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BOUNDARY BEHAVIOR OF THE

QUASI-HYPERBOLIC METRIC

NIKOLAI NIKOLOV AND PASCAL J. THOMAS

Abstract. The precise behavior of the quasi-hyperbolic metric
near a C1,1-smooth part of the boundary of a domain in Rn is
obtained.

1. Introduction and results

Let D be a proper subdomain of Rn. Define the quasi-hyperbolic
metric of D by

hD(a, b) = inf
γ

∫

γ

||du||
dD(u)

, a, b ∈ D

where || · || is the Euclidean norm, dD = dist(·, ∂D) and the infimum
is taken over all rectifiable curves γ in D joining a to b. By [5, Lemma
1], the infimum is attained, and any extremal curve is called quasi-
hyperbolic geodesic (for short, geodesic). It turns out that the geodesics
are C1,1-smooth (see [8, Corollary 4.8]). The quasi-hyperbolic metric
arises in the theory of quasi-conformal maps.
This paper is devoted to the boundary behavior of hD. First, we

point out the following general lower bound.

Proposition 1. [4, Lemma 2.6] If D is a proper subdomain of Rn, then

hD(a, b) ≥ 2 log
dD(a) + dD(b) + ||a− b||

2
√

dD(a)dD(b)
, a, b ∈ D.

Observe that equality occurs if n = 1 (then D is an open interval or
ray).
From now, we assume that n ≥ 2. Throughout the paper, we will

say that ζ is a Cα smooth boundary point of D if and only if it admits
a neighborhood in which ∂D is Cα-smooth.
Recall that a C1-smooth boundary point ζ of a domainD in R

n is said
to be Dini-smooth if the inner unit normal vector n to ∂D near ζ is a
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Dini-continuous function. This means that there exists a neighborhood

U of ζ such that

∫ 1

0

ω(t)

t
dt < +∞, where

ω(t) = ω(n, ∂D∩U, t) := sup{||nx−ny|| : ||x− y|| < t, x, y ∈ ∂D∩U}
is the respective modulus of continuity.

If

∫ 1

0

ω(t)
log t

t
dt > −∞, then the point ζ is called log-Dini smooth.

The following relations between different notions of smoothness are
clear: C1,ε ⇒ log-Dini ⇒ Dini ⇒ C1.

Theorem 2. [9, Theorem 7] Let ζ be a Dini-smooth boundary point of

a domain D in Rn. Then for any constant c > 1 +

√
2

2
there exists a

neighborhood U of ζ such that

hD(a, b) ≤ 2 log

(

1 +
c||a− b||

√

dD(a)dD(b)

)

, a, b ∈ D ∩ U.

Since hD is an inner metric, we get an upper bound of hD, similar
to the lower bound from Proposition 1.

Corollary 3. [9, Corollary 8] Let D be a Dini-smooth bounded domain
in Rn. Then there exists a constant c > 0 such that

hD(a, b) ≤ 2 log

(

1 +
c||a− b||

√

dD(a)dD(b)

)

, a, b ∈ D.

Set now sD(a, b) = 2 sinh−1 ||a− b||
2
√

dD(a)dD(b)

= 2 log
||a− b||+

√

||a− b||2 + 4dD(a)d(b)

2
√

dD(a)dD(b)
, a, b ∈ D.

Note that hD = sD if D is a half-space in Rn (cf. [12, (2.8)]).
The following sharp result holds in the C1-smooth case.

Proposition 4. [9, Proposition 6(a)] If ζ is a C1-smooth boundary
point of a domain D in Rn, then

lim
a,b→ζ
a6=b

hD(a, b)

sD(a, b)
= 1.

Since the proof of this proposition is not long, we shall include it for
completeness.
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Corollary 5. [9, Proposition 6(b) and p. 3] IfD is a C1-smooth bounded
domain in Rn, then

qD(a, b) =







hD(a, b)

sD(a, b)
, a, b ∈ D, a 6= b

1, otherwise

is a continuous function on Rn × Rn.

The main goal of this paper is to prove the following result related
to Proposition 4.

Theorem 6. If ζ is a C1,1-smooth boundary point of a domain D in
Rn, then

lim
a,b→ζ

(hD(a, b)− sD(a, b)) = 0.

Note that Theorem 6 and Proposition 4 say the same only if sD and
1/sD are bounded.
The assumption about regularity in Theorem 6 can be weakened in

the plane.

Proposition 7. If ζ is a log-Dini smooth boundary point of a domain
D in R2, then

lim
a,b→ζ

(hD(a, b)− sD(a, b)) = 0.

The above results imply the following optimal version of Theorem 2.

Corollary 8. Let ζ be a C1,1-smooth boundary point of a domain D
in Rn or ζ be a log-Dini smooth boundary point of a domain D in R2.
Then for any constant c > 1 there exists a neighborhood U of ζ such
that

hD(a, b) ≤ 2 log

(

1 +
c||a− b||

√

dD(a)dD(b)

)

, a, b ∈ D ∩ U.

The rest of the paper is organized as follows: Section 2 contains
the proofs of Propositions 4, 7 and Corollary 8. Section 3 contains
the proof of Theorem 6. It should be mentioned that the three proofs
use different flattening maps. Section 4 contains the proof of a result
analogous to Corollary 8 for the Kobayashi distance.

2. Proofs of Propositions 4, 7 and Corollary 8

Proof of Proposition 4. After translation and rotation, we may assume
that ζ = 0 and that there is a neighborhood U of 0 such that

D′ := D ∩ U = {x ∈ U : r(x) := x1 + f(x′) > 0},
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where points of Rn are denoted by x = (x1, x
′), with x′ ∈ Rn−1, and f

is a C1-smooth function in Rn with f(0) = 0 and ∇f(0) = 0.
Let c > 1 and θ(x) = (r(x), x′). We may shrink U such that

(1) c−1||x− y|| ≤ ||θ(x)− θ(y)|| ≤ c||x− y||, x, y ∈ U.

Choose now a neighborhood V ⊂ U of 0 such that dD′ = dD on
D ∩ V. The regularity of D implies that it is a uniform domain near ζ
in the sense of [5]. Using, for example, [5, Corollary 2], one can find
a neighborhood W ⊂ V of 0 such that any geodesic joining points in
D̃ = D ∩W is contained in D ∩ V. Then hD = hD′ on D̃2.
Set Rn

+ = {x ∈ Rn : x1 > 0}. Using the above arguments, we may

shrink W such that hRn

+
= hθ(D′) on (θ(D̃))2.

On the other hand, (1) implies that (cf. [12, Exercise 3.17])

c−2hD′(z, w) ≤ hθ(D′)(θ(z), θ(w)) ≤ c2hD′(z, w), z, w ∈ D′.

Let z, w ∈ D̃. Then

c−2hD(z, w) ≤ hRn

+
(θ(z), θ(w)) ≤ c2hD(z, w).

Using (1) again, we get that

hRn

+
(θ(z), θ(w)) = 2 sinh−1 ||θ(z)− θ(w)||

2
√

rD(z)rD(w)

≤ 2 sinh−1 c2||z − w||
2
√

dD(z)dD(w)
≤ c2sD(z, w).

We obtain in the same way that

hRn

+
(θ(z), θ(w)) ≥ c−2sD(z, w).

So

c−4hD(z, w) ≤ sD(z, w) ≤ c4hD(z, w)

which implies the desired result. �

Proof of Proposition 7. We may find a neighborhood U of ζ such that
D ∩ U is a bounded simply connected log-Dini smooth domain. Using
an argument from the previous proof, we may replace D by D ∩ U.
The Kellogg–Warschawski theorem (cf. [11, Theorem 3.5]) implies

that there exists a conformal map f̃ from the unit disc D to D which
extends to a C1-diffeomorphism between D to D such that f̃(ζ) = 1
and

|f̃ ′(z)− f̃ ′(w)| ≤ ω∗(|z − w|), z, w ∈ D,
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where ω̃∗(s) =

∫ s

0

ω̃(t)

t
dt+ s

∫ +∞

s

ω̃(t)

t2
dt (s ≥ 0) and ω̃ : R+ → R

+ is

a bounded continuous function with

∫ 1

0

ω̃(t)
log t

t
dt > −∞.

Then f(z) = f̃

(

1− z

1 + z

)

maps conformally R
2
+ onto D and

|f ′(z)− f ′(w)| ≤ ω∗(|z − w|), z, w ∈ G = R
2
+ ∩ D,

where ω∗ is defined in the same way as ω̃∗.
The equality

f(w)− f(z)− f ′(z)(w − z) = (w − z)

∫ 1

0

(f ′(z + t(w − z))− f ′(z)) dt

implies that

|f(w)− f(z)− f ′(z)(w − z)| ≤ |w − z|ω∗(|w − z|)
(since ω∗ is an increasing function). It follows that

(2) |dD(f(z))− |f ′(z)|dR2
+
(z)| ≤ dR2

+
(z)ω∗(dR2

+
(z)), z ∈ G.

Since D is a uniform domain, there exists a neighborhood V of ζ such
that any geodesic γ joining points a = f(α) and b = f(β) in D ∩ V
is contained in f(G). It follows by (2) that one may find a constant
C > 0 (independent of a and b) such that

hR2
+
(α, β) ≤

∫

f−1◦γ

|du|
dR2

+
(u)

≤
∫

γ

|dv|
dD(v)

+ C

∫

γ

ω∗(dD(v))

dD(v)
|dv|.

The first summand is equal to hD(a, b).
We claim that the second summand tends to 0 as a, b → ζ. Indeed,

denote by t the natural parameter of γ by arc length and by l = l(γ) the
Euclidean length of γ. Since D is a uniform domain, then [5, Corollary
2] provides a constant c > 0 (independent of a and b) such that c · l ≤
|a−b| and dD(γ(t)) ≥ c ·max{t, l− t}. Using that

ω∗(s)

s
is a decreasing

function, we get
∫

γ

ω∗(dD(v))

dD(v)
|dv| ≤ 2

c

∫ cl/2

0

ω∗(t)

t
dt.

It is easy to check the log-Dini condition for ω is is equivalent to the
fact that the last integral tends to 0 as l → 0 which implies our claim.
Hence

lim inf
a,b→ζ

(hD(a, b)− hR2
+
(α, β)) ≥ 0.
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The opposite inequality

lim sup
a,b→ζ

(hD(a, b)− hR2
+
(α, β)) ≤ 0

follows in the same way by taking the geodesic joining α and β.
Using (2), we have that

(3) lim
a,b→ζ
a6=b

|a− b|
2
√

dD(a)dD(b)
·
2
√

dR2
+
(α)dR2

+
(β)

|α− β| = 1.

Since hR2
+
= sR2

+
and sinh−1 qt < log q + sinh−1 t for q > 1, t > 0, then

lim
a,b→ζ

(sD(a, b)− hR2
+
(α, β)) = 0

which completes the proof. �

Proof of Corollary 8. We may assume that c = 2c′ − 1 ∈ (1, 3]. By
Proposition 4, Theorem 6 and Proposition 7, one may find a neighbor-
hood U of ζ such that for a, b ∈ D ∩ U,

hD(a, b) ≤ c′sD(a, b), hD(a, b) ≤ sD(a, b) + log c′.

Then the result follows by the inequalities sinh−1 t

2
< log(1+t) (t > 0),

(1 + t)c
′

< 1 + ct (0 < t < 1) and c′(1 + t) < 1 + ct (t > 1). �

3. Proof of Theorem 6

Theorem 6 will follow from Propositions 9 and 11 below.
For convenience, we assume that D is a domain in Rn+1 (n ≥ 1).
We first localize the problem. We choose local coordinates so that

ζ = 0 and T0∂D = {0} × Rn.
Denote points in R

n+1 by x̄ = (x0, x) ∈ R × R
n. We also write

R
n+1
+ = {x̄ ∈ Rn+1 : x0 > 0}.
There are a ball U ⊂ Rn+1 centered at (0, 0) and a function f ∈

C1,1(U ∩ Rn,R) such that f(0) = 0 and Df(0) = 0 and

(4) D ∩ U = {x̄ ∈ U : x0 > f(x)} .
By shrinking the radius of U further we may assume that the pro-

jection which to x̄ ∈ U ∩D associates π(x̄), the closest point in ∂D is
well-defined, and that U ⊂ π−1(U ∩ D) (see [1, Lemma 4.11], or the
proof of Lemma 10 (1) below).

Proposition 9. lim inf
a,b→0

(hD(a, b)− sD(a, b)) ≥ 0.
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We can define a map ϕ on U by

ϕ(x̄) = (f(x), x) + x0nx,

where nx is the inward unit normal to ∂D at the point (f(x), x).

Lemma 10. (1) There exists a ball U0 ⊂ U centered at 0 such that
ϕ|U0

is a bilipschitz homeomorphism and for any x̄ ∈ U0 ∩ R
n+1
+ ,

dDϕ(x̄) = ‖ϕ(x̄)− (f(x), x)‖ = x0.

(2) Furthermore, if f ∈ Cα(U ∩ Rn,R), for some α ≥ 2, then ϕ|U0
is

a Cα−1-diffeomorphism, and there exists a ball U1 ⊂ U0 centered at 0
and a constant C > 0 such that for any x̄ ∈ U1 ∩ R

n+1
+ and any vector

v ∈ Rn+1,
‖Dϕ(x̄) · v‖ ≥ (1− Cx0)‖v‖.

where Dϕ(x̄) stands for the differential of ϕ taken at the point x̄.
(3) In the general case where f ∈ C1,1(U ∩ Rn,R), then there exists a
C > 0 such that for any C1 curve γ : [t1, t2] −→ U1 ∩ R

n+1
+ , ϕ ◦ γ is

rectifiable and for any F ∈ C([t1, t2],R+),
∫ t2

t1

F (t)|dϕ ◦ γ(t)| ≥
∫ t2

t1

F (t)|dγ(t)| − C

∫ t2

t1

F (t)dD(γ(t))|dγ(t)|.

Proof. Part (1) of the lemma is classical (see [1, Theorem 4.8]). The
main point is to prove that the domain has positive reach, that is to
say that there exists δ > 0 such that if x ∈ D and dD(x) < δ, then this
distance is attained at a single point, which will be the intersection of
∂D and the unique normal line to it containing x (see [1]). In other
words, for x ∈ U well chosen and x0 < δ, ϕ is one-to-one.
We quickly recall the proof. Suppose ‖∇f(x) − ∇f(x′)‖ ≤ L‖x −

x′‖ for (0, x), (0, x′) ∈ U1, then, taking without loss of generality the
projection to ∂D to be (0, 0), for some θ ∈ (0, 1),

‖(y0, 0)− (f(x), x)‖2 = y20 − 2y0∇f(θx) · x+ f(x)2 + ‖x‖2

≥ y20 + ‖x‖2 − 2y0L‖x‖2 > y20

for y0 < 1/2L and x 6= 0.
Notice that a lemma in [6, Appendix], explained in detail in [7],

shows that even though nx can only be expected to be continuous with
bounded derivatives, and in general of class Cα−1 when ϕ ∈ Cα, the
function x̄ 7→ dD(x̄) has the same regularity as ϕ.
We now prove part (2). Let (e0, e1, . . . , en) be the standard basis of

Rn+1. Let ẽj =
∂f

∂xj
(x)e0 + ej , for 1 ≤ j ≤ n. They form a basis of the

tangent space to ∂D at (x, f(x)) and 〈nx, ẽj〉 = 0 for 1 ≤ j ≤ n.
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Then Dϕ(x̄) · e0 = nx, and Dϕ(x̄) · ej = ẽj + x0
∂nx

∂xj
, for 1 ≤ j ≤ n.

Given v =
∑n

0 vjej ,

Dϕ(x̄) · v =
(

v0nx +

n
∑

1

vj ẽj

)

+ x0

n
∑

1

vj
∂nx

∂xj
=: V1 + V0.

Clearly, ‖V0‖ = O(x0)‖v‖. By the orthogonality of nx to the tangent
space,

‖V1‖2 = v20 +

∥

∥

∥

∥

∥

n
∑

1

vj ẽj

∥

∥

∥

∥

∥

2

= v20 +

∥

∥

∥

∥

∥

n
∑

1

vjej +

(

n
∑

1

∂f

∂xj
(x)

)

e0

∥

∥

∥

∥

∥

2

= v20 +
n
∑

1

v2j +

∣

∣

∣

∣

∣

n
∑

1

∂f

∂xj
(x)

∣

∣

∣

∣

∣

2

≥ ‖v‖2.

In the case where f ∈ C1,1, then ϕ ◦ γ is only a Lipschitz map. By
Rademacher’s theorem (see e.g. [2, Theorem 3.1.6]), it is almost ev-
erywhere differentiable and the fundamental theorem of calculus holds.
We then perform the same calculation as in case (2), where the inte-
grands are defined a.e. �

Proof of Proposition 9. Using Lemma 10, the proof repeats the second
part of the proof of Proposition 7. Suppose that ζ = 0 and that the
domain D is given by a local representation as above. We may assume
that the points a, b ∈ D are in a small enough neighborhood of 0 so
that the geodesic γ which joins them is entirely contained in the range
of invertibility of ϕ and Lemma 10 holds; we write a = ϕ(ᾱ), b = ϕ(β̄),
γ = ϕ(γ̃), where γ̃ is an arc in R

n+1
+ . Then

hD(a, b) =

∫

γ

||du||
dD(u)

≥
∫

γ̃

||dv||
d
R
n+1

+
(v)

−C ·l(γ̃) ≥ h
R
n+1
+

(ᾱ, β̄)−C ′||ᾱ−β̄||,

where C ′ > 0 is a constant independent of a and b. Note that h
R
n+1
+

=

s
R
n+1
+
. Since the differential of ϕ at x̄ tends to the identity as x→ 0, it

follows that

lim
a,b→ζ

(s
R
n+1

+
(ᾱ, β̄)− sD(a, b)) = 0

which completes the proof. �

Proposition 11. lim sup
a,b→0

(hD(a, b)− sD(a, b)) ≤ 0.

The proof is similar to that of Proposition 9, using a modification of
the map ϕ which depends on a and b.
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Proof. We again assume that a, b ∈ D, and the geodesic connecting
them, all lie in a neighborhood of ζ small enough so that any point in
it has a unique closest point on ∂D. Let a′, b′ be the respective closest
points. We take new coordinates (and obtain a new function f) so that
a′ = 0 (instead of ζ = 0 as in the proof of Proposition 9) and

D ∩ U = {x̄ ∈ U : x0 > f(x1, . . . , xn)}.
Wemay also assume that b′2 = · · · = b′n = 0. Shrinking the radius r of U ,
we may replace x1 by σ1(x1) such that for σ = (f(σ1, 0, . . . , 0), σ1, 0, . . . , 0)
one has ||σ′|| = 1 (in other words, σ is parametrized by arc length).
Note that r can be chosen independently of a and b. Let ℓ be the length
of the curve σ from a′ to b′, so that σ(0) = a′, σ(ℓ) = b′.
Consider the map ϕ from R2

+ (near 0) to D defined by

ϕ(x0, x1) = σ(x1) + x0nσ(x1),

where nσ(x1) is the inward unit normal to ∂D at the point σ(x1). Then
dD(ϕ(x̄)) = x0 if x0 is small enough, and if α = (dD(a), 0) and β =
(dD(b), ℓ), we have ϕ(α) = a, ϕ(β) = b.

Lemma 12. There exist a neighborhood U of ζ, a neighborhood V of 0
and a constant C > 0 such that for any a, b ∈ D ∩ U and x̄ ∈ R2

+ ∩ V
and any vector v ∈ R2, then α, β ∈ V and

‖Dϕ(x̄) · v‖ ≤ (1 + Cx0)‖v‖.
Proof. As in the proof of Lemma 10 (2), in the C2-smooth case,

Dϕ(x̄) · e0 = nσ(x1), Dϕ(x̄) · e1 = σ′(x1) + x0
∂nσ(x1)

∂x1
.

Because ||σ′|| = 1 and is tangent to ∂D, (σ′(x), nx) form an orthonor-
mal system, so that Dψ(x̄) differs from a linear isometric embedding

by a term bounded by

∥

∥

∥

∥

∂nσ(x1)

∂x1

∥

∥

∥

∥

x0.

Geometric considerations show that

∥

∥

∥

∥

∂nσ(x1)

∂x1

∥

∥

∥

∥

≤ 1

R
whenever there

exist two balls B1, B2 of radius R, tangent to each side of ∂D at σ(x1).
The argument in the proof of Lemma 10 (1) shows there exists δ > 0
(depending only on the neighborhood U0 mentioned in that lemma)
such that there exist two such balls of radius δ at each point in U0∩∂D.
As in the proof of Lemma 10 (3), the C1,1-smooth case follows by

applying Rademacher’s theorem. �

The proof of Proposition 11 can be finished similarly to that of
Proposition 9. Let γ be the geodesic joining α to β in R2

+. Let U, V
be as in Lemma 12. Shrinking V if needed so that ϕ(V ) ⊂ U , we have
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dD(ϕ(u)) = dR2
+
(u) for any u ∈ γ. Since ϕ ◦ γ is a curve joining a to b

in D, using Lemma 12, we get

hD(a, b) ≤
∫ ℓ

0

‖Dϕ(γ(t)) · γ′(t)‖
dD(ϕ ◦ γ(t)) dt

≤ hR2
+
(α, β) + Cl(γ) < sR2

+
(α, β) + Cπ||α− β||

(here π is the Ludolphine number, not the projection). The differential
of ϕ is close to a linear isometric embedding of R2 in Rn+1 and hence
we have the asymptotic relation (3) and

lim
a,b→ζ

(sR2
+
(α, β)− sD(a, b)) = 0,

which completes the proof. �

4. An upper estimate for the Kobayashi distance

Let D be a domain in Cn. The Kobayashi (pseudo) distance kD is
obtained from the Lempert function

lD(a, b) = inf{tanh−1 |α| : ∃ϕ ∈ O(D, D) with ϕ(0) = a, ϕ(α) = b},
a, b ∈ D.

The Lempert function does not always satisfy the triangle inequality,
but setting

kD(a, b) := inf

{

m−1
∑

j=0

lD(aj , aj+1) : aj ∈ D, a0 = a, am = b,m ≥ 1

}

,

one does obtain a (pseudo) distance, which is the largest that is domi-
nated by lD.
Recall that kD is the integrated form of the Kobayashi (pseudo)

metric

κD(a;X) = inf{|α| : ∃ϕ ∈ O(D, D) with ϕ(0) = a, αϕ′(0) = X},
a ∈ D, X ∈ C

n.

Note that Theorem 2 and Proposition 7 (even in the Dini-smooth
case) hold for 2kD instead of hD (see [9, Theorem 7] and [10, Proposition
6]). Moreover, the following result corresponds to Proposition 4.

Proposition 13. [9, Proposition 5(a)] If ζ is a C1-smooth boundary
point of a domain D in Cn, then

lim sup
a,b→ζ
a6=b

2kD(a, b)

hD(a, b)
≤ 1.
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It turns out that Corollary 8 also holds for 2kD instead of hD. This
gives the optimal version of [3, Proposition 2.5] in the C1,1-smooth case.

Proposition 14. Let ζ be a C1,1-smooth boundary point of a domain
D in Cn or ζ be a log-Dini smooth boundary point of a domain D in
C. Then for any constant c > 1 there exists a neighborhood U of ζ such
that

kD(a, b) ≤ log

(

1 +
c||a− b||

√

dD(a)dD(b)

)

, a, b ∈ D ∩ U.

Proof. Having in mind Corollary 8, it is enough to show that

lim sup
a,b→ζ
a6=b

2kD(a, b)− hD(a, b)

||a− b|| < +∞.

Since kD is the integrated form of κD and the lengths of the quasi-
hyperbolic geodesics joining points in D near ζ are bounded up to a
multiplicative constant by the Euclidean distances between the points,
the last inequality will be a consequence of the following one:

lim sup
a→ζ

||X||=1

(

2κD(a;X)− 1

dD(a)

)

< +∞.

To see this, note that there exists an r > 0 such that any a ∈ D near
ζ is contained in a (unique) ball Bn(ã, r) ⊂ D with r−||a− ã|| = dD(a)
(the inner ball condition). It remains to use that for such an a and
||X|| = 1 one has that

κD(a;X) ≤ κBn(ã,r)(a;X) ≤ r

r2 − ||a− ã||2 <
1

2dD(a)
+

1

4r
. �

References

[1] H. Federer, Curvature Measures, Trans. Amer. Math. Soc. 93 (1959), 418–491.
[2] H. Federer, Geometric measure theory, Grundl. math. Wissensch. 153, Springer,
Berlin (1969).
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