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WEAK EMBEDDING PROPERTY, INNER
FUNCTIONS AND ENTROPY

ALEXANDER BORICHEV, ARTUR NICOLAU AND PASCAL J. THOMAS

Abstract. Following Gorkin, Mortini, and Nikolski, we say that
an inner function I in H∞(D) has the WEP property if its modulus
at a point z is bounded from below by a function of the distance
from z to the zero set of I. This is equivalent to a number of prop-
erties, and we establish some consequences of this for H∞/IH∞.

The bulk of the paper is devoted to wepable functions, i.e. those
inner functions which can be made WEP after multiplication by
a suitable Blaschke product. We prove that a closed subset E of
the unit circle is of finite entropy (i.e. is a Beurling–Carleson set)
if and only if any singular measure supported on E gives rise to a
wepable singular inner function. As a corollary, we see that singular
measures which spread their mass too evenly cannot give rise to
wepable singular inner functions. Furthermore, we prove that the
stronger property of porosity of E is equivalent to a stronger form
of wepability (easy wepability) for the singular inner functions with
support in E. Finally, we find out the critical decay rate of masses
of atomic measures (with no restrictions on support) guaranteeing
that the corresponding singular inner functions are easily wepable.

To Nikolai Nikolski on occasion of his birthday

1. Introduction

1.1. Background. Let H∞ = H∞(D) be the algebra of bounded ana-
lytic functions on the unit disc D with the norm ‖f‖∞ = supz∈D |f(z)|.
A function I ∈ H∞ is called inner if it has radial limits of modulus 1
at almost every point of the unit circle.

Any inner function I factors as I = BS where B is a Blaschke
product and S is a singular inner function, that is, an inner function
without zeros in D.
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A Blaschke product B is called an interpolating Blaschke product if
its zero set Λ = (zn)n forms an interpolating sequence for H∞, that is
H∞|Λ = `∞|Λ. Let ρ(z, w) be the pseudohyperbolic distance between
the points z and w in the unit disc D defined as

ρ(z, w) =

∣∣∣∣ z − w1− wz

∣∣∣∣ , z, w ∈ D.

A celebrated result of Carleson says that Λ is interpolating if and only
if infn 6=m ρ(zn, zm) > 0 and

(1) sup
z∈D

∑
n

(1− |zn|2)(1− |z|2)

|1− znz|2
<∞.

It was also proved by Carleson that (??) is equivalent to the em-
bedding H1 ⊂ L1(dµ), where H1 is the standard Hardy space and
dµ =

∑
n(1 − |zn|2)δzn , δzn being the point mass at zn. In other

words, (??) holds if and only if there exists a constant C > 0 such
that

∑
n(1 − |zn|2)|f(zn)| ≤ C‖f‖1, for any function f in the Hardy

space H1 consisting of the analytic functions in D for which

‖f‖1 = sup
0<r<1

∫ 2π

0

|f(reit)|dt <∞.

It is well known that a Blaschke product B is an interpolating
Blaschke product if and only if there exists a constant C = C(B) > 0
such that

(2) |B(z)| > Cρ(z, Z(B)),

where Z(B) denotes the zero set of B (see the monographs [?], [?, p.
217] or [?]). This easily extends to the fact that any inner function
verifying (??) is an interpolating Blaschke product.

1.2. Weak Embedding Property. In 2008, Gorkin, Mortini, and
Nikolski [?] introduced the following new class of inner functions. An
inner function I satisfies the Weak Embedding Property (WEP), a
weaker version of (??), if for any ε > 0 one has

(3) ηI(ε) := inf{|I(z)| : ρ(z, Z(I)) > ε} > 0.

A Blaschke product with zeros (zn)n satisfies the WEP if and only
if for every ε > 0,

sup
z∈D, infn ρ(z,zn)>ε

{∑ (1− |zn|2)(1− |z|2)

|1− znz|2

}
<∞ ,

which is a weakening of the Carleson embedding property (??).
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Finite products of interpolating Blaschke products satisfy the WEP
with ηI(ε) � εN and in fact, a Blaschke product B is the product of N
interpolating Blaschke products if and only if there exists a constant
C = C(B) > 0 such that |B(z)| > Cρ(z, Z(B))N for any z ∈ D [?].

However there are other inner functions that satisfy the WEP. In
[?], an explicit example was presented of a Blaschke product satisfying
the WEP which cannot factor into a finite product of interpolating
Blaschke products. This example was extended and complemented in
[?]. A different class of examples has been given in [?] showing that
for every strictly increasing function ψ : (0, 1) → (0, 1) there exists a
Blaschke product B satisfying the WEP such that ηB(ε) = o(ψ(ε)) as
ε→ 0.

1.3. Operator Theory motivations. Given an inner function I con-
sider the quotient algebra H∞/IH∞. The zeros Z(I) of I in D are
naturally embedded in the maximal ideal space M of H∞/IH∞. It is
proved in [?] that I satisfies the WEP if and only if H∞/IH∞ has no
corona, that is, Z(I) is dense in M.

Another condition shown to be equivalent to the WEP in [?] is the
norm controlled inversion property which says that for any ε > 0 , there
exists m(ε) > 0 such that if f ∈ H∞, ‖f‖H∞ = 1 and inf{|f(z)| : z ∈
Z(I)} > ε > 0, then f is invertible in H∞/IH∞ and ‖1/f‖H∞/IH∞ ≤
m(ε).

Consider a vector-valued version of this: for f := (f1, . . . , fn) ∈
(H∞)n, let ‖f‖2

∞,n := supz∈D
∑n

j=1 |fj(z)|2 and for I inner,

χI(f) := inf{‖g‖∞,n : ∃h ∈ H∞ :
n∑
j=1

gjfj + hI ≡ 1}.

This is like a “Corona constant” for the n-tuple f in the quotient space
H∞/IH∞.

Following Gorkin, Mortini and Nikolski, for δ ∈ (0, 1), n ≥ 1, we
define

cn(δ, I) := sup

{
χI(f) : δ2 ≤ inf

λ∈Z(I)

n∑
j=1

|fj(λ)|2, ‖f‖∞,n ≤ 1

}
,

which is a decreasing function of δ, and

δn(I) := inf {δ : cn(δ, I) <∞} .

We prove that these values do not depend on n. Let δ̃(I) := inf{ε :
ηI(ε) > 0}, where ηI(ε) is defined in (??).

An inner function function I satisfies the WEP if and only if δ̃(I) = 0.
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The next two results are contained in Section ??. First, δn does not
depend on n:

Proposition 1. For any n ≥ 1, δn(I) = δ̃(I).

Now we deal with possible rates of growth of cn(δ, I):

Proposition 2. For every decreasing function φ : (0, 1)→ (0,∞) there
exists a Blaschke product B such that δn(B) = 0 and cn(δ, B) ≥ φ(δ),
0 < δ < 1, n ≥ 1.

Inner functions I satisfying the WEP can also be described in terms
of spectral properties of the model operator acting on the Model Space
KI = H2/IH2, see [?].

1.4. Wepable functions. An inner function I is called wepable [?] if
it can appear as a factor in a WEP inner function, i.e. if there exists
J inner such that IJ satisfies the WEP. Clearly, if I is a singular inner
function, thus without zeros, it cannot be WEP, but it can be wepable.
It is easy to see that only the Blaschke factor in J will help make IJ a
WEP function.

Let us describe some of the results in [?]. Let dA(z) be area measure
in the unit disc. An inner function I such that for any ε > 0 one has

(4)

∫
{z:|I(z)|<ε}

dA(z)

1− |z|2
=∞

is not wepable. Moreover there exist singular inner functions I satis-
fying (??). Hence there exist singular inner functions which are not
wepable, answering a question in [?]. Condition (??) is a sort of
Blaschke condition and has also appeared in [?]. It was also shown
in [?] that condition (??) does not characterise (non)-wepable inner
functions.

1.5. Results about the support of the singular measure. Given
a measurable set E ⊂ T = ∂D, let |E| denote its normalised length,
|T| = 1. Recall that a closed set E ⊂ T with |E| = 0 has finite entropy
(has finite Carleson characteristic, is a Beurling–Carleson set) if

E(E) :=
∑
|Jk| log |Jk|−1 <∞,

where (Jk)k are the connected components of T\E; more precisely, this
value is the entropy of the family (Jk)k. A classical result of Carleson
says that a closed set E ⊂ T is the zero set of an analytic function
whose derivatives of any order extend continuously to the closed unit
disc if and only if E has zero length and finite entropy [?].
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Given an inner function I let sing(I) denote the set of points of the
unit circle where I can not be extended analytically. If I = BS where
B is a Blaschke product with zeros (zn)n and

Sµ(z) = exp

(
−
∫ 2π

0

eit + z

eit − z
dµ(t)

)
, z ∈ D,

where µ is a positive singular measure, then sing(I) = ({zn} ∩ T) ∪
supp µ, where supp µ denotes the (closed) support of µ.

Theorem 3. Let E be a closed subset of the unit circle. The following
conditions are equivalent:

(a) Every singular inner function whose singular set is contained in
E is wepable;

(b) E has zero length and finite entropy.

The sufficiency of the conditions in (b) is obtained by careful con-
structions of Blaschke products which are carried out in Section ??.

The necessity of the conditions in (b) is related to estimate (??) and
is a consequence of the next Lemma, which may be of independent
interest.

We identify the interval [0, 1) with the unit circle by the map t 7→
e2πit and consider the dyadic arcs [k2−n, (k + 1)2−n), 0 ≤ k < 2n,
n ≥ 0, on the interval [0, 1) (or on the unit circle). Those arcs have
(normalised) length equal to 2−n. Given an arc J ⊂ T of center e2πit,
write z(J) = (1− 3

4
|J |)e2πit.

Given a finite measure µ in the unit circle let P [µ] be its Poisson
integral.

Lemma 4. Let E be a closed subset of the unit circle. The following
conditions are equivalent:

(a) E has zero length and finite entropy;
(b)

∑
|J | < ∞, where the sum is taken over all dyadic arcs J such

that J ∩ E 6= ∅;
(c) For any C > 0 and any positive singular measure µ of mass 1

whose support is contained in E one has
∑
|J | <∞, where the sum is

taken over all dyadic arcs J ⊂ T such that P [µ](z(J)) ≥ C.
(d) There exists C > 0 such that for any positive singular measure µ

of mass 1 whose support is contained in E one has
∑
|J | <∞, where

the sum is taken over all dyadic arcs J ⊂ T such that P [µ](z(J)) ≥ C.

The condition in (c) can be understood as a discrete version of (??)
with I = Sµ.

The condition in (b) can be seen as a discrete version of
∫

Γ(E)
dA(z)
1−|z|2 <

∞, where Γ(E) denotes the union of all the Stolz angles with vertex
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on the image in the unit circle of a point of E. For a related result, see
[?, Lemma A.1].

Theorem ?? and Lemma ?? will be proved in Section ?? and ??.

1.6. Results about regularity of singular measures. Positive sin-
gular measures can fairly distribute their mass. For instance, there exist
singular probability measures µ on the unit circle such that

sup
{∣∣∣ µ(J)

µ(J ′)
− 1
∣∣∣+
∣∣∣µ(J)− µ(J ′)

|J |

∣∣∣}→ 0 as |J | → 0,

where the supremum is taken over all pairs of adjacent arcs J, J ′ ⊂ T
of the same length (see [?]). As a consequence of Theorem ?? we will
prove that positive singular measures µ such that Sµ is wepable cannot
distribute their mass as evenly (see Remark ??). Actually a Dini type
condition governs the growth of the density of such measures.

Corollary 5. (a) Let µ be a positive singular measure on the unit circle
and consider w(t) = supµ(J), where the supremum is taken over all
arcs J ⊂ T with |J | = t. Assume that∑

n≥1

2−n

w(2−n)
=∞.

Then Sµ satisfies condition (??) and, hence, it is not wepable.
(b) Let w : [0, 1]→ [0,∞) be a nondecreasing function with w(0) = 0

such that w(2t) < 2w(t) for any t > 0. Assume that∑
n≥1

2−n

w(2−n)
<∞.

Then there exists a positive singular measure µ in the unit circle satis-
fying µ(J) < w(|J |) for any arc J ⊂ T, such that its support has zero
length and finite entropy, and hence Sµ is wepable.

Next we introduce an important class of subsets of the unit circle.

Definition 6. A closed subset E of the unit circle is called porous if
there exists a constant C > 0 such that for any arc J ⊂ T, there exists
a subarc J ′ ⊂ J \ E with |J ′| > C|J |.

The porosity condition (the Kotochigov condition, the (K) condition)
appears naturally in the free interpolation problems for different classes
of analytic functions smooth up to the boundary, see [?].

Given a porous set E, define a family of disjoint closed arcs in the
following way: let A0 := {J0}, where J0 ⊂ T\E and |J0| ≥ C. For any
n ≥ 0, given Ak, 0 ≤ k ≤ n, such that all the arcs in the set ∪0≤k≤nAk
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are disjoint, we have T \ ∪0≤k≤n, J∈AkJ = ∪Ij, where {Ij} is a finite
family of disjoint open arcs. Define An+1 as a set of arcs I ′j ⊂ Ij \ E
such that |I ′j| ≥ C|Ij|. By induction, we see that An+1 consists of 2n

arcs, n ≥ 0, and

|T \ ∪0≤k≤n+1, J∈AkJ | ≤ (1− C) |T \ ∪0≤k≤n, J∈AkJ | .

Therefore,
∑

0≤k≤n, J∈Ak |J | ≥ 1−(1−C)n+1, n ≥ 0, and E is of measure

0. Furthermore,
∑

J∈An |J | ≤ |T \ ∪0≤k≤n−1, J∈AkJ | ≤ (1 − C)n, n ≥
1. Because of the concavity of the function t 7→ t log(1/t), we have∑

J∈An |J | log |J |−1 ≤ C1n(1−C)n, n ≥ 1. Hence, E has finite entropy.
Another proof of this fact can be obtained using Lemma ?? and the

next auxiliary result (Lemma ??) which is a scale invariant version of
Lemma ??.

Lemma 7. Let E be a closed subset of the unit circle. The following
conditions are equivalent:

(a) E is porous;
(b) There exists a constant C > 0 such that for any dyadic arc J

one has ∑
I∈E(J)

|I| ≤ C|J |,

where E(J) is the family of the dyadic arcs I ⊂ J such that I ∩E 6= ∅;
(c) There exists a ∈ N such that for every s, n ≥ 0, J ∈ Dn, and for

every m such that sa ≤ m < (s+ 1)a, the set J ∩E is covered by 2m−s

arcs I ∈ Dn+m;
(d) There exists a constant C > 0 such that for any finite positive

measure µ with support contained in E, any number A > 0 and any
dyadic arc J ⊂ T, one has∑

I∈E(A)

|I||J |
|1− z(I)z(J)|2

≤ C

A
P [µ](z(J)),

where E(A) is the family of the dyadic arcs I such that P [µ](z(I)) ≥ A.

Let S be a wepable inner function. Clearly, the Blaschke product
by which it must be multiplied to yield a WEP function must have
enough zeros in the places where |S| is small, so that the smallness
of the resulting product can be correlated to these zeros. However, it
may happen that any Blaschke product B such that BS satisfies the
WEP must have some of its zeros (zn)n located at points where |S| is
close to 1; more precisely, lim supn→∞ |S(zn)| = 1. (Theorems ?? and
?? together prove the existence of such S).
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Definition 8. An inner function S will be called easily wepable if
there exists a constant m < 1 and a Blaschke product B such that SB
satisfies the WEP and Z(B) ⊂ {z ∈ D : |S(z)| < m}.

The following result will be established in Section ??.

Theorem 9. Let E be a closed subset of the unit circle. The following
conditions are equivalent:

(a) Every singular inner function whose singular set is contained in
E is easily wepable;

(b) The set E is porous.

In [?] it was proved that a closed set E of the unit circle is porous
if and only if for any singular inner function S whose singular set is
contained in E and any a ∈ D\{0} the inner function (S−a)/(1−aS)
is a finite product of interpolating Blaschke products.

Now we describe the critical decay rate of masses of atomic measures
(with no restrictions on support) guaranteeing that the corresponding
singular inner functions are easily wepable.

Theorem 10. Let (bs)s≥1 be a decreasing summable sequence of posi-
tive numbers. The following conditions are equivalent:

(a) Every atomic singular inner function with point masses (bs)s≥1

is easily wepable;
(b)

(5) bs �
∑
k≥s

bk, s ≥ 1.

The proof will be given in Section ??.
Note that given any decreasing summable sequence of masses, this

sequence can give rise to a measure µ with easily wepable singular func-
tion Sµ, simply by locating the masses at points of the form exp(i2−n),
for instance, and applying Theorem ??. It would be interesting to have
a similar statement to Theorem ?? with “wepable” instead of “easily
wepable”; in particular to know whether any condition weaker than
(??) can imply automatic wepability, and what rate of decrease of the
(bs) guarantees that there always exists some choice of location of the
point masses which produces a non-wepable Sµ. In particular, the con-
struction in the proof of [?, Proposition 6] shows that there exists a
non-wepable atomic singular inner function as soon as the point masses
decay no more rapidly than 1/(n(log n)2), n→∞.

1.7. Notation. The letter C will denote a constant whose value may
change from line to line.
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We denote by D = ∪n≥0Dn the family of the dyadic arcs, with Dn =
{J ⊂ D : |J | = 2−n}. Note that Card Dn = 2n.

Given an arc J ⊂ T of length |J | and M > 0 let MJ be the arc
of the unit circle of length M |J | concentric with J . Again identifying
the unit circle with the interval [0, 1) we denote Q(J) := {re2πiθ : θ ∈
J, 1 − |J | ≤ r < 1} (the Carleson box associated to J) and T (J) :=
{re2πiθ : θ ∈ J, 1− |J | ≤ r ≤ 1− |J |/2} (the top half of the box).

Let z, w ∈ D. Later on, we use the following standard estimates:

1

2
· (1− |z|2)(1− |w|2)

|1− w̄z|2
≤ log

∣∣∣1− w̄z
z − w

∣∣∣,(6)

log
∣∣∣1− w̄z
z − w

∣∣∣ ≤ C(δ)
(1− |z|2)(1− |w|2)

|1− w̄z|2
, ρ(z, w) ≥ δ > 0.(7)

1.8. Organization of the paper. In Section ??, we prove Lemmas ??
and ??, and therefore the necessity part of Theorem ??. In Section ??,
we prove the remaining part of Theorem ?? and Corollary ??. In Sec-
tion ??, we give the proof of Theorem ??. In Section ??, we give the
proof of Theorem ??, which deals with a situation where the entropy
of the singular set is very well controlled. Finally, the proofs of Propo-
sitions ?? and ??, which are quite independent from the rest, appear
in Section ??.

Acknowledgments. We are grateful to Nikolai Nikolski for stimulat-
ing discussions. We are thankful to the referees for helpful comments.

This work was initiated in 2011 when the third author was invited
by the Centre de Recerca Matemàtica in the framework of the thematic
semester on Complex Analysis and Spectral Problems.

2. Proofs of Lemmas ?? and ??

Proof of Lemma ??. (a)⇔(b) Let T \ E be the disjoint union of the
arcs Ik, k ≥ 1. Suppose first that |E| = 0. Then∑
J∈D, J∩E 6=∅

|J | =
∑
k≥1

∑
J∈D, J∩E 6=∅

|J ∩ Ik| =
∑
k≥1

∑
n≥0

∑
J∈Dn, J∩E 6=∅

|J ∩ Ik|.

Since for each k, there are at most two arcs J ∈ Dn such that J∩Ik 6= ∅
and J ∩ E 6= ∅, this last quantity is clearly

.
∑
k≥1

( ∑
0≤n≤log(1/|Ik|)

|Ik|+
∑

n>log(1/|Ik|)

2−n
)
� E(E).
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Conversely,∑
k≥1

∑
n≥0

∑
J∈Dn, J∩E 6=∅

|J ∩ Ik| ≥
∑
k≥1

∑
n≥0

∑
J∈Dn, n≤log(1/|Ik|), J∩E 6=∅

|J ∩ Ik|

&
∑
k≥1

∑
0≤n≤log(1/|Ik|)

|Ik| � E(E).

Next, if |E| > 0, then ∑
J∈D, J∩E 6=∅

|J | =∞.

(b)⇒(c) Arguing as above, and using the fact that P [µ](z) ≥ C

implies that dist (z, suppµ) ≤ C ′
√

1− |z|2, where suppµ is seen as a
subset of the unit circle, we obtain

∑
J∈D, P [µ](z(J))≥C

|J | =
∑
k≥1

∑
n≥0

∑
J∈Dn, P [µ](z(J))≥C

|J ∩ Ik|

.
∑
k≥1

( ∑
0≤n≤2 log(1/|Ik|)

|Ik|+
∑

n>2 log(1/|Ik|)

2−n/2
)
� E(E).

(c)⇒(d) is evident.
(d)⇒(a) If |E| > 0, then we can just take µ0 = KχE1 dm with K

to be chosen later on, E1 ⊂ E, |E1| = 1/K. By the Lebesgue density
theorem, for a subset E2 of E1, |E2| ≥ |E1|/2 and for some δ > 0 we
have

|E1 ∩ J |
|J |

≥ 1

2

for every arc J such that J ∩ E2 6= ∅, |J | ≤ δ. Hence, for K ≥ K(C)
we obtain ∑

J∈D, P [µ0](z(J))≥C

|J | ≥
∑

J∈D, |J |≤δ, J∩E1 6=∅

|J | =∞.

Next, we can replace µ0 by a Cantor type singular measure µ1 while
keeping the sum ∑

J∈D, P [µ1](z(J))≥C

|J |

infinite.
Now, suppose that |E| = 0 and (b) does not hold. Let I ⊂ D be a

small arc such that I ∩E has infinite entropy. Let I \E be the disjoint
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union of the arcs Ik = (ak, bk), k ≥ 1, and take

µ = K
∑
k≥1

|Ik|(δak + δbk)

with K = 1/(2|I|), ‖µ‖ = 1, and once again δx being the point mass
at x. Given J ∈ D, J ⊂ I, if J ∩ E 6= ∅, then µ(J) ≥ K|J |, and for
K ≥ K(C) we have P [µ](z(J)) ≥ C. Therefore,∑

J∈D, P [µ](z(J))≥C

|J | ≥
∑

J∈D, J⊂I, J∩E 6=∅

|J | =∞.

�

In the proof of Lemma ??, we use the following auxiliary statement.

Lemma 11. Let u be a function positive and harmonic on the unit
disc, let A > 0, and let G be a subfamily of D such that the arclength
ds on L = L(G) = ∪I∈G∂T (I) is a Carleson measure, that is (see, for
instance, [?, A.5.7.2(b)])

(8) sup
z∈D

∑
I∈G

∫
∂T (I)

1− |z|2

|1− w̄z|2
ds(w) ≤ B.

Assume that u ≥ A on L. Then for every J ⊂ D we have∑
I∈G

|I||J |
|1− z(I)z(J)|2

≤ CB

A
u(z(J))

for some absolute constant C.

Proof. Consider the function

h(z) =
∑
I∈G

∫
∂T (I)

log
∣∣∣1− w̄z
z − w

∣∣∣ ds(w)

1− |w|
.

It is harmonic on D \L and by (??), (??), and an elementary estimate
for the integral along L ∩ {w : ρ(z, w) < 1/2}, we have

CBu(z) ≥ Ah(z)

for z ∈ T ∪ L. By the maximum principle,

CBu(z(J)) ≥ Ah(z(J)),

and hence, by (??),

C1Bu(z(J)) ≥ A
∑
I∈G

|I||J |
|1− z(I)z(J)|2

.

�
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Proof of Lemma ??. (a)⇒(c) By induction, it suffices to check the as-
sertion for s = 1, m = a. Fix C > 0 such that for any arc J ⊂ T, there
exists a subarc J ′ ⊂ J \E with |J ′| > C|J |. Let J ∈ D, |J | = 2−n. By
the remarks after Definition ??, we can find a finite family of disjoint
arcs Jk ⊂ J \ E, 1 ≤ k ≤ K(C), such that

∑
1≤k≤K(C) |Jk| ≥ (2/3)|J |.

Given m ≥ 1, set

Um = {I ∈ Dn+m : I ∩ J ∩ E 6= ∅}.

If I ∈ Um, then I 6⊂ Jk, 1 ≤ k ≤ K(C). Hence,
∑

I∈Um |I| ≤
(
|J | −∑

1≤k≤K(C) |Jk|
)

+ 2K(C) · 2−n−m ≤ 2−n−1 for m ≥ m(C).

(c)⇒(b) Fix J ∈ D, |J | = 2−n. Then∑
I∈D, I⊂J, I∩E 6=∅

|I| ≤
∑
m≥0

∑
I∈Dn+m

I⊂J, I∩E 6=∅

|I|

≤
∑
s≥0

∑
sa≤m<(s+1)a

2m−s2−n−m =
∑
s≥0

a2−n−s = 2a|J |.

(b)⇒(a) If E is not porous, then for every N ≥ 1 there exist n ≥ 0,
J ∈ Dn such that if I ∈ Ds, n ≤ s ≤ n+N and I ⊂ J , then I ∩E 6= ∅.
Then ∑

I∈D, I⊂J, I∩E 6=∅

|I| ≥
∑

n≤s≤n+N

∑
I∈Ds, I⊂J

|I|

=
∑

n≤s≤n+N

|J | = (N + 1)|J |.

(d)⇒(a) As above, if E is not porous, then for every N ≥ 1 we can
find n ≥ 0, J = [k2−n, (k + 1)2−n) ∈ Dn and points

x` ∈ E ∩
[
(k2N + `)2−n−N , (k2N + `+ 1)2−n−N

)
, 0 ≤ ` < 2N .

Set

µ = 10 · 2−n−NA
∑

0≤`<2N

δx` .

We have supp µ ⊂ E. For every arc I ⊂ J such that |I| ≥ 2−n−N , we
have P [µ](z(I)) ≥ 2AP [χI ](z(I)), so that

P [µ](z(I)) ≥ A, I ∈ Dm, n ≤ m ≤ n+N, I ⊂ J.

Therefore,∑
I∈D, P [µ](z(I))≥A

|I||J |
|1− z(I)z(J)|2

&
∑

n≤m≤n+N

2m−n · 2−m2−n

2−2n
= N + 1.
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For large N this contradicts (c), because

P [µ](z(J)) ≤ CA.

(c)⇒(d) Set u = P [µ]. Arguing as in the part (c)⇒(b) we obtain
that ∑

I∈D, I⊂J, 3I∩E 6=∅

|I| ≤ C|J |, J ⊂ D.

Hence, the arclength ds on ∪I∈D, 3I∩E 6=∅∂T (I) is a Carleson measure.
Fix A > 0 and denote by G the family of all I ∈ D such that 3I∩E 6= ∅
and u(z(I)) ≥ A. An easy application of Harnack’s inequality shows
that u ≥ CA on L(G). Fix J ∈ D. Applying Lemma ??, we obtain
that

u(z(J)) ≥ CA
∑
I∈G

|I||J |
|1− z(I)z(J)|2

.

Now we need only to estimate∑
I∈D, 3I∩E=∅, u(z(I))≥A

|I||J |
|1− z(I)z(J)|2

.

We set

H = {I ∈ D : 3I ∩ E = ∅, u(z(I)) ≥ A}

and

Hk = {I ∈ H : 2k−1A ≤ u(z(I)) < 2kA}, k ≥ 1,

so that H = ∪k≥1Hk. If I ∈ H, and L ⊂ I, then for any ζ ∈ supp µ,

|1 − ζz(L)| � |1 − ζz(I)|, so an easy estimate of the Poisson integral
shows that

u(z(L))

u(z(I))
� |L|
|I|
, L ∈ D, L ⊂ I.

Hence, every arc I ∈ Hk, k ≥ 1, contains at most C subarcs I ′ ∈ Hk.
Therefore, the arclength ds on ∪I∈Hk∂T (I) is a Carleson measure with
Carleson constant uniformly bounded in k ≥ 1. Lemma ?? gives now
that

2−ku(z(J)) ≥ CA
∑
I∈Hk

|I||J |
|1− z(I)z(J)|2

.

Summing over k ≥ 1 we complete the proof. �
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3. Proof of Theorem ?? and Corollary ??

The proof of the sufficiency of Theorem ?? uses the following auxil-
iary result.

Lemma 12. Let E be a closed subset of the unit circle of zero length
and finite entropy. Let G = {Jn} be the family of maximal dyadic
subarcs Jn ⊂ T such that 2Jn ⊂ T \ E. Then

(a) The interiors of Jn are pairwise disjoint and T \ E = ∪Jn.
(b) We have

∑
n |Jn| log |Jn|−1 <∞.

(c) If Jn and Jm are in the same connected component of T \E and
Jn ∩ Jm 6= ∅, then 4|Jn| ≥ |Jm| ≥ |Jn|/4.

(d) Let J be a connected component of T \ E and consider the sub-
family G(J) = {Ln} of the arcs L ∈ G with L ⊂ J ordered so that
|Ln+1| ≤ |Ln| for any n. Then |L1| ≥ |J |/8, |Lk|/4 ≤ |Lk+1| ≤ |Lk|
and |Lk+4| ≤ |Lk|/2 for any k ≥ 1.

Proof. The maximality gives that the interiors of Jn are pairwise dis-
joint. It is also clear that T \E = ∪Jn. Let us now prove (c). Assume
that |Jn| ≥ |Jm|. Since 2Jn ⊂ T\E, every dyadic arc J adjacent to Jn of
length |J | = |Jn|/4 satisfies 2J ⊂ 2Jn ⊂ T\E. Since Jn∩Jm 6= ∅, there
is an arc J∗n adjacent to Jn with |J∗n| = |Jn|/4 such that J∗n ∩ Jm 6= ∅.
Since 2J∗n ⊂ T\E, by maximality J∗n ⊂ Jm. Hence |Jm| ≥ |J∗n| = |Jn|/4
and (c) is proved.

Let us now prove (d). The maximality gives that |L1| ≥ |J |/8.
As in the argument for (c), the fact that 2Lk ⊂ T \ E implies the
existence of L ∈ G with |L| ≥ |Lk|/4, so |Lk+1| ≥ |Lk|/4. Assume that
|Lk+4| > |Lk|/2. Then, since {Ln} are ordered by length, |Lk+i| = |Lk|,
0 ≤ i ≤ 4. Then, since these arcs are in the same connected component
of T \ E, there would exist i ∈ {0, 1, 2, 3, 4} such that the dyadic arc
L containing Lk+i of length |L| = 2|Lk+i| satisfies 2L ⊂ T \ E. This
would contradict the maximality of Lk+i and (d) is proved.

Finally, let us prove (b). Take a connected component J of T \ E.
The estimates in (d) give that |Lk| ≤ 2(4−k)/4|L1|, k ≥ 1. Hence,∑

k≥1

|Lk| log |Lk|−1 ≤ C|L1| log |L1|−1 ≤ C|J | log |J |−1,

and (b) follows because E has finite entropy. �

Proof of Theorem ??. The implication (a)⇒(b) follows from Lemma
?? and property (??) in the following way. Assume that the set E
does not satisfy the conditions in part (b) of Theorem ??. Let {Ij}
be a sequence of disjoint arcs such that the sets E ∩ Ij do not satisfy
the conditions in part (b) of Theorem ??. By Lemma ??, there exist
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positive singular measures µj whose support is contained in E ∩ Ij,
‖µj‖ = 2−j such that

∑
J∈Aj |J | = ∞, where the sums are taken over

the collections Aj of all dyadic arcs J ⊂ Ij satisfying P [µj](z(J)) ≥ 2j.
Set µ =

∑
j≥1 µj and consider the singular inner function

Sµ(z) = exp

(
−
∫ 1

0

e2πit + z

e2πit − z
dµ(t)

)
, z ∈ D.

By Harnack’s inequality, there exists a universal constant K0 > 0 such
that P [µ](z) ≥ K0P [µ](z(J)) for any z ∈ T (J). Since P [µ](z) =
− log |Sµ(z)|, z ∈ D, for any fixed j ≥ 1 we have

∪J∈AjT (J) ⊂ {z ∈ D : |Sµ(z)| < exp(−K02j)}.

Hence condition (??) is satisfied and the function Sµ is not wepable.
Let us now prove the implication (b)⇒(a). Let µ be a positive sin-

gular measure whose support E has zero length and finite entropy. Let
G be the family (defined in Lemma ??) of maximal dyadic arcs of the
unit circle whose double is contained in T \ E. Let F be the family
of dyadic arcs of T which are not contained in any arc of G. Then we
claim

(9)
∑
J∈F

|J | <∞.

Indeed, for every J ∈ F , 2J is the union of four dyadic arcs of equal
length such that at least one of them intersects E, since otherwise 2J
would be contained in T \ E and hence by maximality, J would be
contained in an arc of the family G. Since E has zero length and finite
entropy, Lemma ?? gives that∑

J∈F

|J | ≤
∑
J∈F

|2J | .
∑

J∈D, J∩E 6=∅

|J | <∞.

Let S be the singular inner function corresponding to the measure µ.
We want to find a Blaschke product B such that SB satisfies the WEP.
We will describe now the first family of zeros of B. By (??), one can
pick a sequence of integers kj increasing to infinity such that

∞∑
j=1

kj
∑

J∈F∩Dj

|J | <∞.

Next, for each J ∈ F ∩ Dj, we choose a set of points Λ(J) = {zn(J) :
1 ≤ n ≤ kj} uniformly distributed in T (J). Uniform distribution
means that the zn(J) are the centers of a maximal collection of disjoint
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hyperbolic discs of fixed radius included in T (J), so that

min
z,w∈Λ(J), z 6=w

|z − w| � max
ζ∈T (J)

dist (ζ,Λ(J)) � min
z∈Λ(J)

dist (z, ∂T (J)).

Let B1 be the Blaschke product with zeros Z(B1) = ∪J∈FΛ(J). Since
kj tends to infinity, for any 0 < δ < 1 there exists r = r(δ) < 1 such
that

(10) {z ∈ D : ρ(z, Z(B1)) > δ} ⊂ {z ∈ D : |z| < r}
⋃
∪J∈GQ(J).

Next we will construct certain additional zeros of B which are contained
in ∪J∈GQ(J). Set f = SB1. Since − log |S| is a positive harmonic
function in the unit disc, Harnack’s inequality gives that for any z ∈ D
one has − log |S(z)| ≤ −2 log |S(0)|/(1− |z|). Since

inf
J∈G

ρ(z(J), Z(B1)) > 0,

estimate (??) gives that there exists a constant C > 0 such that for
any J ∈ G one has

− log |B1(z(J))| ≤ C
∑

w∈Z(B1)

1− |z(J)|2

|1− z(J)w̄|2
(1− |w|2)

≤ C ′

1− |z(J)|
∑

w∈Z(B1)

(1− |w|) .

Hence, there exists a constant C > 0 such that

(11) log |f(z(J))|−1 ≤ C(1− |z(J)|)−1 � |J |−1, J ∈ G .
Now, applying Lemma ?? (b), we obtain∑

J∈G

|J | log log |f(z(J))|−1 <∞.

Claim. For every J ∈ G and every z ∈ Q(J) with 1− |z| < |J |/8,

(12) log |f(z)|−1 .
1− |z|

1− |z(J)|
log |f(z(J))|−1.

Proof of the Claim. Let us first check that by Lemma ?? (c), there
exists a constant C > 0 such that

(13) ρ(z, Z(B1)) ≥ C, z ∈ Q(J), 1− |z| < |J |/8, J ∈ G.
Indeed, fix J ∈ G, z ∈ Q(J) such that 1 − |z| < |J |/8 and I ∈ F ,
w ∈ Λ(I). Denote by J± two arcs in G adjacent to J . Then either
J+ ⊂ I or J+ ∩ I = ∅. Similarly, either J− ⊂ I or J− ∩ I = ∅. Since
|J |/4 ≤ |J±| ≤ 4|J |, we obtain that ρ(z, w) ≥ C > 0 and (??) follows.
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To prove (??) consider the measure dσ = dµ+
∑

z∈Z(B1)(1− |z|2)δz,
where we recall that dµ is the positive singular measure associated to
S. Then, by (??), there exists a constant C1 ≥ 1 such that for any
z ∈ Q(J) with 1− |z| ≤ |J |/8, we have

log |f(z)|−1 ≤ log |Sµ(z)|−1 + C1

∑
w∈Z(B1)

(1− |z|2)(1− |w|2)

|1− w̄z|2

≤ C1

∫
D

1− |z|2

|1− wz|2
dσ(w).

Let w ∈ supp σ and z ∈ Q(J). If w ∈ supp µ, then the support of µ
does not intersect 2J . Hence, | arg z − argw| & |J |, | arg z − argw| �
| arg z(J)− argw|, and

(14) |1− w̄z| � |1− w̄z(J)|.
Otherwise, if w ∈ Z(B1), then (??) gives (??) once again.

Hence,

log |f(z)|−1 <
C1(1− |z|2)

C2
2(1− |z(J)|2)

∫
D

1− |z(J)|2

|1− wz(J)|2
dσ(w).

By (??), this integral is bounded by a fixed multiple of log |f(z(J))|−1,
and estimate (??) follows. �

LetM(J) = log2 |J |−1. By Lemma ?? (b) we have that
∑
|J |M(J) <

∞, where the sum is taken over all arcs J ∈ G. Pick a sequence of pos-
itive integers tk increasing to infinity and such that tk+1 ≤ tk + 1 and∑

J∈G

|J |
M(J)∑
k=1

tk <∞.

For 1 ≤ k ≤M(J) consider the strips

Ωk = Ωk(J) = {z ∈ Q(J) : 2k−1|J |2 < 1− |z| ≤ 2k|J |2} .
Observe that Ωk looks like a rectangle of side lengths |J | and 2k−1|J |2 ≤
|J |. Choose sets Λk(J) = {zj(Ωk)}1≤j≤sk of sk = tk2

M(J)−k = tk/(2
k|J |)

points uniformly distributed in Ωk. Observe that if L is an arc con-
tained in J of length 2k|J |2, then T (J) contains � sk2

k|J | = tk points
of Λk(J). Let Λ(J) = ∪1≤k≤M(J)Λk(J). Then∑

z∈Λ(J)

(1− |z|) =

M(J)∑
k=1

sk∑
j=1

(1− |zj(Ωk)|) ≤ |J |
M(J)∑
k=1

tk.

Thus, the set of points ∪J∈GΛ(J) satisfies the Blaschke condition. Let
B2 be the Blaschke product with these zeros.
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We will now show that SB1B2 satisfies the WEP. Fix η > 0 and
consider z ∈ D such that ρ(z, Z(B1B2)) > η. Applying (??) we obtain
that either |z| ≤ r(η) < 1 or z ∈ Q(J) for some J ∈ G. In the first case
there exists ε(η) > 0 such that |S(z)B1(z)B2(z)| > ε(η), as needed. In
the second case, assume that z ∈ Q(J) for some fixed J ∈ G. Since
limk→∞ tk = ∞ and ρ(z, Z(B2)) > η, there exists C1 = C1(η) > 0
such that 1 − |z| < C1|J |2. Increasing r(η) we can guarantee that if
|z| ≥ r(η), z ∈ Q(J) for some J ∈ G and ρ(z, Z(B2)) > η, then there
exists C1 = C1(η) > 0 such that 1− |z| < C1|J |2 < |J |/8. This means
that there exists a positive integer k(η) independent of J such that
z ∈ ∪0≤k≤k(η)Ωk(J), where

Ω0(J) = {z ∈ Q(J) : 1− |z| ≤ |J |2},

and 2k(η)|J | < 1/8. By (??) and (??) we deduce that there exists a
constant C2 = C2(η) > 0 such that |f(z)| ≥ C2 for some C2 = C2(η) >
0. It remains to show that |B2(z)| is also bounded below by a positive
constant depending only on η. Let J± be two arcs of the family G
contiguous to J . Factor B2 = B3B4, where B3 is the Blaschke product
with zeros Λ(J−) ∪ Λ(J) ∪ Λ(J+). Using an argument similar to that
in the proof of (??), by Lemma ?? (c) we get dist (Z(B4), Q(J)) & |J |.
Hence there exists a constant C > 0 such that |1−wz| > C|J | for any
zero w of B4. Therefore, by (??), there exist constants C3, C4 > 0 such
that

log |B4(z)|−1 ≤ C3

∑
w∈Z(B4)

(1− |z|2)(1− |w|2)

|1− wz|2
≤ C4

∑
w∈Z(B4)

(1− |w|2),

where, in the latter estimate, we have used that 1 − |z| < C1|J |2. On
the other hand, if we relabel the zeros of B3 as Z(B3) = (zs)s and use
that ρ(z, Z(B2)) > η, estimate (??) gives that there exists a constant
C5 = C5(η) > 0 such that

log |B3(z)|−1 ≤ C5

∑
s

(1− |z|2)(1− |zs|2)

|1− zsz|2

≤ C5

∑
zs∈Q(z)(1− |zs|)

1− |z|
+C5

∞∑
j=1

1

22j(1− |z|)
∑

zs∈2jQ(z)\2j−1Q(z)

(1−|zs|),

where Q(z) = Q(J̃) is the Carleson box defined by the arc J̃ satisfying
z = z(J̃), 2jQ(z) = Q(2jJ̃).

Next, again by Lemma ?? (c), | log2 |J |−1 − log2 |J±|−1| is bounded
by an absolute constant. Since 1− |z| < C1|J |2, there exists k(η) such
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that the densities of zeros zs ∈ Q(z) are bounded by tk(η). Thus

1

1− |z|
∑

zs∈Q(z)

(1− |zs|) ≤
∑

1≤k≤k(η)

tk ≤ C6(η).

Similarly, for j ≥ 1, the densities of zeros zs ∈ 2jQ(z) are bounded by
tk(η)+j. Since tk+1 ≤ tk + 1, we obtain that

1

1− |z|
∑

zs∈2jQ(z)

(1− |zs|) . 2j
∑

1≤k≤k(η)+j

tk

≤ 2j(C6(η) + jtk(η) + j(j + 1)/2),

Thus,
∞∑
j=1

1

22j(1− |z|)
∑

zs∈2jQ(z)

(1− |zs|) ≤ C7(η).

Hence there exists a constant C8(η) > 0 such that − log |B3(z)| ≤
C8(η). This finishes the proof. �

Proof of Corollary ??. (a) Fix 0 < ε < 1 and consider A(ε) = {z ∈
D : |Sµ(z)| < ε}. Let Ln be the collection of the dyadic arcs J ∈ Dn
such that µ(J) > 10|J | log ε−1 and let L = ∪n≥0Ln. For ξ ∈ J and
z ∈ T (J) we have |ξ − z| ≤ 3|J |. Hence (1− |z|2)|ξ − z|−2 ≥ 1/(10|J |)
for any ξ ∈ J and z ∈ T (J). Therefore, log |Sµ(z)|−1 > µ(J)/(10|J |)
for z ∈ T (J) and we deduce that∫

A(ε)

dA(z)

1− |z|2
≥ C

∑
J∈L

|J | = C
∑
n

2−nan,

where an is the number of dyadic arcs in the collection Ln. Since µ
is singular, it is concentrated on the set of points where its derivative
with respect to Lebesgue measure is infinite. Hence there exists n0 =
n0(ε) > 0 such that for n ≥ n0, one has∑

J∈Ln

µ(J) ≥ 1

2
µ(T).

We deduce that anw(2−n) ≥ µ(T)/2. Thus,∫
A(ε)

dA(z)

1− |z|2
≥ Cµ(T)

∑
n≥n0

2−n−1

w(2−n)
=∞,

which finishes the proof of (a).
(b) We may assume that w(1) = 1. Set n1 = 0 and for k = 2, 3, . . .

let nk be the smallest positive integer such that w(2−nk) < 2−k+1.
Since 2−k+1 ≤ w(2−nk+1) < 2w(2−nk), we have 2−k < w(2−nk) < 2−k+1.
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Hence for any k = 1, 2 . . . and any integer n with nk ≤ n < nk+1 we
have 2−k ≤ w(2−n) < 2−k+1. Let Lk = Dnk , k ≥ 1. The measure
µ will be defined by prescribing inductively its mass µ(J) over any
dyadic arc J ∈ ∪kLk. Define µ(T) = 1. Assume that µ(J) has been
defined for any arc J ∈ Lk and we will define the mass of µ over the
dyadic arcs of Lk+1. Fix J ∈ Lk and let G(J) be the family of arcs in
Lk+1 contained in J . If µ(J) = 0, define µ(L) = 0 for any dyadic arc
L ∈ G(J). If µ(J) > 0, pick two (arbitrary) arcs Ji ∈ G(J), i = 1, 2,
define µ(Ji) = µ(J)/2 for i = 1, 2 and µ(L) = 0 for any other L ∈ G(J)
with L 6= Ji, i = 1, 2. In other words, in each dyadic arc of generation
nk of positive measure µ, this measure distributes its mass among two
(arbitrary) arcs of generation nk+1 and gives no mass to the others.
Let J be a dyadic arc of the unit circle with 2−nk+1 < |J | ≤ 2−nk

for a certain integer k = k(J). By construction, µ(J) ≤ 2−k ≤ w(|J |).
Since any arc is contained in the union of two dyadic arcs of comparable
length, there exists a constant C > 0 such that µ(J) < Cw(|J |) for any
arc J ⊂ T. Next we will show that the support of µ has finite entropy.
For any integer k ≥ 1 there are 2k−1 arcs J of Lk with µ(J) > 0.
Similarly if nk < n ≤ nk+1, then there are exactly 2k dyadic arcs J of
normalised length 2−n with µ(J) > 0. Then

∑
J∈D, µ(J)>0

|J | ≤ 1 +
∞∑
k=1

nk+1∑
n=nk+1

2−n2k

≤ 1 +
∞∑
k=1

2k2−nk ≤ 1 + 2
∞∑
k=1

2−nk

w(2−nk)
≤ 1 + 2

∑
n≥0

2−n

w(2−n)
.

Applying Lemma ?? we deduce that the support of µ has finite entropy
and zero Lebesgue measure. By Theorem ??, Sµ is wepable. �

Remark 13. Let µ be a positive singular measure in the Zygmund
class, that is, there exists a constant C > 0 such that for any pair of
contiguous arcs J, J ′ ⊂ T of the same length one has

|µ(J)− µ(J ′)| ≤ C|J |.

As in Corollary ??, consider w(t) = supµ(J), where the supremum
is taken over all arcs J ⊂ T with |J | = t. Then there exists a con-
stant C > 0 such that w(2−n) ≤ Cn2−n for any positive integer n and
Corollary ?? gives that Sµ is non wepable.
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4. Atomic Measures and Easily Wepable Singular
Functions

We start with a modification of a construction from the proof of
Proposition 6 in [?].

Lemma 14. Given a number A > 1, there exists m� 1 satisfying the
following property: for any J ∈ Dk, denote by Js, 0 ≤ s < 2m, the 2m

arcs in Dk+m such that J = ∪0≤s<2mJs; then for any choice of xs ∈ Js,
0 ≤ s < 2m, there exists a set Y ⊂ (xs)0≤s<2m, with Card Y . 2m/A2,
such that any measure µ of the form

µ =
∑
y∈Y

cyδy

with 10 · 2−k−mA ≤ cy ≤ 20 · 2−k−mA verifies:
(a) ‖µ‖ . |J |/A;
(b) for any Λ ⊂ D large enough so that

{I ∈ D : P [µ](z(I)) ≥ A} ⊂ {I ∈ D : Λ ∩ T (I) 6= ∅} ,

we have

log |BΛ(z(J))| . −A2,

where BΛ is the corresponding Blaschke product.

Proof. Let J = [0, 2−k). Fix q ∈ N, q ≥ A2, n = q2, and m ≥ 1 such
that 2m−1 ≤ q22n < 2m and define

Y = {xs : s = jq2n + `, 0 ≤ j < 2n, 0 ≤ ` < 2n}.

Then Card Y = 22n and ‖µ‖ � 22n2−k−mA � 2−kA/q . |J |/A. Let

L = ∪0≤j<2n
[
jq2n−k−m, (jq + 1)2n−k−m

]
=
⋃
{Js : xs ∈ Y } .

Suppose that r and θ satisfy the properties 2−k−m ≤ 1− r ≤ 2n−k−m

0 ≤ θ − jq2n−k−m ≤ 2n−k−m, for some 0 ≤ j < 2n.

Then at least half of the arc [θ− (1− r), θ+ (1− r)) is contained in L,
so that

P [µ](re2πiθ) ≥ A.

Hence, for every I ∈ A = ∪k+m−n≤p≤k+mDp such that I ⊂ L, we have

Λ ∩ T (I) 6= ∅.



22 ALEXANDER BORICHEV, ARTUR NICOLAU AND PASCAL J. THOMAS

Thus, applying (??), we obtain that

log |BΛ(z(J))| . −|J |
∑

I∈A, I⊂L, w∈Λ∩T (I)

1− |w|2

|1− wz(J)|2

. − 1

|J |
∑

I∈A, I⊂L, w∈Λ∩T (I)

(1− |w|) . − 1

|J |
∑

k+m−n≤p≤k+m

2−p2n2n−k−m+p

� −n2k
2m

q
2−k−m = −q.

�

Proof of Theorem ??. (a) ⇒ (b) If (??) does not hold, then we can
choose a sequence of groups (bsn , . . . , bsn+n)n≥1 such that bsn ≤ 2bsn+n.
By Lemma ??, passing to a subsequence of (sn) denoted also by (sn)
we construct a sequence of dyadic arcs Jn and measures

µn =
∑

sn≤v<sn+2mn

bvδxv

such that

supp µn ⊂ Jn, ‖µn‖ = o(|Jn|), dist (Jn, Jn′) & max(|Jn|, |Jn′ |).
Furthermore, if the sets Λn satisfy the property

(15) P [µn](z(I)) ≥ n =⇒ Λn ∩ T (I) 6= ∅, I ∈ D,
then the corresponding Blaschke products BΛn satisfy the estimate

|BΛn(z(Jn))| ≤ exp(−n2).

Finally, we take x ∈ T \ ∪nJn and set

µ =
∑
n≥1

µn +
(∑
s≥1

bs −
∑
n≥1

‖µn‖
)
δx.

Suppose that BΛ is a Blaschke product with zero set Λ such that
SµBΛ has the WEP. Then for every n ≥ n0, the set Λn = Λ ∩ Q(Jn)
satisfies the property (??), and hence,

|BΛ(z(Jn))| ≤ exp(−n2).

Therefore, BΛ should have a zero in T (Jn), n ≥ n1. However,

P [µ](z(Jn))→ 0, n→∞.
Thus, Sµ is not easily wepable.

(b)⇒ (a) Given z, w ∈ D, set

β(z, w) = log2

1

1− ρ(z, w)
.
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Let J1, J2 ∈ D, 2−n = |J1| ≤ |J2| = 2−m, J ∈ D, J1 ⊂ J , |J | = |J2|,
J = [k2−m, (k + 1)2−m], J2 = [k′2−m, (k′ + 1)2−m]. Then |J1|/|J2| =
2m−n, dist (c(J), c(J2))/|J2| = d(k, k′), where c(I) is the centre of the
arc I, d(k, k′) = min(|k − k′|, 2m − |k − k′|). Here we consider the
distance between J and J2 along the unit circle (identified with the
interval [0, 1)). An easy estimate of the Blaschke factor shows that

βJ1,J2
def
= β

(
z(J1), z(J2)

)
= n−m+ 2 log2(d(k, k′) + 1) +O(1).

Furthermore, if T (J1) ∩ T (J2) = ∅, then

(16) min
z1∈T (J1), z2∈T (J2)

β(z, w) = βJ1,J2 +O(1).

Let φ be an increasing subadditive function on (0,+∞) such that
φ(x) = x, 0 < x ≤ 1, φ(x) � log x, x→∞.

Let µ =
∑

s≥1 bsδxs . For every J ∈ D we set λ(J) = P [µ](z(J)).
Harnack’s inequality gives us a Lipschitz type estimate

(17) |φ(λ(J1))− φ(λ(J2))| . βJ1,J2 .

Now, for every J ∈ D we denote by kJ the integer part of φ(λ(J)), and
choose kJ points zJ,1, . . . , zJ,kJ uniformly distributed in T (J). Let B
be the Blaschke product with zeros at the points zJ,1, . . . , zJ,kJ , J ∈ D.
It is clear that for some c > 0 and C < 1 we have

Z(B) ⊂
⋃

P [µ](z(J))≥c

T (J) ⊂ {w ∈ D : |Sµ(w)| ≤ C},

so if BSµ has the WEP, Sµ is in fact easily wepable. To check that
BSµ has the WEP (and incidentally that B exists) we should find a
strictly positive function ψ on (0, 1) such that

(18) |BSµ(z)| ≥ ψ(ρ(z, Z(B))), z ∈ D.

Since kJ → ∞ as infT (J) |Sµ| → 0, and the zeros of B are uniformly
distributed in each T (J), if ρ(z, Z(B)) ≥ ε, then |Sµ(z)| is bounded
below. So to prove (??), it is enough to bound |B(z)| from below.
Again by the uniform distribution of zeros, if ρ(z, Z(B)) ≥ ε and z ∈
T (J), then kJ ≤ k(ε), so the lower bound on |B(z)| will hold if we can
prove that:∏

I∈D\{J}

∏
1≤s≤kI

∣∣∣ zI,s − z(J)

1− zI,sz(J)

∣∣∣ ≥ exp(−CekJ ), J ∈ D,

or, equivalently,

(19)
∑

I∈D\{J}

2−βJ,Iφ(λ(I)) . max(λ(J), 1), J ∈ D.
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Fix J ∈ D. Let |J | = 2−n. By (??) and (??), we have∑
I∈D, |I|>|J |

2−βJ,Iφ(λ(I)) .
∑

I∈D, |I|>|J |

2−βJ,I (φ(λ(J)) + βJ,I)

.
∑

0≤k<n

2k∑
s=1

2k−ns−2(φ(λ(J)) +n−k+ log s+O(1)) . max(λ(J), 1).

Next, we set µ′ = χ10Jµ, µ′′ = µ−µ′, and define λ′(I) = P [µ′](z(I)),
λ′′(I) = P [µ′′](z(I)), I ∈ D. To prove (??), we need only to check that∑

I∈D\{J}, |I|≤|J |

2−βJ,Iφ(λ′(I)) . max(λ′(J), 1)

and ∑
I∈D\{J}, |I|≤|J |

2−βJ,Iφ(λ′′(I)) . max(λ′′(J), 1).(20)

We have µ′ =
∑

s∈N ′ bsδxs , and we set a = max{bs : s ∈ N ′}. (If
µ′ = 0, we just pass to µ′′.) By (??), P [µ′](z(J)) � 2na. By the
subadditivity of φ, we have∑
I∈D\{J}, |I|≤|J |

2−βJ,Iφ(λ′(I)) .
∑
s∈N ′

∑
I∈D\{J}, |I|≤|J |

2−βJ,Iφ(bsP [δxs ](z(I))).

Fix for a moment s ∈ N ′. Without loss of generality, xs = 0, and for
m ≥ n, I = [t2−m, (t+ 1)2−m), I 6= J , we have

βJ,I ≥ n−m+O(1), P [δxs ](z(I)) . 2m(|t|+ 1)−2.

Hence, ∑
I∈D\{J}, |I|≤|J |

2−βJ,Iφ(λ′(I)) .
∑
s∈N ′

∑
m≥n

∑
t≥1

2n−mφ(bs2
mt−2)

=
∑
s∈N ′

∑
m≥n

∑
t2≤2mbs

2n−mφ(2mbst
−2) +

∑
s∈N ′

∑
m≥n

∑
t2>2mbs

2n−mφ(2mbst
−2)

.
∑
s∈N ′

∑
m≥n

2m/2
√
bs2

n−m(φ(2mbs) + 1)

.
∑
s∈N ′

∑
m≥n

2n−m/2
√
bs max(m+ log bs, 1)

.
∑
s∈N ′

2n/2
√
bs max(n+ log bs, 1)

. 2n/2
√
amax(n+ log a, 1) . max(2na, 1) . max(λ′(J), 1).

(Once again, we use here that by (??),
∑

s∈N ′
√
bs .

√
a.)
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Next, we pass to µ′′ =
∑

s∈N ′′ bsδxs . To prove (??), we need to verify
that

(21)
∑
s∈N ′′

∑
I∈D\{J}, |I|≤|J |

2−βJ,Iφ(bsP [δxs ](z(I)))

. 1 +
∑
s∈N ′′

P [bsδxs ](z(J)).

Fix s ∈ N ′′ and choose r = r(s) ≥ 2 such that

2r|J | = dist (xs, J).

Then ∑
I∈D\{J}, |I|≤|J |

2−βJ,Iφ(bsP [δxs ](z(I)))

=
∑

I∈D\{J}, |I|≤|J |,dist (I,J)≤r|J |

2−βJ,Iφ(bsP [δxs ](z(I)))

+
∑

I∈D\{J}, |I|≤|J |, dist (I,J)>r|J |

2−βJ,Iφ(bsP [δxs ](z(I))) = A1 + A2.

Next, we can assume that J = [0, 2−n) and for I = [t2−m, (t+ 1)2−m),
m ≥ n, we have βJ,I = m− n+ 2 log2(1 + t2n−m) +O(1). Hence,

A1 .
∑
m≥n

∑
t≥1

2n−m(1 + t2n−m)−2φ(bs2
−mr−222n)

.
∑
m≥n

φ(22n−mbsr
−2) . 2nbsr

−2 � P [bsδxs ](z(J)).

Furthermore,

A2 .
∑
m≥n

∑
t≥1

2n−mr−2φ(bs2
mt−2)

=
∑
m≥n

∑
t2≤2mbs

2n−mr−2φ(2mbst
−2) +

∑
m≥n

∑
t2>2mbs

2n−mr−2φ(2mbst
−2)

.
∑
m≥n

2m/2
√
bs2

n−mr−2φ(2mbs) +
∑
m≥n

2n−mr−22mbs2
−m/2b−1/2

s

. 2n/2
√
bsr
−2 max(n+ log bs, 1) + 2n/2

√
bsr
−2.

If bs ≥ 2−n, then

A2 . 2nbsr
−2 � P [bsδxs ](z(J)).
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Thus, to complete the proof, we need only to estimate

H =
∑

s∈N ′′, bs<2−n

2n/2
√
bsr(s)

−2.

Again by (??), ∑
bs<2−n

√
bs . 2−n/2.

Hence,
H . 1,

and (??) follows. �

5. Porous Sets and Easily Wepable Singular Functions

Proof of Theorem ??. (b) ⇒ (a) Suppose that E is porous, supp µ ⊂
E, and set u = P [µ]. Set

Gk := {I ∈ D : k2 < u(z(I)) ≤ (k + 1)2}, k ≥ 1.

We claim that there exists a constant C > 0 such that

(22)
∑
k≥1

k
∑
I∈Gk

|I||J |
|1− z(J)z(I)|2

≤ Cu(z(J)), J ∈ D.

Indeed, by Lemma ?? (d),∑
k≥1

k
∑
I∈Gk

|I||J |
|1− z(J)z(I)|2

=
∑
k≥1

∑
1≤j≤k

∑
I∈Gk

|I||J |
|1− z(J)z(I)|2

=
∑
j≥1

∑
k≥j

∑
I∈Gk

|I||J |
|1− z(J)z(I)|2

=
∑
j≥1

∑
I∈D, j2<u(z(I))

|I||J |
|1− z(J)z(I)|2

≤ C
∑
j≥1

u(z(J))

j2
.

Now for each integer k ≥ 1 and each I ∈ Gk we consider the set
Λ(I) consisting of k points, uniformly distributed in T (I). Let Λ :=
∪k≥1 ∪I∈Gk Λ(I). Taking J = ∂D in (??), we see that Λ is a Blaschke
sequence. Let B be the Blaschke product with the zero set Λ.

Notice that the zeros of B are restricted to the sets T (I) where the
modulus of Sµ is small, so if we prove that BSµ has the WEP, we will
have shown that Sµ is easily wepable.

Furthermore, for any z ∈ T (I) such that I ∈ Gk we have ρ(z,Λ) ≤
ck−1/2. Therefore, if ρ(z0,Λ) > ε, then z0 /∈ ∪I∈Gk,k≥C/ε2T (I). By
Harnack’s inequality, u(z0) is bounded above, so that |Sµ(z0)| ≥ η =
η(ε) > 0. Thus, to prove that BSµ has the WEP, we only need to show
that for any ε > 0, one has inf{|B(z)| : ρ(z,Λ) > ε} > 0. Fix ε > 0
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and z such that ρ(z,Λ) > ε and let J ∈ D be such that z ∈ T (J).
Since |Sµ(z)| ≥ η, by Harnack’s inequality, we have

(23) u(z(J)) ≤ C log η−1.

By (??),

log |B(z)|−1 ≤ C(ε)
∑
λ∈Λ

(1− |λ|2)(1− |z|2)

|1− λ̄z|2

= C(ε)
∞∑
k=1

∑
I∈Gk

∑
λ∈Λ∩T (I)

(1− |λ|2)(1− |z|2)

|1− λ̄z|2

≤ C(ε)
∞∑
k=1

k
∑
I∈Gk

|I||J |
|1− z(J)z(I)|2

.

Applying (??) and (??), we conclude that log |B(z)|−1 ≤ C(ε) log η−1

which completes the proof of the implication (b)⇒ (a).
(a)⇒ (b) Assume now that E is not porous. We can find a sequence

of arcs Jn ∈ Dkn , kn → ∞, and a sequence of numbers Mn → ∞,
n → ∞, such that every J ∈ Dkn+Mn , J ⊂ Jn, meets E. Passing to a
subsequence and using Lemma ?? we obtain a sequence of arcs Jn ∈
Dkn , kn →∞, and a sequence of measures µn such that supp µn ⊂ Jn∩
E, ‖µn‖ = o(|Jn|), and dist (Jn, Jn′) & max(|Jn|, |Jn′|). Furthermore,
Lemma ?? gives that if sets Λn ⊂ D satisfy the property

P [µn](z(I)) ≥ n =⇒ Λn ∩ T (I) 6= ∅, I ∈ D,
then the corresponding Blaschke products BΛn satisfy the estimate

|BΛn(z(Jn))| ≤ exp(−n2).

Let
µ =

∑
n≥1

µn.

To conclude that Sµ is not easily wepable we use the same argument
as in the part (a)⇒ (b) of the proof of Theorem ??. �

6. Corona type constants

First, we make an easy remark: cn(δ, I) ≥ cn−1(δ, I), thus δn(I) ≥
δn−1(I).

Indeed, suppose that γ < cn−1(δ, I), then there are (f1, . . . , fn−1) =:
f such that δ2 ≤

∑n−1
j=1 |fj(λ)|2 ≤ ‖f‖2

∞,n ≤ 1, and that

γ < inf{‖g‖∞,n−1 : ∃h ∈ H∞ :
n−1∑
j=1

gjfj + hI ≡ 1}.
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Given f̃ := (f1, . . . , fn−1, 0), for every g ∈ (H∞)n we obtain that∑n
j=1 gjfj =

∑n−1
j=1 gjfj, so that χI(f̃) ≥ γ. Since f̃ fulfils the con-

dition to be a candidate in the supremum, we obtain that cn(δ, I) ≥ γ,
q.e.d.

Lemma 15. For any n, δn(I) ≤ δ̃(I).

Proof. Pick any number ε0 > δ̃(I), then choose ε1 such that ε0 > ε1 >

δ̃(I). Suppose that f := (f1, . . . , fn) ∈ (H∞)n satisfies the estimates
ε2

0 ≤ infλ∈Z(I)

∑n
j=1 |fj(λ)|2, ‖f‖∞,n ≤ 1. Take z ∈ D such that for

some λ0 ∈ Z(I) we have ρ(z, λ0) < ε1. Then, applying the Schwarz-
Pick Lemma to the function ϕ := f · v̄, where v is a unit vector in Cn

parallel to f(λ0), we see that( n∑
j=1

|fj(z)|2
)1/2

≥ |ϕ(z)| ≥ ε0 − ε1

1− ε0ε1

=: ε2 > 0.

On the other hand, suppose that ρ(z, Z(I)) ≥ ε1, then |I(z)| ≥
ηI(ε1) > 0. Finally,

inf
z∈D

(
n∑
j=1

|fj(z)|2 + |I(z)|2
)
≥ min(ε2

2, ηI(ε1)2).

By Carleson’s Corona Theorem, we can find g ∈ (H∞)n, h ∈ H∞

with ‖g‖∞,n ≤ C(ε2, ηI(ε1)) such that
∑n

j=1 gjfj + hI ≡ 1, therefore

cn(ε0, I) <∞. Since this holds for any ε0 > δ̃(I), we are done. �

The following will end the proof of Proposition ??.

Lemma 16. δ1(I) ≥ δ̃(I).

Proof. Let ε0 < δ̃(I). We want to prove that c1(ε0, I) = ∞. Pick

ε1 such that ε0 < ε1 < δ̃(I). Then there exists an infinite sequence
(ζn)n ⊂ D such that ρ(ζn, Z(I)) ≥ ε1 and |I(ζn)| → 0.

Choose a subsequence (ξn) of this sequence, with

1− inf
k

∏
j:j 6=k

ρ(ξj, ξk)

so small that the Blaschke product B with zeros (ξn) satisfies the prop-
erty |B(z)| ≥ ε0 if ρ(z, Z(B)) ≥ ε1 (see, for instance [?, p. 395]). Then
for any λ ∈ Z(I) we have |B(λ)| ≥ ε0. On the other hand, for any
g, h ∈ H∞,

g(ξn)B(ξn) + h(ξn)I(ξn) = h(ξn)I(ξn)→ 0, n→∞.
This proves that gB + hI 6≡ 1, and hence χI(B) = ∞ and c1(ε0, I) =
∞. �
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Proof of Proposition ??. The argument is anologous to that in the proof
of Lemma ??. Take a strictly increasing function ψ : (0, 1) → (0, 1)
such that ψ · (φ+ 1) ≤ 1. Using the above mentioned result from [?, p.
1199] we find a Blaschke product B satisfying the WEP and such that
for every δ ∈ (0, 1) there exists zδ ∈ D satisfying

ρ(zδ, Z(B)) = δ, |B(zδ)| ≤ ψ(δ).

Denote bδ(z) = (z − zδ)/(1 − z̄δz). We have minZ(B) |bδ| = δ. If
g, h ∈ H∞, gbδ + hB ≡ 1, then

‖h‖∞ ≥ 1 + φ(δ),

and hence,

c1(δ, B) ≥ inf
gbδ+hB≡1

‖g‖∞ ≥ φ(δ), δ ∈ (0, 1).

�
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