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Abstract

In Statistical Machine Translation (SMT), the constraints on word reorderings
have a great impact on the set of potential translations that is explored during
search. Notwithstanding computational issues, the reordering space of a SMT sys-
tem needs to be designed with great care: if a larger search space is likely to yield
better translations, it may also lead to more decoding errors, because of the added
ambiguity and the interaction with the pruning strategy. In this paper, we study the
reordering search space, using a state-of-the art translation system, where all re-
orderings are represented in a permutation lattice prior to decoding. This allows us
to directly explore and compare different reordering schemes and oracle settings.
We also study in detail a rule-based preordering system, varying the length and
number of rules, the tagset used, as well as contrasting with purely combinatorial
subsets of permutations. We carry out experiments on three language pairs in both
directions: English-French, a close language pair; English-German and English-
Czech, two much more challenging pairs. We show that even though it might be
desirable to design better reordering spaces, model and search errors seem to be
the most important issues. Therefore, improvements of the reordering space should
come along with improvements of the associated models to be really effective.

1 Introduction
Reordering is known to be a critical issue for statistical machine translation and the
reordering complexity for a language pair can be considered as a relevant indicator of
the difficulty to automatically translate from one into the other (Birch et al, 2008).

When translating a source sentence, most machine translation systems, either ex-
plicitly or implicitly, have to choose the order in which they will process the source
sentence to compute its translation, thereby inducing a reordering of the source words

*Corresponding author

1



which reflects the target word order. In order to correctly generate the word order, two
main problems have to be solved: the identification of a restricted number of possi-
ble reorderings and the numerical evaluation of their appropriateness. The first step is
necessary due to the intractability of exploring the combinatorial set of all possible per-
mutations. Even for short sentences, this set contains too much ambiguity and an over-
whelming number of linguistically meaningless reorderings. It is therefore necessary to
rely on methods that filter this space so as to meet the two following conflicting goals:
(a) the search space should be large enough to contain good translation hypotheses; (b)
yet small enough to be rapidly explored. This first problem thus amounts to identify
appropriate reordering constraints, which will help to shape the set of permutations of
the source that will actually be considered. The second is to design reordering models
that can assign numerical scores to candidate permutations, so that the most correct
word order(s) will receive high scores. Those include distance-based models, lexical-
ized reordering models (Tillmann, 2004) or hierarchical lexicalized models (Galley and
Manning, 2008) among many others.

In this work we mainly focus on analyzing the first issue. While improvements on
the reordering models are likely to benefit the overall translation performance, it is less
obvious to what extent the reordering constraints are currently impacting the translation
process. Indeed, in addition to computational issues, there is a tradeoff when building
the reordering space of a machine translation system. On the one hand, a larger space
is more likely to contain a permutation that can yield a relevant translation. On the
other hand, it may also cause more decoding errors, because of both the ambiguity of
natural languages and the necessary pruning of the search space. It is then of great
help to understand the current limits of an SMT regarding the reordering space. Thus,
the main questions we address in this work are: how good are the current reordering
search spaces? how to design them? is it important that they contain the exact needed
reorderings or good approximations would be enough? are the models able to make
use of the best reorderings from the search space? to what extent would the overall
system benefit from much better reordering spaces? Therefore, we investigate several
ways to generate the reordering space, in order to evaluate how the SMT system can
benefit from a larger/better reordering space. In addition, by studying monotonic as
well as various oracle-like reordering spaces, we compute lower and upper bounds on
the possible reordering space design, also giving insights on the complex influence of
search and model errors on the translation quality.

Various constraints on admissible permutations have been proposed in the past in-
cluding IBM (Berger et al, 1996), MJ (Kumar and Byrne, 2005) or ITG (Wu, 1997).
Those constraints have been compared in terms of performance (Zens and Ney, 2003;
Zens et al, 2004) or in oracle settings (Dreyer et al, 2007; Wisniewski and Yvon,
2013). Other approaches include linguistically motivated rules that are automatically
learned (Crego and Mariño, 2006; Niehues and Kolss, 2009; Herrmann et al, 2013a).
To the best of our knowledge, these two families of approaches, purely combinatorial
on the one hand and empirically learned on the other, have never been systematically
compared. In this work, we use a rule-based reordering system in which reordering
rules are extracted during the training phase (Section 3.2), considering word factors
instead of surface word in an attempt to mitigate sparsity issues. We study in detail
the effectiveness of the rule-based approach in defining an accurate search space, and
show that linguistically motivated constraints define can be used to define a compact
search space, and yet, improve the translation quality.

In the phrase-based approach, word reorderings can be divided in two tightly inter-
twined types: local reorderings that take place within phrases; and longer reorderings
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of those phrases. The additional use of pre-ordering methods is introduced eg. in (Xia
and McCord, 2004; Collins et al, 2005; Tromble and Eisner, 2009; Genzel, 2010): in
this approach, source sentences are reordered in a preprocessing step to match the target
word order and then fed into the standard phrase-based pipeline. This further complex-
ifies the analysis of the reorderings that are actually considered in translation. Finally,
because of pruning, only a restricted part of the search space is effectively explored. In
this paper, we use a state-of-the-art n-gram SMT system (Crego et al, 2011), described
in Section 2, that splits reordering and decoding into two separate steps. Reorderings
of the source sentence are compactly encoded in a permutation lattice, the reordering
space, that is then translated in a monotonic fashion. This two-step approach allows
us to study the reordering space that is explored and then to assess its impact on the
whole translation process. This controlled framework also enables to directly compare
the size and the coverage of the different reordering spaces. Therefore, even though we
only consider one specific phrase-based architecture, we believe that most conclusions
would carry over for other phrase-based systems, that mostly use the same reordering
mechanisms, and even for hierarchical phrase-based systems Auli et al (2009).

Evaluation is carried out for three language pairs (French-English, German-English
and Czech-English in both directions) that differ by the range of the involved reorder-
ings. We measure the impact on the system performance as well as oracle decoding
to better understand the potentials of the different reordering spaces as well as the in-
fluence of search and model errors on translation quality. We find that while there is
ample room for improving the reordering space, this problem might not be the main
issue, since search and model errors would prevent the SMT system to fully benefit
from a more accurate search space.

The rest of this study is organized as follows. In section 2, we present the n-gram-
based approach and its peculiarities. Among them, the rule-based method for source
reordering is described in Section 3, while Section 4 explains how to build the reorder-
ing space explored by the SMT system and how to derive oracle-like reorderings. In
Section 5, multiple experimental comparisons are carried out to assess the impact of
the reordering space on translation performance.

2 The n-gram-Based Approach in SMT
All our experiments use NCODE, an open source SMT toolkit1, which achieved state-
of-the-art performance in recent evaluation campaigns (Callison-Burch et al, 2012; Bo-
jar et al, 2013, 2014). NCODE implements the bilingual n-gram approach to SMT (Casacu-
berta and Vidal, 2004; Mariño et al, 2006; Crego and Mariño, 2006) that is closely
related to the standard phrase-based approach (Zens et al, 2002). In this approach, the
translation of a source sentence f into a target sentence e is decomposed into two steps:
a source reordering step and a monotonic translation step. Since the translation step
is monotonic, the peculiarity of this approach is to rely on the n-gram assumption to
factor the joint probability of a sentence pair into a product of conditional probabilities
involving bilingual atomic units called tuples: in other words, the translation model is
a conventional n-gram model of synchronized segments.

NCODE uses a set of feature functions embedded in a log-linear model (Och and
Ney, 2002) that is similar to standard phrase-based systems (see Crego et al (2011) for

1http://ncode.limsi.fr
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details). The best translation is selected by solving the following program:

argmax
e,a

p(e,a|f) = argmax
e,a

1
Zf

exp
( K

∑
k=1

λk fk(f,e,a)
)

(1)

where K feature functions { fk,k = 1 . . .K}) are weighted by a set of coefficients {λk},
Zf is a normalizing factor and a denotes the set of hidden variables corresponding
to the reordering and segmentation of the source sentence. Along with the n-gram
translation model and the target n-gram language model, 13 conventional features are
combined: 4 lexicon models similar to the ones used in standard phrase-based systems;
6 lexicalized reordering models (Tillmann, 2004; Crego et al, 2011) aimed at predicting
the orientation of the next translation unit; a “weak” distance-based distortion model;
and finally a word-bonus model and a tuple-bonus model which compensate for the
system preference for short translations. Features are estimated during the training
phase and the corresponding weights (λk) are estimated during a tuning phase on held-
out development data. The models that have a direct impact on the selected reordering
are the monolingual and bilingual n-gram models, the lexicalized reordering models
and the distortion model.

During training, source sentences are first reordered so as to match the target word
order by unfolding the word alignments. In a nutshell, unfolding aims to reorder the
source words so as to remove all crossing alignment links; additional heuristic rules
handle the movements of non-aligned words on the source side and make the pro-
cedure deterministic (see details in (Crego et al, 2005)). Unfolding is performed as
follows: the target sentence is first segmented in K segments of consecutive words
e = e1 . . .ek . . .eK such that for each segment ek, if a word f aligns with one word in
ek, it is only aligned with words in ek, i.e. if fk = { f ∈ f |∃e ∈ ek,( f ,e) ∈ a} is the
set of source words aligned with ek, then ∀ f ∈ fk,∀e ∈ e,( f ,e) ∈ a ⇒ e ∈ ek. This is
the same as for standard phrase extraction, except that the source words need not be
consecutive. One can then output the reordered source words f̃ = f1 . . . fk . . . fK (using
monotonic order withing each fk)2 and the tuple sequence {(fk,ek)}k. Figure 1 displays
a simple example, where the word politicians is moved to the start of the sentence.
Unaligned words on the target side, such as l’ in Figure 1, cause problems as the
search does needs input words to generate units; they are consequently attached to the
neighbor tuple which maximizes IBM model 1 lexical probabilities (de Gispert and
Mariño, 2006). Tuples are then extracted in such a way that a unique segmentation of
the bilingual corpus is achieved. A n-gram translation model and optional word factor
models are then estimated over the training corpus composed of tuple sequences, using
modified Kneser-Ney smoothing (Chen and Goodman, 1998).

During decoding, the source sentence is first reordered so as to reproduce the word
order modifications introduced during the tuple extraction process, i.e. to best match
the target word order. This generates a word lattice containing the most promising
source permutations. This lattice represents the reordering space that is then searched
for the best candidate translation. As exhaustive search is intractable, NCODE uses a
beam search strategy based on stacks. As future cost estimation is problematic for mul-
tiple n-gram models, NCODE uses one stack per hypothesis translating the same input
words, in contrast to the same number of words as in standard phrase-based systems.
Thus the memory footprint of the decoding algorithm directly depends on the number
of nodes in the reordering lattice.

2One has also to decide when to output unaligned source words, for which we use a special tuple with a
source NULL token (see Figure 1). In our case, it is output just before the next aligned token.
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State
1

and
2

municipal
3

politicians
4

have
5

enforced
6

it
7

.
8

NP CC JJ NNS VHP VVN PP SENT

lespolitiquesrégionaux et communaux l’ ont emporté NULL .

politicians State and municipal have enforced it .

NP CC JJNNS VHP VVN PP SENT
4 1 2 3 5 6 7 8

Figure 1: Unfolding process and reordering rules extraction from word alignment. The
source English sentence is aligned with the target French sentence. The unfolding
procedure moves the fourth word ’politicians’ to the start of the sentence, yielding
the unfolded permutation σ = 41235678. Tuples that would be extracted are in a
dotted box. The unaligned source word ’it’ is associated to the special token ’NULL’
while the unaligned target word ’l” is merged with a neighboring tuple. Only one
rule would be extracted here, mapping the POS tag sequence NP CC JJ NNS to the
minimal reordering in a dashed box.

3 Learning Rule-based Reorderings

3.1 Reorderings
We have thus far used the term word reordering, even though the definition of how
the words ”move” during translation is not trivial, as translation is not word-to-word.
In fact, standard phrase-based approaches first segment the sentences in phrases and
only consider reorderings of those phrases, while local “word moves” are implicitly
included withing the phrases3. In this work, we are interested in understanding the
reorderings that are considered by the overall system, thus the focus on the permuta-
tions at the level of words. Word reorderings can be inferred from word alignments,
which indeed originate from word-to-word translation models (Berger et al, 1996). It is
however not straightforward to induce a permutation from many-to-many alignments
and several heuristics, that differ by many subtle details, have been used for evalu-
ating reordering (Birch, 2011) or preordering techniques (Tromble and Eisner, 2009;
Khalilov and Sima’an, 2012; Neubig et al, 2012). In this work, we directly make use
of the unfolding procedure to obtain word reorderings. As explained above (see Fig-
ure 1), unfolding the alignment links directly results in a permutation, that we call the
unfolded reordering.

Intuitively, a reordering occurs when some words move away from their initial po-
sition. In general, a global permutation can be decomposed in many local reorderings.
Let Sn be the set of permutations of {1, . . . ,n} for some integer n and let σ ∈Sn be a
permutation σ = (σ1. . .σn) with ∀i,σi ∈ {1, . . . ,n}. We define a reordering of σ to be
any subsequence σ[i: j] = σi. . .σ j of σ with | j− i|> 1 such that:

∀k, i ≤ k ≤ j ⇒ i ≤ σk ≤ j

i.e. {σk}i≤k≤ j = {i, . . . , j}. A reordering is said to be minimal if it is minimal for this
property, i.e if it doesn’t (strictly) contain any reordering. Spans σ[i: j] correspond to the

3Note that our approach makes local word moves explicit, by performing the reordering step before the
segmentation one, and therefore subsumes standard phrase-based approaches with or without preordering.
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smallest (non trivial) ones to be reordered in order to recover σ . It is easy to see that any
permutation can be segmented in an unique way, where each segment is either a fixed
point or a minimal reordering. For example, the unfolded reordering σ = 41235678 in
Figure 1 contains only one minimal reordering (σ = 4123) and four fixed points. Any
reordering π can be mapped to a (unique) permutation π̄ ∈ S|π| by renumbering, i.e.
∀k, π̄k = πk −min(π), where min(π) is the smallest integer in π . Let Rn ∈Sn be the
set of minimal reorderings of 1, . . . ,n for n ≥ 2. The number of minimal reorderings
rn = |Rn|, can be computed recursively as:

r(n) =
{

1 i f n = 1
n!−∑

n−1
i=1 r(i) · (n− i)! else

(2)

where r(1) = 1 is a mathematical convenience.

3.2 Reordering Rules Extraction
Reordering rules are automatically learned during the unfolding procedure. Let w =
w1w2. . .wn be a source sentence and t = t1t2. . .tn the associated tag sequence. Let
wσ = wσ1wσ2...wσn be the reordered sentence produced by the unfolding procedure
where σ = σ1. . .σn ∈ Sn. A reordering rule is extracted for any minimal reordering
σ[i: j] of σ . Rules then have the following form:

t[i: j] → σ̄[i: j]

where σ̄[i: j] is the induced permutation in S| j−i+1| obtained by renumbering σ[i: j] as
described above (see § 3.1). An example is in Figure 1, where only one rule:

NP CC JJ NNS→ 4 1 2 3

would be extracted.
Note that it would also be conceivable to also extract rules t[i: j] → σ̄[i: j] for non-

minimal reorderings (subject to | j − i| > 1) in a way similar to the phrase extraction
heuristic in MOSES; preliminary experiments showed a slight drop in performance for
this variant, which is not explored further in this paper.

To filter out alignment noise and limit the size of the reordering space, rules may be
pruned according to a maximum cost threshold (maxcost). The cost of a rule is defined
by:

cost(t → σ) =− log
count(t → σ)

∑σ ′∈S|t| count(t → σ ′)
, (3)

where t is any tag sequence, σ ∈ S|t| is a permutation and the counts are computed
on the training data. Since this cost is the negative logarithm of a conditional ratio,
a coarser tagset might be more heavily pruned than a fine-grain one, resulting in a
smaller set of extracted rules; in principle, the optimal threshold thus depends on the
granularity of the tagset, as well as on the translation direction. In our experiments, we
use a default value of 4 for the parameter maxcost.

Rules may be also pruned according to their length (by default 10). Preliminary
experiments show that further increasing this limit hardly makes any difference in per-
formance. In fact, long rules are too sparse to possibly generalize beyond the training
set. Long range reorderings are thus explicitly excluded from the model. Note that in
standard phrase-based systems, the maximal reordering span, i.e. the distortion limit is
usually even set to a smaller value than ours.4

4For example, the default distortion limit in MOSES is 6.
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3.3 Alternative Tagsets
In (Crego and Mariño, 2006), rewriting rules are built using Part-of-speech (POS),
rather than surface word forms in order to increase their generalization power. How-
ever, any word factor may possibly be used. To investigate different levels of general-
ization and the relevance of syntactic word factors, different tagsets are introduced.

• One single tag (one): The tagset consist of one single tag. This means that
the reordering rules are extracted and applied independently of any syntactic
or contextual information. This results in a system which reduces the possible
reorderings to all the ones observed in the training data.

• Universal POS (ups): The tagset is reduced to 12 simple language-independent
categories, in an attempt to limit the sparsity of the extracted rules. In this work
we use the universal POS tagset described in (Petrov et al, 2012). For under-
resourced languages, universal POS can be projected by cross-lingual transfer
or learned from partial annotations (Li et al, 2012; Täckström et al, 2013; Wis-
niewski et al, 2014), thereby relaxing the need for a POS tagger.

• Enhanced POS (e50pos): The POS tags are lexicalized for the 50 most frequent
words, resulting in more specific rules. Enhanced tags are closely related to
lexicalized rules (Huang and Pendus, 2013).

• Brown classes (classes): Statistical word classes were found to be a good ap-
proximation for Part-of-Speech tags when a POS tagger is not available. In (Ra-
manathan and Visweswariah, 2012), word clusters perform worse than POS, but
still do reasonably well in a preordering setting. Durrani et al (2014) report some
gains when using word clusters, in addition to POS and morphological tags, in
an Operation Sequence N-gram model. In this work, we compute statistical word
clusters using the method of Brown et al (1992).

• Plain words (words): We use the surface word to build the rules, resulting in
high-specific fully lexicalized rules with less generalization power.

4 Reordering spaces
The reordering space explored during decoding can be generated in many different
ways. In standard phrase-based SMT, all possible reorderings of source segments that
do not result in a word move above a distortion threshold is implicitly used (see Lopez
(2009) for a detailed account). In this work, the generation of the reordering space
is controlled by a set of rewriting rules that non-deterministically reorder the source
words. In this section, we detail the procedure use to generate the reordering lattice
used in our rule-based system, as well as variants considered in our experiments.

4.1 Reordering Lattice Generation
A permutation lattice (Crego, 2008) is an acyclic weighted Finite State Automaton
(FSA) L = ⟨V,E,Σ,w⟩, where V is a set of nodes, E a set of edges, the alphabet
Σ = {1, . . . ,n}, w : E → R a weight function, which generates (or recognize) a lan-
guage L(L ) ⊂Sn, i.e. in which any path corresponds to a permutation of {1, . . . ,n}.
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a
1

DT

shop’s
2

JJ

estimate
3

NN

in
4

IN

four
5

CD

steps
6

NNS

devis de garage en quatre étapes

(a)

JJ NN → 1 0 [cost=1.16]
JJ NN IN CD NNS → 2 3 4 0 1 [cost=3.90]

(b)

0 1a@1

2shop's@2

3estimate@3

4

in@4
5

estimate@3

shop's@2

6four@5

7in@4

8steps@6

9four@5

10shop's@2

11

steps@6

estimate@3

(c)

0 1estimate@3 2a@1 3shop's@2 4in@4 5four@5 6steps@6

(d)

Figure 2: Example of a tagged source test sentence, the target reference and the forced
alignment (a); training rules that apply for this source sentence with costs computed
according to (3) (b); reordering lattice obtained when applying the rules, with the
best reordering as defined in Section 4.3 in bold blue (c); the corresponding unfolded
reordering lattice (d).

For some subsets of permutations, a lattice encodes an exponential number of permuta-
tions with a polynomial number of nodes and edges. A strong property of permutation
lattices is that all incoming paths that reach a node cover the same word indices.

The permutation lattice is built incrementally for any sentence w with correspond-
ing tags t as follows. The monotonic path forms the initial lattice. Then for each
segment [i : j] and each rule t[i: j] → σ , the lattice is expanded by adding the subpath
σ([i : j]). Figure 2 displays an example. This is performed in a parallel fashion so that
rewriting rules do not interfere with each other. Applying the reordering rules finally
results in a finite-state graph that represents the reordering space. This lattice may be
weighted, using for example the probability of reordering rules as, in (Herrmann et al,
2013b); this allows us to include the lattice path score as a feature in the log-linear
combination of Equation (1). We have not pursued such developments in this study, as
previous experiments did not show any improvement of performance.

In principle, one can design any set of permutation constraints and encode them
in a lattice. In practice, the number of nodes in the lattice must remain reasonable
(polynomial) in the number of words in the sentence.5 To assess whether constraining
the reorderings to those observed in the data is appropriate, the rule-based approach is
compared with MaxJump (MJ) constraints (Kumar and Byrne, 2005). In MJ-i, a word

5This would not be the case for ITG constraints for example. However our framework could be extended
to permutation forests to take into account more general reordering spaces (Dyer and Resnik, 2010).
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move cannot exceed i positions.6 This is equivalent to using a rule-based system where
all possible rules up to size i+1 would be considered.

4.2 Oracle Unfolded Reordering
At training time, source sentences are deterministically reordered to enable the tuple
extraction and the estimation of the models. During decoding, one would ideally like
to process source sentences in their correct target order, i.e. the unfolded reordering
defined in Section 2. For unseen data, this oracle can be derived from forced alignments
between a source sentence and the corresponding reference (see Figure 2 (d) for an
example). In that sense, the best reordering constraints should be the ones that generate
lattices containing the unfolded reordering as the only option. We refer to this oracle-
like reordering as the unfolded reordering.7

4.3 What is the Best Reordering in a Lattice ?
As explained above, the unfolded reordering can be considered as the best possible re-
ordering. However for unseen data, this oracle reordering usually requires long range
moves and/or permutations that were not observed in the training data. In our exper-
iments (Section 5.7), only about 20-60% of the test unfolded reorderings are actually
reachable by our rule based system, depending on the translation direction and the set-
ting used. Therefore it is also of interest to study the properties of the best reordering
the system can explore. This best reordering can be defined as the path in the reorder-
ing lattice leading to the best translation. Such definition would however make the best
reordering depend on the whole SMT system, including the pruning strategy and the
translation models. Instead, we follow Herrmann et al (2013b) by defining the best
reordering as the one closest to the unfolded reordering. This approximation assumes
that the best order is the one that most closely matches the target reference order, which
is reasonable as most of the automatic metrics also rely on a similar assumption.

Finding the closest permutation requires to define a metric over permutations. Among
many choices (Deza and Huang, 1998), two metrics have been shown to be useful when
assessing reordering accuracy: the Kendall’s τ (Isozaki et al, 2010a; Birch et al, 2010;
Talbot et al, 2011; Neubig et al, 2012) and the fragmentation chunk (or fuzzy reorder-
ing) (Banerjee and Lavie, 2005; Talbot et al, 2011; Neubig et al, 2012). In this work,
we use the Kendall’s τ which proved to correlate strongly with human fluency judg-
ment (Birch et al, 2010). The Kendall’s τ metric (Kendall, 1962) counts the number of
pairwise disagreements between two permutations σ ,π ∈Sn

τ(σ ,π) =
n

∑
i=1

n

∑
j=1

1{σi<σ j}1{πi>π j} (4)

where 1cond is the indicator function with value 1 if cond is true and 0 otherwise. It is
also the minimum number of swaps between two adjacent symbols needed to transform
one permutation into the other, so the distance is also sometimes called the bubble-sort
distance. The Kendall’s τ is usually normalized, so a value of 1 indicates a maximum
disagreement

τ
norm =

√
2τ(σ ,π)

n(n−1)
. (5)

6Note that defining MJ constraints over words amounts to using a fixed distortion limit.
7We avoid the term “oracle reordering” to prevent later confusions with oracle decoding.

9



In the following, we explain how to efficiently search a lattice and find the closest
Kendall’s τ permutation to the unfolded reordering. First observe that

τ(σ ,π) = τ(π−1 ◦σ , id), (6)

where id is the identity permutation. Up to relabeling, the problem is then to find the
permutation in a lattice L with the minimal number of inversions:

argmin
σ∈L

inv(σ) =
n

∑
i=1

n

∑
j=i+1

1{σi>σ j} =
n

∑
j=1

j−1

∑
i=1

1{σi>σ j} =
n

∑
j=1

w(σ j,{σi} j
i=1), (7)

where w(k,S) = ∑s∈S1{s>k} counts how many times an integer k is lower than any
element from an integer set S ∈ 2n. The number of inversions thus decompose as a
sum of local functions that only depend on the set of already permuted integers. As
observed above, in a permutation lattice L = (V,E,Σ,w), each node v∈V corresponds
to a set of integers Sv. Each edge e ∈ E leaving node v with integer label k will have a
contribution w(k,Sv) to the total number of inversions of any path in the lattice leading
to e. Therefore, L can be weighted with w(k,Sv) and the conventional shortest path
algorithm can infer the best reordering.

Figure 2 displays an example of a reordering lattice containing three paths, with
respective Kendall’s τ to the unfolded reordering equal to 1, 2 and 8. The best path has
just one arc of non-null weight between states 1 and 2, where the first word (k = 1) of
the unfolded reordering leaves state 1 covering the second word (S1 = {2}); likewise
the second best bath has one non-null edge of weight 2 between nodes 2 and 5, since
this edge corresponds again to k = 1, with a coverage equal to S2 = {2,3}.

As many paths in the lattice may have the smallest distance to the unfolded re-
ordering (i.e. the argmin in Equation (7) may not be unique), the shortest path is in
fact a sub-lattice of the original one. In our experiments, we found however the best
reordering lattices to have about only 1.1 path on average.

4.4 Metrics
Given our assumptions, the reordering space should be the smallest one containing
the unfolded reordering. Therefore, as a quality measure on reordering constraints, we
define the coverage on some test set as the number of time the reordering space contains
the reference reordering. On the other hand, we compute the size of the reordering
space as the number of paths8 as well as the number of edges in the reordering lattice,
as this last number closely relates to the decoding complexity.

This study primarily focuses on the overall translation performance, in relationship
to the order in which the source has been translated. Our main translation quality met-
ric is therefore BLEU (Papineni et al, 2002). As BLEU however provides little insight
from the perspective of the reordering quality, we also report Kendall’s τ metric to
separately evaluate reorderings as in (Birch and Osborne, 2010). Appendix A also
presents results with two additional metrics that were designed to better take into ac-
count reordering issues : BEER (Stanojević and Sima’an, 2014) and RIBES (Isozaki
et al, 2010a).

8Computed efficiently using the counting semiring.
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5 Experimental Results

5.1 Experimental setup
Our experimental setup is based on the WMT9 evaluation campaign shared task. We
consider the following language pairs (on both directions): English-French, English-
German and English-Czech. For training, the NEWSCOMMENTARY corpus provided
by the organizers of WMT’12 (Callison-Burch et al, 2012) is used; newstest2009 and
newstest2010 are used for tuning and testing,10 respectively. Table 1 contains various
basic statistics regarding these corpora.

In-house text processing tools are used for the tokenization (Déchelotte et al, 2008)
in a “true-case” scheme. As German is morphologically rich, the German source side
is normalized using a specific preprocessing scheme (Allauzen et al, 2010; Durgar El-
Kahlout and Yvon, 2010) which aims at reducing the lexical redundancy by normal-
izing the orthography, neutralizing most inflections and splitting complex compounds.
The English side of the parallel corpora is POS-tagged with Wapiti (Lavergne et al,
2010), while for French and German we use the TreeTagger (Schmid, 1994) and for
Czech the open-source tool MORPHODITA11 (Straková et al, 2014). In the last case,
only the first two characters of the fifteen-letter Prague Dependency Treebank tags are
used, resulting in 67 possible POS tags. For all languages, we also use the mappings
from Petrov et al (2012) to project to the Universal Tagset.

Word alignments and the 50 word classes12 are computed using MGIZA++13 and
MKCLS14 with default settings, using, for English-French and English-German all the
parallel data described in (Allauzen et al, 2013), and, for English-Czech, the EU-
ROPARL and COMMONCRAWL parallel WMT’12 corpora.

For each task, a 4-gram language model is estimated using the target side of the
training data. We use NCODE with the default setting and an additional bilingual factor
model based on POS tags.15 The beam size is set to 25 for KB-MIRA tuning Cherry
and Foster (2012) and to 50 when decoding, a parameter setting that worked well in
previous experiments. All results are averaged over 3 runs to control for optimizer
instability (Clark et al, 2011). Approximate randomization tests for multiple optimizer
samples to assess statistical significance are carried out using MULTEVAL.16

Oracles are computed using the linear approximation to the BLEU score introduced
by Tromble et al (2008): using a first order Taylor-series approximation to the corpus
log(BLEU) gain leads to the following sentence level gain function:

G(e,e′) = θ0|e′|+
4

∑
n=1

∑
g∈n-gram(e)

θn ·#g(e′) (8)

for a reference e and an hypothesis e′, where n-gram(e) is the set of n-grams in e
and #g(e′) is the number of times a n-gram g appears in e′. As this sentence-level
approximation decomposes into a sum of local functions, we can efficiently find the

9Workshop on Machine Translation – see http://www.statmt.org/wmt.
10Note that the English side of newstest2009 and newstest2010 is the same for all translation directions,

which enables a fair comparison between languages.
11With models from Straka and Straková (2013), see http://ufal.mff.cuni.cz/morphodita.
12Out-of-vocabulary words in decoding are mapped to class 1.
13http://www.kyloo.net/software/doku.php.
14http://code.google.com/p/giza-pp/.
15Note that this is independent of the choice of tags used in the reordering rules.
16https://github.com/jhclark/multeval
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NEWSCOMMENTARY newstest2010
# possent. % mono reord. sent. % mono reord.

# len # len # len # len

en → f r 137k 25 17 1.8 3.8 2k 25 20 1.6 4.3 44
f r → en 29 14 2.0 4.7 28 17 1.7 4.9 34
en → de 158k 24 19 1.6 6.4 2k 25 17 1.5 7.2 44
de → en 26 16 1.7 6.8 26 16 1.6 7.3 116
en → cs 139k 23 31 1.0 6.5 2k 25 27 1.1 6.9 44
cs → en 21 29 1.0 6.3 21 29 1.0 6.6 63

Table 1: Basic statistics regarding the experimental data: number (#) and average
length (len) of source sentences (sent.); percentage of monotone sentence pairs (mono);
average number per sentence (#) and average length (len) of the reorderings (reord.);
as well as the size of the Part-of-Speech tagset.

maximum gain path in the lattice. The parameters of Equation (8) are chosen using
θn = (4p× rn−1)−1 for n ∈ {1, . . . ,4} (Tromble et al, 2008), where the unigram pre-
cision p, the precision ratio r and the length bonus θ0 are chosen so as to maximize
corpus-level BLEU. We found p= 0.4, r = 0.8 and θ0 =−1 to yield good performance.

5.2 Coverage, Generalization and Complexity of the Rule-Based
Approach

A first question is the coverage and the generalization power of the rule-based ap-
proach. Figure 3 displays, for each reordering size n, the ratio between the number
of reorderings17 observed in the data and the total number of possible reorderings of
that size (i.e. rn as defined in Section 3.1). We also vary the values of the cost-based
filtering threshold: when maxcost = ∞, all the reorderings observed in the training data
are considered. In this case, almost all the possible reorderings appear in the data for
the rules up to length 5. The ratio then quickly decreases to zero as the size exceeds 8.
Moreover, the comparison between maxcost = 1 and maxcost = 4 shows that the exact
value of the threshold has a small impact on the coverage and this trend is observed for
all translation directions.

Figure 4 characterizes the complexity of the reorderings for three conditions: (a)
the reorderings observed in the training data; (b) the reordering in test data; (c) the test
reorderings that are not captured18 by the rule-based approach (miss). The complexity
of reorderings, as a function of their size, is described with three indicators: the pro-
portion of extracted permutations that are in the ITG family, the average normalized
Kendall’s τ and the normalized fragmentation chunk distance to the identity permuta-
tion. Statistics are computed at the level of rules (rather than sentences): this is because
rules decompose sentences into chunks that are reordered independently. For long sen-
tences with many independent local reorderings, the properties of each local reordering
are more relevant than considering the sentence as a whole. For instance, a non-ITG

17In all this section we always consider minimal reorderings, see Section 3.1.
18Because reorderings are minimal, it is easy to see that a test reordering for a given sequence of tags is

captured by the rule-based approach if and only if a rule with the correct right-hand side exists for that POS
sequence.
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Figure 3: Ratio of reorderings observed in the training data as a function of the reorder-
ing size, when using the POS tagset rules and different filtering thresholds (maxcost)
(a) or with maxcost = ∞ (b) across all language directions. Plots for the five other
language directions were almost identical to the en → f r case. Reorderings of size
larger than 10 are not reported, as their ratio is indistinguishable from 0.

sentence may exhibit several local ITG reorderings, in addition to the non-ITG one(s).
As shown in Figure 4, the complexity measures for train, test and missed reorderings
are nearly identical. Therefore, reorderings that are not captured by the rule-based ap-
proach cannot be characterized by their complexity. For small size reorderings, we
observe the missed reordering to have a slightly lower ITG ratio, a phenomena that
quickly vanishes, as in fact almost all large test reorderings are missed.

Figure 5 displays the number of missed reorderings on the test data as a function
of the size. We also vary the tagsets used to build the reordering rules.19 For English-
French, most reorderings concern moderate size spans (2 to 4) and half of the reorder-
ings spread over only two words. Long range reorderings (i.e. more than ten word) are
rare: if some correspond to genuine linguistic patterns, such as the alternation between
active and passive voice, most of these permutations are due to alignment errors, mis-
tranlations or complex constructions. In contrast, for English-Czech and even more so
for English-German, the rule length is more evenly spread, with many medium size (5-
10) reorderings as well a significant number of long range reorderings, which cannot
be fully attributed to alignment errors. These results are in line with the numbers in Ta-
ble 1, which suggest that French-English is the easiest pair (having the shortest average
reordering length), and that German-English is the hardest (with longer reorderings and
fewer monotonous alignments), Czech-English being in-between with a large number
of monotone reorderings, yet a much larger average reordering length than French.

Figure 5 enables to distinguish three types of reorderings, the proportion of which
varies depending the language pairs:

• short range reorderings, corresponding to permutations involving 2 to 4 words;
these are accurately captured by the rule-based approach and the number of
misses is accordingly very small; in this case, it makes sense to use a syntac-
tic context to make sure they fire only in likely positions.

19The case where no rule is applied gives the number of reorderings needed on the test, data broken down
by reordering size.
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Figure 4: Complexity of reorderings, as a function of the reordering size, in the train-
ing data (train), in the test data (test); (miss) denotes the reorderings in the test data
but are not be captured by any rule). Complexity is measured by the percentage of
ITG reorderings (itg), and the average normalized Kendall’s τ (kendall) and fragmen-
tation chunk (chunk) distance to the identity permutation. The plots for the four other
language directions where similar to en → de.

• medium-size reorderings (permutations of 5-10 words): most of the test situa-
tions are observed in training (as acknowledged by the small number of misses
when we only use one single POS tag); the rule-based approach is less successful
here, and many misses are observed when syntactic constraints are introduced;

• long-range reorderings (involving more than 10 words): most of these are missed,
even with the most general tagset. These means that most of these test permuta-
tions are not seen in training and suggests that learning such long permutations
is useless.

Figure 5 also gives some insights regarding the generalization power of the tagsets
introduced in Section 3.3. With fully lexicalized rules, the coverage of test reorderings
is rather poor: for instance, more than half of the swaps are missed, for all translation
directions. We also note that class-based rules are always worst than rules based on
linguistic tags. Additionally, for reordering size greater than 5, whatever the tagset,
half of the test reordering are missed. This means that the reordering rules, as used
in this work, are only useful for very small range reorderings. Differences between
tagsets thus mainly impact such reorderings and enable to vary the trade-off between
coverage and ambiguity.

5.3 From Monotone to Rule-Based Reordering: Impact on MT
Performance

In this section, we assess the impact of the rule-based approach in terms of MT per-
formance. For this purpose, Table 2 reports BLEU scores on test data for several re-
ordering spaces of varying “quality”. Additional figures for BEER and RIBES metrics
are provided in Appendix A (see Table 5). Note that results obtained with those met-
rics are consistent with our observations based on BLEU scores throughout. The first
reordering space only considers the original source sentence order (monotone). The
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Figure 5: Number of missed reordering on the test data as a function of the reordering
size when using rules built over different tagsets (see text for details; no filtering is used
here, i.e maxcost = ∞) or without any rule. Plots for de → en and cs → en are similar
to the ones for en → de and en → cs, respectively.
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tun. dec. en → f r f r → en en → de de → en en → cs cs → en

NCODE

rules mono 19.1*± 0.0 19.8*± 0.0 12.3*± 0.0 17.0*± 0.0 9.9± 0.0 14.7*± 0.0

rules rules 22.2± 0.0 21.9± 0.0 12.7± 0.0 18.1± 0.0 9.9± 0.0 14.8± 0.0

rules best 22.8*± 0.0 24.2*± 0.0 13.5*± 0.0 19.0*± 0.0 10.2*± 0.0 15.3*± 0.0

rules unfo 24.0*± 0.0 25.8*± 0.0 15.6*± 0.0 22.1*± 0.0 10.9*± 0.1 16.4*± 0.1

rules aug 22.3± 0.0 21.9*± 0.0 12.8± 0.0 18.6*± 0.1 9.9± 0.0 14.8*± 0.0

rules duel 23.1*± 0.0 24.5*± 0.0 14.1*± 0.0 20.2*± 0.0 10.3*± 0.0 15.5*± 0.0

Oracle

mono 47.0 50.0 37.8 43.0 30.1 36.2
rules 54.2 57.5 42.8 49.0 33.1 40.2
best 52.5 56.2 40.7 46.8 31.7 38.0
unfo 54.8 59.2 45.0 52.4 34.7 40.4
aug 56.0 59.9 46.1 53.4 35.5 42.0
duel 54.9 59.3 45.2 52.6 35.0 40.8

NCODE
aug aug 22.3± 0.0 22.0*± 0.0 13.7*± 0.0 19.9*± 0.1 10.1*± 0.0 14.9*± 0.0

duel duel 23.9*± 0.0 25.6*± 0.0 15.6*± 0.0 21.9*± 0.0 11.2*± 0.0 16.6*± 0.0

aug rules 22.2± 0.0 22.0± 0.0 12.1*± 0.1 17.6*± 0.2 10.0*± 0.0 14.8± 0.0

Table 2: BLEU scores on test data obtained by NCODE systems and oracle decoding,
when no reorderings are allowed (monotone (mono)); when using our lattice reorder-
ing space (rules); when given only the best lattice reordering (best); when given only
the reference (unfolded) reordering (unfo); when adding the unfolded reordering to the
lattice (aug) or to the best lattice reordering (duel) during tuning phase on development
data (tun.) and/or when decoding the test (dec.). BLEU scores are averages across 3
runs of MIRA; standard deviation across runs are reported in script size. A statistical
significance (p < 0.005) difference to the baseline (rules; rules) is indicated by the *
symbol.

second uses our rule-based approach to create a reordering lattice (rules). The remain-
ing four are oracle-like reordering spaces that will be detailed in Sections 5.4 and 5.5.
An example of sentence translation for these configurations is in Figure 6. Table 2 also
gives the best possible BLEU scores (oracle decoding) for the six conditions.20

For English-French and English-German, we can observe BLEU improvements
from monotone to lattice reordering, as one would expect. For English-French, the
increase is as high as 3 BLEU points, which illustrates the importance of taking word
moves into account during translation, even for closely related languages. In Figure 6
for example, the monotone translation fails to invert president’s and spokesman,
resulting in a mistranslation (meaning “by the president, spokesman, Radim Ochvat”).
For English-German, gains are however much lower, especially for en → de (only
about a half BLEU point). This suggests that our reordering system does not succeed
in predicting the German word order. Finally and perhaps more surprisingly, there is
no gain at all for English-Czech in neither direction, which indicates that our rule-base
might not be particularly adapted for capturing ordering variation for this particular

20The oracle BLEU scores are significantly lower in this article than the ones published in Pécheux et al
(2014). For the latter, the tuple tables were extracted from the test data to isolate the contribution of the
reordering, while in this work tuple tables are derived from the training corpora, thus measuring the impact
on the actual potential of the systems.
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src : the meeting was announced by the president’s spokesman Radim Ochvat .
ref : c’ est le porte-parole présidentiel Radim Ochvat qui a informé de la réunion .

mono : la réunion a été annoncée par le président porte-parole Radim Ochvat .
rules : la réunion a été annoncée par le porte-parole du président Radim Ochvat .
unfo : le porte-parole du président Radim a été annoncée par la réunion Ochvat .

oracle : de la réunion est le porte-parole présidentiel Radim Ochvat qui

Figure 6: Translations of a source sentence (src) from newstest2010, along with
the reference translation (ref), contrasting monotone (mono) lattice-based (rules)

and reference (unfolded) reordering (unfo) constraints, as well as oracle decoding
(oracle) in the lattice reordering space. For this specific example, the best reordering
and the augmented lattice constraints yielded the same translation as the lattice one
(rules).

language pair.21 Two main explanations may account for this negative result. Either the
reordering mechanism is not expressive enough to generate good reordering variants in
the search space, or the model is not able to recognize these better paths. We will see in
Section 5.7 (Table 3) that for only about 30-40% percent of the sentences, the correct
order is encoded in the lattice. However, oracle decoding shows that in all cases, even
for the most challenging translation directions, the reordering lattice contains much
better reorderings than the monotonic order which could be exploited to achieve better
BLEU scores. This suggests that model and/or search errors are largely responsible
for the lack of improvement observed when moving from a monotone to an enriched
reordering space.

Table 2 also shows that BLEU scores for en → de, and even more so for en → cs,
are much worse than in the other translation direction. Assuming that the reordering
complexity is more or less symmetric, the difference here may be due to the complex
morphology of German and Czech, which is difficult to generate when translating from
English.

The high oracle BLEU scores in Table 2 finally suggest that larger gains may be
achieved by improving the translation models than by increasing the size of the re-
ordering space. Note however that oracle BLEU scores may be overly optimistic and a
large part of these gains may be due to over-fitting the BLEU metric. An illustration is
in Figure 6, with a mumbo-jumbo oracle translation.

5.4 Oracle Reorderings, an Upper Bound on MT Performance
To better understand the impact of model and search errors, we carry out additional
experiments with two informed reordering spaces. Results are again in Table 2. The
best configuration refers to the situation where the reordering space only contains the
best(s) reordering as defined in Section 4.3, unfo denotes the forced unfolded reorder-
ing. Table 2 shows that for all translation directions, the prior knowledge of the best(s)
reordering is actually useful, with particularly large gains for French to English. The
gap between unfo and aug and the corresponding oracle conditions indicates that model
and search errors cause the system to often miss good reordering paths in the lattice,
and reveals quantitatively the impact of these errors in decoding.

As also noted by Herrmann et al (2013b), the best reordering in the lattice is not
necessarily the one leading to the best translation. In fact, alignment errors may yield

21Surprisingly, Czech which is usually described as a free-order language, has both the highest number
of monotone alignments to English, as well as a significant number of non-local reorderings: this makes the
identification of good reorderings especially challenging.
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low quality unfolded reorderings, which will then affect the best reordering approxima-
tion. Moreover, the resulting word order is somewhat artificial and may not correspond
to an optimal matching of phrase pairs.22 Oracle decoding gives a quantitative illus-
tration as oracle decoding with best(s) reordering is only half way between monotone
and lattice-based oracle decoding. This means that, in many cases, an even better
reordering would yield a larger improvement. On the other hand, giving hints about a
given reference translation (here information about its order) biases the system towards
the order of that reference. So the oracle-like reordering results may be slightly more
optimistic than the actual performance a real system could ever achieve.

Previous experiments have delivered an upper bound of the performance for a con-
strained reordering space. It is also interesting to contrast the best achievable reorder-
ing with best conceivable one, as this gives information about the quality of the ap-
proximation of the reordering by the generation mechanism (Herrmann et al, 2013b).
In addition, this also gives an upper bound for any reordering mechanism that would
be used to generate the reordering space. As shown in Table 2, all language direc-
tions benefit from knowing the unfolded reordering, sometimes by a wide margin, with
however some disparities between language directions. The difference between the
best reordering and the unfolded one measures the improvements that could be ob-
tained by relaxing the reordering constraints (assuming no model/search errors), while
the difference between the lattice and the unfolded cases measures the improvements
that could be obtained by designing a better reordering space and a better model score
function.

The observed gaps in performance, up to 4 BLEU points when translating into
English from French or German shows that there is indeed room for improvement. The
improvements for en → cs are however not so clear. In other words, “solving” the
reordering problem at decoding time has only a slight effect on performance for this
language direction. Therefore, the reordering constraints might currently not be the
main limitation of our system for this language pair. Note finally that the reordering
length is unbounded in the unfolded reordering case, hence the lack of long range
reorderings in our model can not be the main explanation.

5.5 Discrimination of the Unfolded Reordering
In this section, we design two additional experiments where we simulate a “competi-
tion” between some of the previous lattices.

In the first one, the rule-based reordering space is augmented with the unfolded
reordering (line denoted by (aug) in Table 2). In this setting, the reordering space
now contains the “expected” reordering, as well as many alternative permuations. This
experiment allows us to further understand how well the decoding system is able to find
the unfolded reordering in the lattice. Table 2 shows that there is almost no difference
with regular lattice decoding, except for de → en. Therefore, it seems that one of the
main issue with reordering is not the lack of good reorderings in the search space, but
rather the failure to select these permutations, due to models and/or search errors.

It should be noted that the unfolded reordering does not always result in a better
translation. For instance, in Figure 6, the lattice translation is valid though different
from the reference. However, the translation in the unfolded reordering condition is
mistranslated as the initial sentence is in the passive voice (the translated sentence
means “President Radim’s spokesman has been announced by the Ochvat meeting”).

22This effect is probably small for NCODE, as the phrase pairs (tuples) are minimal.
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This illustrates the situation where a seemingly optimal reordering leads to a poor trans-
lation. Oracle decoding for the augmented lattice gives a more quantitative analysis:
results in Table 2 for oracle decoding with the augmented lattice are always superior
to the ones obtained with just the unfolded reordering. This means that in many cases,
the search space contains a better reordering than the unfolded one.

The second experiment is a face-to-face comparison of the unfolded and the best
reorderings (see line duel in Table 2). This experiment aims at understanding whether
the decoder could be able to choose the unfolded reordering in the absence the ambi-
guity introduced by many competing spurious reorderings. For each source sentence, a
duel permutation lattice is built containing only the unfolded and the best reorderings.
Table 2 reveals that for English-French and English-Czech, the scores are only slightly
better than the ones with the best reorderings, suggesting that the decoder would only
choose the unfolded reordering if forced to. One explanation is that the unfolded per-
mutation may contain long-range reorderings that are severely penalized by the dis-
tortion mode; this is nonetheless revealing of the pitfalls of the scoring function. The
improvement is minimal for English-Czech, for which the scoring function seems to be
the less appropriate. Oracle results also show that in some cases, the best reorderings
might be easier to use than the unfolded ones, as the scores slightly increase.

Note that in this paper, we have not attempted to sort model from search errors. In
future work, we plan to evaluate the oracle coverage using the lattices that are effec-
tively explored during decoding (i.e. after beam search pruning), to better understand
the relative contributions of these types of errors. However, our duel setting already
suggests that model errors play an important role, as it is unlikely to observe many
search errors when only two alternative reorderings are competing.

5.6 Reordering Space when Tuning
We finally explore the importance of the reordering space during the tuning step. The
bottom part of Table 2 shows that tuning, then decoding with the augmented lattice
could yield some improvements; these are particularly significant for English-German.
This means that the tuning benefits from seeing the unfolded reordering as a possible
candidate. The effect is all the more important when tuning and decoding with the
duel lattices, with an increase of about one BLEU point for all directions. We must
then mitigate the conclusions of previous paragraphs: the decoder is indeed able to
select the unfolded reordering, but has to be trained with lattices containing good non-
monotone paths.23

Unfortunately, tuning with an augmented lattice, while decoding with the rule-
based one, as is the case in real-world scenario, actually harms performance, as shown
in the last line of Table 2.

5.7 Reordering Space Tradeoff
Table 3 reports reordering space size, coverage, oracle and decoding scores24 when
varying the rule filtering threshold. We observe that while the number of rules is al-
most twice as large for en → de than for en → f r, the generated reordering spaces are
comparable in size, but with a much lower coverage for en → de. English-Czech has

23As hinted to above, the distortion model is largely responsible for this. Indeed, when tuning with the
standard lattice the distortion penalty weight is 0.01, while it is −0.05 and −0.19 when tuning with the
augmented and duel lattices, respectively, encouraging to deviate from monotonic translation.

24Results obtained with BEER and RIBES are in Appendix A, Table 6.
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the smallest reordering space; yet the rule coverage is higher than for English-German.
Interestingly, when compared with English-German, English-Czech has almost twice
as many monotonic translations;25 yet, we also observe much lower BLEU scores both
when using NCODE or oracle decoding, indicating again that reordering is only part of
the complexity of this language pair.

By relaxing the rules pruning, we see large increases in the size of the reordering
space, in coverage and in oracle BLEU. For English-French, in regular test condition,
we observe a slight degradation of the BLEU scores, even though the size of the search
space drastically increases. This shows the importance of the trade-off regarding the
design of the reordering space, as noisy reorderings may introduce spurious, but plau-
sible, alternatives. This is however not the case for the other language pairs, for which
the BLEU scores do not change much as the reordering space increases, and with it the
unfolded reordering coverage. Again, en → cs is the most challenging translation pair,
where the best performance are obtained for the monotone condition, reflecting again
the inability of our systems to take advantage of a richer search space.

Table 3 also displays the average Kendall’s τ distance from NCODE hypotheses to
the unfolded permutations as well as the number of times the unfolded reordering is
actually used by the decoder (which corresponds to a null value for Kendall’s τ). For
English-German and English-Czech, we observed that the unfolded coverage of the
search space increases when relaxing the filtering strategy; this is however not reflected
in the final reordering chosen by the decoder, which remains the same, and even slightly
decreases (for maxcost= ∞). Improving the reordering search space does not seem to
benefit the decoder in making better reordering decisions for those language pairs.

It might be surprising, at a first glance, to see that using low cost rules does have
a small effect on the reordering space. For instance, for en → de, using a threshold
of 2 selects 101 K rules, which however generate lattices that have only two paths on
average. Similarly, the 53 K en → cs rules do not significantly increase the number of
paths with respect to the monotone condition. This shows that most of the extracted
reordering rules do not generalize to the test data, mainly because the corresponding
tag sequences are observed too rarely. However, even useless, they are not harmful as
they never fire.

5.8 Using Alternative Tagsets
Figure 7 displays the results when building the reordering rules over different tagsets
and when using different filtering thresholds. It is interesting to see different behaviors
between languages pairs, irrespective of the translation direction. For both English-
French and English-German, using fully lexicalized rules, as predicted in Section 5.2,
performs significantly worst, with improvement however over the monotonic case. For
English-French, we see little differences between the other tags, and, as previously
noted, larger reordering spaces, corresponding to higher filtering thresholds slightly
degrade the performance. It is surprising to see that for f r → en, the rules built on
the word classes slightly outperform the other tags, as this was not predictable from
Figure 5 (a). Word classes however do not perform so well for English-German for
which differences between tagsets are larger. In this case, smaller tagsets seem to
perform better, probably because they enable a better generalization.

As previously observed, the case of en → cs is peculiar, as we do not observe any
quantifiable score change when varying the parameters. Note, however, that this result

25Which also explains the high coverage.
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Figure 7: Comparison of the performance (BLEU score, single MIRA run) of different
tagsets on the test data as a function of the filtering threshold (maxcost).

rules out a possible explanation that the cs → en direction would be penalized by a
large POS tagset, as when using the smaller Universal tagset no changes is observed.
Finally, the results for cs → en show a surprising outlier when using word classes and
a very specific threshold parameter, with about one BLEU point improvement with
respect to other conditions.26

26The most likely explanation being a “lucky” tuning, as we did not average results across multiple runs.
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In general, the competitive results obtained with the coarse-grain tagset and the
automatic word classes show that they can be used as a workaround for under-resourced
language, as for a new language pair, one would not been able to predict which tagset
should be used anyways.

5.9 Comparison with MJ-i
Table 4 finally reports the results27 of a head-to-head comparison between MJ-i con-
straints and the rule-based approach. The MJ reordering spaces are several orders of
magnitude larger than their ruled-based counterparts but yield the same or significantly
lower results. This warrants the use of linguistically motivated rules, instead of allow-
ing all local permutations, and corroborates the trade-off discussed earlier. Training
time is also an issue here: for en → f r, the tuning step with MJ-3 constraints is twenty
times longer than maxlen = 4.

6 Related Work
The reordering problem has been addressed in many ways since the advent of machine
translation. Researchers tried to solve this problem via new approaches, varying the
modeling strategies, or by restricting the possible word reordering operations. In this
work, we are interested in how the reordering space is defined, either explicitly or
implicitly, and in methods that could help to understand the importance and the impact
of reordering space design.

Early work on word reordering constraints includes ITG constraints (Wu, 1997)
and IBM constraints (Berger et al, 1996), which are compared in Zens and Ney (2003).
Goh et al (2011) partition sentences into several clauses and restrict word reordering
to occur within clauses. The definition of the reordering space is also closely related
to the generative mechanisms used in SMT. In phrase-based SMT (Zens et al, 2002)
local reorderings are modeled within phrases, which may then be reordered accord-
ing to some constraints, e.g. a simple distortion limit on words. Other constraints on
phrases include ITG constraints (Zens et al, 2004; Feng et al, 2010; Cherry et al, 2012)
and MJ constraints (Kumar and Byrne, 2005).28 Syntax-based MT systems handle
the reordering problem by embedding syntactic analysis in the decoding process (Wu,
1997; Yamada and Knight, 2001; Galley et al, 2004). Finally, the hierarchical ap-
proach or Chiang (2005) is mainly motivated by the recursive nature of reorderings.
However, Auli et al (2009) showed that the search space explored by phrase-based and
hierarchical-based models are very close. All these approaches generally fail to handle
long range reorderings, hence the motivation of approaches that rearrange the source
sentence in a target-like word order before translating and that handle reorderings at
the word level, as ours.

This line of work has been pioneered by Xia and McCord (2004), who automati-
cally learn reordering rules from source and target language dependency trees. Many
subsequent approaches have proposed to manually design reordering rules based on
syntactic or dependency parse trees (Collins et al, 2005; Xu et al, 2009; Carpuat et al,
2010; Isozaki et al, 2010b), or to automatically learn them (Zhang et al, 2007; Li et al,
2007; Khalilov et al, 2009; Elming and Habash, 2009; Genzel, 2010; Dyer and Resnik,
2010; Khalilov and Sima’an, 2011; Lerner and Petrov, 2013). As source parse trees are

27See Table 7 in Appendix A for BEER and RIBES metrics.
28Note that in this work we consider MJ constraints on words instead of on phrases.
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not always available, other approaches cast the preordering directly as a permutation
modeling problem (Tromble and Eisner, 2009; Visweswariah et al, 2011) or infer the
parse trees automatically from parallel text (DeNero and Uszkoreit, 2011; Neubig et al,
2012). Note that these approaches require high-quality manual word alignments. How-
ever, Visweswariah et al (2013) propose an approach that jointly improves alignment
and reordering in the presence of noisy alignments.

Another widely-used approach is to automatically learn shallow reordering rules
based on POS tags or syntactic chunks (Rottmann and Vogel, 2007; Zhang et al, 2007;
Crego and Habash, 2008; Niehues and Kolss, 2009). Herrmann et al (2013a) further
combine POS based reordering on the morphosyntactic level and syntax tree-based on
the constituent level. Alternatively, Costa-jussà and Fonollosa (2006) cast the word
reordering problem as a translation task, using word class information to translate the
original source sentence into the reordered source sentence.

In some cases, pre-ordering fails to improve translation performance (Howlett and
Dras, 2010). These authors investigate in detail several factors to understand when
preordering may be useful; one reason being that it enables to better match the inner
mechanism of phrase-based SMT (Zwarts and Dras, 2006) .

In the majority of previous works, only one deterministic preordering of the source
sentence is computed: this is because preordering is used in a preprocessing step, which
is then followed by the whole translation pipeline, inducing further reorderings. In
contrast, in our approach, all the possible reorderings are computed once and for all in
the reordering step, whose single goal is to generate the reordering space; the selection
of the best reordering path is then left to the decoder.

Bisazza and Federico (2013b) claim that long-range reorderings issues should not
be attributed to the deficiencies of existing reordering models, but rather to too coarse
definition of the reordering search space. They introduce a word after word reordering
similar to the preordering model of Visweswariah et al (2011) to dynamically shape the
search space while decoding with a very high distortion limit (Bisazza and Federico,
2013a). This approach enables to achieve fast decoding and performance improve-
ments for the reordering of verbs in Arabic to English translation.

Oracle experiments are a valuable method for analyzing different aspects of ma-
chine translation, e.g. identify translation errors in the phrase-table (Wisniewski et al,
2010), or to perform failure analysis (Wisniewski and Yvon, 2013). Sokolov et al
(2012) describe efficient methods to find the best translation hypothesis in a lattice and
apply them to compare the lattices explored by MOSES and NCODE. In this work, we
compute the oracle on the full search lattice. Another line of study is to assess the limi-
tations induced by various reordering constraints. Dreyer et al (2007) compute a lower
bounds of the best achievable BLEU score using dynamic programming techniques for
IBM and ITG constraints, while Sokolov et al (2012) show a very limited influence
of the distortion limit both on the decoder and on the oracle quality. Wisniewski and
Yvon (2013) study in details various reordering constraints, including the distortion
limit, IBM and MJ-i constraints. We share the main conclusions of these studies: the
scoring functions (or models) seem to be the main limitation for phrase-based sys-
tems, while they are expressive enough to achieve higher translation performance. As
for oracle-like reorderings, Khalilov and Sima’an (2012) introduce an upper bound,
similar to our unfolded reordering, and show potential improvement for preordering
performance, albeit limited when considering tree structure constraints.

Auli et al (2009) explore induction errors in the search space of phrase-based and
hierarchical phrase-based model (HPBT), and promote the use of reference reachabil-
ity metric, which corresponds to our notion of coverage. They only consider different
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reordering spaces by varying the distortion limit and show that both types of model
explore almost similar search spaces, and mostly differ by the way they score deriva-
tions. In contrast to previous work, we make use of many complementary approaches
to assess the importance of the reordering space, by studying and comparing jointly
the actual performance, the oracle best possible performance and the search space size,
both for rule-lattice based and for oracle reordering spaces.

The most similar work to ours is certainly the study of Herrmann et al (2013b),
which also contains oracle experiments aimed to analyze the potential of the preorder-
ing approach and the impact of various restriction of the reordering space. Based on
oracle results for the English-German pair that are in line with our own findings, the
authors suggest that closing the observed gap between the unfolded and rule-based
reorderings could yield significant improvements in performance. Based on our ex-
periments, notably the comparison between lattice and augmented reordering spaces
(Section 5.5), we are enclined to mitigate these conclusions: in fact, little gains will
be obtained from such endeavours unless decisive progresses are made to reordering
models.

Note finally that this study extends our own previous work (Pécheux et al, 2014)
in several ways: (a) experiments on English-Czech, a challenging translation language
pair; (b) a detailed study of the rule-based approach and its efficiency; (c) additional
oracle-like conditions which shed light on the importance of model/search errors.29

7 Conclusions
In this work, we have compared the search space generated by different reordering rules
as well as local permutation constraints. Linguistically motivated reordering rules lead
to a much smaller search space and improve the translation quality, and only moder-
ately depends on the abstraction used to generalize rules beyond purely lexical patterns.
However, this simple rule-based approach is only effective for small range reorderings,
and other techniques would be needed to generate more accurate reordering spaces,
in particular for English-Czech. To assess the potential of a better reordering search
space, we use a n-gram SMT tool that decorrelates reordering and decoding; but our
results are more general and hold for any system for which the reordering space could
be encoded in a lattice prior to decoding. This framework allows us to specifically
study the the impact of the reordering space on the overall translation performance. We
find that there is a large room of improvement by designing a better reordering space.
This improvement is however less substantial for English to Czech, the most difficult
translation direction, suggesting that the reordering search space is not the only critical
issue in a system design; for this particular language pair, the complexity of Czech
morphology also contributes to make to make SMT very challenging. However, there
is little hope to generate reordering spaces composed of solely a few good reordering
candidates. We showed that because of model/search errors, simply adding a good re-
ordering in the search space would not be enough. Therefore, improving the reordering
space should come with improvements on the reordering models if one wants to expect
some gains.

It is worth mentioning that, in this work, we aim to understand the importance
and the expressiveness of the reordering decoding search space, all other things being

29Notwithstanding various minor changes such as the use of MIRA instead of MERT and a different BLEU
evaluation script, which explains that the figures presented here do not exactly match those of (Pécheux et al,
2014).
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equal. Word order differences between languages intervene however at many other
levels in a statistical machine translation system. The importance of the reordering
search space has to be conditioned on the fact we are using a (particular) phrase-based
approach relying on alignment links. What we claim is that currently, at least for
the systems and language pairs studied in this work, the main sources of errors, even
from the reordering point of view, can not be attributed to the decoding search space
design. This does not negate that word ordering issues might still play a critical role,
in particular, it presides over tuple extraction, which is at the root of phrase-based
approaches like ours. In addition, our system is plagued by alignment error which
intervene at various levels, affecting the system performance as well as our analysis.
We plan to further study the impact of word alignment noise on the reorderings.
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maxcost BLEU #rules size cov. (%) τ reach. (%)
ncode oracle

en → f r

0 19.1* 47.0 0k 27 / 1 20 0.16 20
2 22.0* 52.4 23k 34 / 45 41 0.15 25
4 22.2 54.2 33k 52 / 105 51 0.15 25
∞ 21.9* 57.5 42k 102 / 1022 62 0.15 23

f r → en

0 19.8* 50.0 0k 30 / 1 17 0.17 17
2 21.5* 53.6 20k 36 / 18 27 0.16 20
4 21.9 57.5 32k 73 / 107 43 0.16 20
∞ 21.7* 56.6 50k 103 / 1027 59 0.16 19

en → de

0 12.3* 37.8 0k 27 / 1 17 0.22 17
2 12.5* 38.6 64k 31 / 2 18 0.23 16
4 12.7 42.8 87k 65 / 105 26 0.23 14
∞ 12.7 45.9 102k 102 / 1022 33 0.23 15

de → en

0 17.0* 43.0 0k 28 / 1 16 0.23 16
2 17.5* 44.8 71k 34 / 3 19 0.23 16
4 18.1 49.0 92k 68 / 105 26 0.22 16
∞ 18.0 50.0 105k 102 / 1026 33 0.23 15

en → cs

0 9.9 30.1 0k 27 / 1 27 0.17 27
2 9.9 30.5 33k 29 / 1 27 0.17 27
4 9.9 33.1 46k 55 / 103 34 0.17 26
∞ 9.9 34.8 57k 102 / 1021 47 0.18 26

cs → en

0 14.7 36.2 0k 23 / 1 29 0.18 29
2 14.6 36.5 30k 25 / 1 29 0.18 28
4 14.8 40.2 41k 52 / 104 39 0.18 28
∞ 14.9 44.0 51k 102 / 1021 51 0.18 27

Table 3: Impact of rule filtering strategy (maxcost), using POS tagset on the test set:
BLEU scores obtained by NCODE system and oracle decoding; on the number of re-
ordering rules (#rules); on the size of the lattice reordering space (averaged number
of arcs / average number of paths); on the coverage (see Section 4.4) (cov.); on the
average Kendall’s τ distance from NCODE hypotheses to the reference unfolded per-
mutations (τ); and on the percentage of times the reference (unfolded) reordering is
reached by the decoder (reach.). BLEU scores are averages across 3 runs of MIRA.
A statistical significance (p < 0.005) difference from the baseline (maxcost=4) is indi-
cated by a *.
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en → f r f r → en en → de de → en en → cs cs → en

BLEU size BLEU size BLEU size BLEU size BLEU size BLEU size

maxlen=2 21.8 102 21.4 102 12.5 77 17.2 7 9.9 7 14.7 67
MJ-1 21.5* 1014 21.3* 1017 12.5 1014 17.2 1019 9.9 1014 14.7 1014

maxlen=3 22.1 104 21.7 105 12.6 103 17.5 102 9.9 102 15.0 103

MJ-2 21.7* 1024 21.5* 1028 12.5* 1024 17.3* 1031 9.9 1024 15.0 1024

maxlen=4 22.3 104 21.9 106 12.6 104 17.7 104 9.9 103 14.8 104

MJ-3 21.7* 1030 21.6* 1036 12.5 1030 17.5* 1040 9.9 1030 14.8 1030

Table 4: Comparison between rule-based reordering with a rule length limit (maxlen)
and purely combinatorial MaxJump constraints (MJ-i). Reported BLEU scores are av-
erages across 3 runs of MIRA. A statistical significance (p < 0.005) difference between
maxlen = i and MJ-(i−1) is indicated by a *.
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tun. dec. en → f r f r → en en → de de → en en → cs cs → en

NCODE

rules mono 12.5 11.1 7.6 9.1 14.9 7.5
rules rules 14.2 12.4 8.5 10.0 15.0 7.5
rules best 14.6 13.2 8.5 10.3 15.0 7.6
rules unfo 15.1 14.0 9.4 11.5 15.3 8.1
rules aug 14.2 12.4 8.6 10.3 14.9 7.5
rules duel 14.7 13.4 9.0 10.9 15.0 7.7

Oracle

mono 25.3 21.4 10.7 17.0 27.9 15.9
rules 33.1 29.5 14.5 22.1 28.9 17.6
best 31.7 28.3 13.4 20.5 28.4 16.9
unfo 34.2 31.9 17.1 25.9 29.7 18.2
aug 35.1 32.4 17.5 26.5 30.0 18.7
duel 34.3 32.0 17.1 26.0 29.8 18.3

NCODE
aug aug 14.3 12.5 9.2 10.8 15.0 7.5
duel duel 15.1 14.1 9.7 11.7 15.5 8.1
aug rules 14.2 12.4 8.8 10.0 15.0 7.5

(a) BEER evaluation metric

tun. dec. en → f r f r → en en → de de → en en → cs cs → en

NCODE

rules mono 76.1 77.7 73.0 75.6 70.8 74.7
rules rules 77.6 78.7 73.2 76.2 70.8 74.8
rules best 78.1 79.9 73.8 77.3 71.1 75.7
rules unfo 80.2 82.2 76.6 80.7 72.5 77.7
rules aug 77.6 78.7 73.1 76.6 70.8 74.6
rules duel 78.2 80.1 74.2 78.3 71.2 75.9

Oracle

mono 88.1 88.0 85.2 85.7 81.4 82.9
rules 89.9 89.4 86.2 86.7 82.2 83.9
best 89.9 89.7 86.2 87.2 82.2 84.0
unfo 92.2 92.2 89.2 90.5 85.0 86.6
aug 92.0 92.0 88.8 90.0 84.8 86.3
duel 92.1 92.2 89.0 90.3 85.0 86.5

NCODE
aug aug 77.7 78.8 74.3 78.4 70.9 74.6
duel duel 80.1 82.0 76.6 80.6 73.0 77.7
aug rules 77.6 78.7 72.2 76.2 70.8 74.7

(b) RIBES evaluation metric

Table 5: Metrics scores on test data obtained by NCODE systems and oracle decoding,
when no reorderings are allowed (monotone (mono)); when using our lattice reorder-
ing space (rules); when given only the best lattice reordering (best); when given only
the reference (unfolded) reordering (unfo); when adding the unfolded reordering to the
lattice (aug) or to the best lattice reordering (duel) during tuning phase on develop-
ment data (tun.) and/or when decoding the test (dec.).
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maxcost BEER RIBES
ncode oracle ncode oracle

en → f r

0 12.5 25.3 76.1 88.1
2 14.1 31.3 77.3 89.5
4 14.2 33.1 77.6 89.9
∞ 14.1 34.7 77.4 89.3

f r → en

0 11.1 21.4 77.7 88.0
2 12.1 25.3 78.5 88.8
4 12.4 29.5 78.7 89.4
∞ 12.3 32.2 78.5 88.7

en → de

0 7.6 10.7 73.0 85.2
2 8.2 11.2 73.0 85.4
4 8.5 14.5 73.2 86.2
∞ 8.4 15.8 73.0 86.1

de → en

0 9.1 17.0 75.6 85.7
2 9.6 18.5 75.9 86.2
4 10.0 22.1 76.2 86.7
∞ 9.8 24.1 76.1 86.1

en → cs

0 14.9 27.9 70.8 81.4
2 14.9 27.9 70.7 81.5
4 15.0 28.9 70.8 82.2
∞ 15.0 29.1 70.7 82.2

cs → en

0 7.5 15.9 74.7 82.9
2 7.4 16.0 74.5 83.0
4 7.5 17.6 74.8 83.9
∞ 7.5 18.9 74.7 84.3

Table 6: BEER and RIBES scores obtained by NCODE system and oracle decoding
when varying the rule filtering strategy (maxcost), using POS tagset on the test set.

en → f r f r → en en → de de → en en → cs cs → en

BEER RIBES BEER RIBES BEER RIBES BEER RIBES BEER RIBES BEER RIBES

maxlen=2 14.0 77.3 12.0 78.3 8.1 73.0 9.4 75.6 15.0 70.8 7.5 74.6
MJ-1 13.9 77.2 12.0 78.3 8.1 73.0 9.3 75.7 15.0 70.8 7.5 74.6

maxlen=3 14.2 77.5 12.2 78.5 8.3 72.9 9.6 75.7 14.9 70.7 7.5 74.9
MJ-2 14.0 77.3 12.1 78.3 8.3 73.1 9.5 75.6 14.9 70.8 7.5 74.8

maxlen=4 14.2 77.6 12.3 78.6 8.5 73.1 9.7 75.9 15.0 70.8 7.5 74.7
MJ-3 14.0 77.3 12.1 78.3 8.3 72.9 9.6 75.9 14.9 70.7 7.5 74.6

Table 7: Comparison between rule-based reordering with a rule length limit (maxlen)
and purely combinatorial MaxJump constraints (MJ-i) for BEER and RIBES metrics.
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