f). (4) gathers a few verbal endings, but did not go far during the search, mainly because the first bootstrap affix -aire 5) is a much better verbal paradigm (verbs with an infinitive in re), despite its sparsity. The algorithm created 14 classes for Russian (see Table 7) over 1M sentences from the News Crawl 2015 corpus. The first type contains the whole paradigm for Russian adjective (long and short forms), except the masculine short form (null affix) which is harder to retrieve due to the insertion of a mobile vowel (e.g. opasnyjopasen). Note that this exact affix set was found twice (i.e. both times starting from different informants), but unfortunately the second time did not bring any new stems to the type. We further obtain three verbal types (2, 3, 5), the latter being the most complete, containing also passive forms, although the search started from a noun derivative affix (enie). Finally, (12) starts with three verbal endings, then accepts three noun affixes: ami, ax, am are the only noun endings we got in these experimental conditions.

Our implementation of Andreev's model retrieved many affixes and most of them are correctly segmented. The reduction rate employed by Andreev to distinguish inflection and derivation works well, considering the simplicity of the assumption behind it (among the 9 affixes retrieved for English, only one is derivational). The main default we observe in these experiments is the sparsity of the classes: one gold paradigm can be divided into several sparse classes (e.g. Russian classes 2, 3, 5). Nevertheless, those classes keep a certain degree of inner consistency.

Putting the task into perspective

Most of the literature on the subject9 , considers that the history of unsupervised learning of morphology starts with Zellig Harris, who in [START_REF] Harris | From phoneme to morpheme[END_REF] 10 laid the foundations of principles that were used afterwards. In this closing section, we try to identify the common aspects of these two models, focusing on an issue adressed by both both Harris and Andreev: morpheme identification.

Using entropy to spot morpheme boundaries

Harris sees the question of morphological analysis as the identification of morpheme boundaries based on successor variety. Given a corpus, a word a is considered from the first character up to the character at position i (1  i  word length). The successor variety of a i corresponds to the number of different characters seen at position i + 1 in the words starting from the sequence a i . 11 The assumption is that a higher variety marks a morpheme boundary. In order to segment a word, Harris proposes different strategies:

• he manually sets a threshold K and segments whenever the successor (or the predecessor, or both) variety exceed it [START_REF] Harris | From phoneme to morpheme[END_REF]. • he segments whenever the successor at position i+1 has a higher or equal variety to the one at position i. This strategy consists in finding relative peaks in the varieties and dispenses with the delicate choice of absolute thresholds [START_REF] Harris | Morpheme boundaries within words: report on a computer test[END_REF].

The main disadvantage of using successor variety is that such a measure does not say anything about the distribution throughout the corpus of the characters that form it. If a stem has a variety of 10, we may well have a high number of occurrences of one specific successor and only a few of the nine others. Even worse: a foreign word can occur once in the corpus and impact the variety as much as any other highly frequent word.

Unlike Harris, Andreev has a statistical approach to the morpheme boundary identification problem. As we saw in Section 2.2., the gradient rate is very similar to entropy. Some works [START_REF] Hafer | Word segmentation by letter successor varieties[END_REF][START_REF] Juola | Corpus-based morphological segmentation by entropy changes[END_REF]) that adopted Harris's principles proposed to replace the simple diversity count by the entropy of the probability distribution over the neighbouring characters. This measure is borrowed from Information Theory and is used to assess the degree of predictability of an event. Here is how [START_REF] Hafer | Word segmentation by letter successor varieties[END_REF] use entropy: c(a i ) is the number of words in the corpus containing the stem identified up to position i in a word a ; c(a i j ) is the size of the subset of c(a i ) in which the character at position i + 1 is the j th letter of the alphabet. Thus the probability of the successor of c(a i ) is estimated by c(a i j )

c(a i ) . The entropy is then computed in the following way (n is the number of letters in the alphabet):

H(a i ) = n  j=1 c(a i j ) c(a i ) log 2 c(a i j ) c(a i ) (5) 
According to this equation, a high entropy says that all the neighbouring characters have a similar probability, which makes it harder to predict the right one. This situation indicates the presence of a morpheme boundary. In the same way, Andreev's gradient rate is a measure of the predictability of the most frequent neighbouring characters: the lower12 it is, the harder it is to predict the neighbouring character. Therefore, Andreev is, to our knowledge, the first to have used a way to measure the dispersion of successor/predecessor distribution by means of an equation that shares some properties with entropy. The difference is that Andreev's gradient rate involves only two characters and starts from the informant that is extended to other characters until the border with the stem is reached. He is nevertheless not cited by [START_REF] Hafer | Word segmentation by letter successor varieties[END_REF], who introduce a very similar idea more than ten years later. Note that the same procedure is used today in Goldsmith's Linguistica. [START_REF] Goldsmith | An algorithm for the unsupervised learning of morphology[END_REF] uses entropy to check whether a character on the stem side should be on the affix side, as i in attenti-on.

Pointwise mutual information

Andreev's correlative function is another measure that is similar to the Information Theory concept of pointwise mutual information, although the author does not mention this similarity. In fact, he gives two distinct definitions of this measure. The first (Section 2.1.) is a means of identifying characters that are the most likely to be part of an affix (the informants) by comparing the probability of a character conditioned on its position in the word to its marginal probability. This bears a ressemblance to the way [START_REF] Church | Word association norms, mutual information, and lexicography[END_REF] compare the probability of jointly observing two words x and y with the probability of seeing them independently. Equation ( 6) is the same as the correlative function, except that Andreev does not use a logarithm (see Equation 1).

I(x, y) ⌘ log 2 P(x, y) P(x)P(y)

= log 2 P(x|y) P(x)

The second definition of the correlative function in Equation ( 2) is a means of selecting the most likely affixes. A very similar procedure is applied in Linguistica, although [START_REF] Goldsmith | An algorithm for the unsupervised learning of morphology[END_REF] views the problem of segmentation from a different level: he includes the search of the paradigm in a global optimization problem. Just as in Andreev's algorithm, a first step consists of heuristics aimed at providing preliminary hypotheses about the way the corpus should be segmented. These hypotheses are then accepted, provided that they minimise the Description Length, which is a measure of how concise the representation of the data is given the model, turning the segmentation task into a data compression problem. 13 The heuristic search for the right segmentation described by [START_REF] Goldsmith | Unsupervised learning of the morphology of a natural language[END_REF] goes from the search for peaks in the words (see 4.1.), up to a distribution over all possible segmentations. 14 He finally proposes to use weighted mutual information in order to reach the optimal segmentation. This heuristic approach is described for suffix identification. In Equation ( 7), borrowed from [START_REF] Goldsmith | Unsupervised learning of the morphology of a natural language[END_REF], k-grams of characters are considered, n k being the word boundary. 

For the sake of comparison, we slightly reformulate Andreev's correlative function in Equation (8). Both equations measure how the frequency of an affix differs from a random distribution of the characters composing it, where each character is seen as independent from its position within the word and from the other characters. Finally, both use this idea to extract from the corpus candidate affixes that are the most likely to enter a paradigm. Although these equations slightly differ from the classical definition of mutual information in [START_REF] Fano | Transmission of information: A statistical theory of communications[END_REF], they still introduce a relation between two perspectives on a set of events; they are, on the one hand, seen as mutually dependent and, on the other hand, as independent.

Conclusion

We have described Andreev's statistico-combinatorial model for the unsupervised segmentation of words into morphemes and presented results over three European languages. The main weak points of this approach are the multitude of manually set parameters at various steps (threshold for informant identification, gradient rate threshold, maximum affix length, reduction threshold, reduction coefficient), which are very dependent on the language being analysed and on the corpus size. Despite these points, some of the solutions Andreev proposed, such as entropy measure for morpheme boundary identification and mutual information to select the most relevant affixes, are now used in state-of-the-art systems.

13 See also [START_REF] Creutz | Unsupervised discovery of morphemes[END_REF].

14 Learned using the Expectation-Maximisation (EM) procedure.
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Table 2 :

 2 Characters ranked by their correlative function.

	rank char p(char) pos p(char|pos) CF(char) 1 w 0.02 1 0.06 4.17 4 d 0.04 -1 0.11 2.76 8 i 0.07 -3 0.18 2.38 9 s 0.07 -1 0.15 2.21

Table 5 :

 5 Classes for English.

	Class 1 2 3 4 5	Affixes es, e, s, null s, null ions, ion, ive, if, eur aire, és, ées, er, ée rait, ons, ant, ent, re, ait, ez	Stems 1074 445 16 10 12	Examples adéquat, retenu genre, livre, coffre récept, oppress, agress honor, fragment, not remett, perd, mett

Table 6 :

 6 Classes for French.

Table 7 :

 7 A few classes for Russian.

  WMI = [n 1 , n 2 , ..., n k ] Total k-gram count log [n 1 , n 2 , ..., n k ] [n 1 ][n 2 ]...[n k ] (7) CF = p(n 1 , n 2 , ..., n k ) p(n 1 )p(n 2 )...p(n k )

In our English corpus, we observe 435 different stems with the prefix pro, against 1647 with co. On the other hand, ing and ed correspond respectively to 2936 and 3620 different stems, showing closer figures for inflection.

If this happens with the first pair of candidate affixes for the class, no class is created, affixes are rejected and the algorithm resumes with the next informant character (step 1 in Table1).

See[START_REF] Goldsmith | Unsupervised learning of the morphology of a natural language[END_REF][START_REF] Goldsmith | Segmentation and morphology[END_REF][START_REF] Hammarström | Unsupervised learning of morphology[END_REF].

Therefore, eight years before the first article on the statistico-combinatorial model in[START_REF] Andreeva | Statistiko-kombinatornoe vydelenie paradigmy pervogo mofologičeskogo tipa v russkom jazyke[END_REF].

The same method is applied in the other direction, using the predecessor variety.JADT 2016 : 13èmes Journées internationales d'Analyse statistique des Données Textuelles

A morpheme boundary is indicated either by a higher entropy or, on the contrary, by a lower gradient rate. We suspect that this is the reason why[START_REF] Baklušin | Statistiko-kombinatornoe vydelenie pervogo morpfofonematičeskogo tipa v russkom jazyke[END_REF] uses the term negentropy (or negative entropy) for this last measure, although neither he, nor Andreev, refer to Information Theory.JADT 2016 :
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His work suffered from his isolation from the world scientific community; while he never cites Harris or Fano and barely mentions Shannon's work on Information Theory (only once in a footnote), he himself has almost never been cited by posterity. His findings remain nevertheless fundamental in the history of the task.

Acknowledgements

This work has been partly funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 645452 (QT21).