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WEPABLE INNER FUNCTIONS

ALEXANDER BORICHEV, ARTUR NICOLAU AND PASCAL J. THOMAS

To Nikolai Nikolski on occasion of his birthday

Abstract. Following Gorkin, Mortini, and Nikolski, we say that
an inner function I in H∞(D) has the WEP property if its modulus
at a point z is bounded from below by a function of the distance
from z to the zero set of I. This is equivalent to a number of prop-
erties, and we establish some consequences of this for H∞/IH∞.

The bulk of the paper is devoted to wepable functions, i.e. those
inner functions which can be made WEP after multiplication by
a suitable Blaschke product. We prove that a closed subset E of
the unit circle is of finite entropy (i.e. is a Beurling–Carleson set)
if and only if any singular measure supported on E gives rise to a
wepable singular inner function. As a corollary, we see that singular
measures which spread their mass too evenly cannot give rise to
wepable singular inner functions. Furthermore, we prove that the
stronger property of porosity of E is equivalent to a stronger form
of wepability (easy wepability) for the singular inner functions with
support in E. Finally, we find out the critical decay rate of masses
of atomic measures (with no restrictions on support) guaranteeing
that the corresponding singular inner functions are easily wepable.

1. Introduction

1.1. Background. Let H∞ = H∞(D) be the algebra of bounded ana-
lytic functions on the unit disc D with the norm ‖f‖∞ = supz∈D |f(z)|.
A function I ∈ H∞ is called inner if it has radial limits of modulus 1
at almost every point of the unit circle.
Any inner function I factors as I = BS where B is a Blaschke

product and S is a singular inner function, that is, an inner function
without zeros in D.
A Blaschke product B is called an interpolating Blaschke product if

its zero set Λ = (zn)n forms an interpolating sequence for H∞, that is
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H∞|Λ = ℓ∞|Λ. Let ρ(z, w) be the pseudohyperbolic distance between
the points z and w in the unit disc D defined as

ρ(z, w) =

∣

∣

∣

∣

z − w

1− wz

∣

∣

∣

∣

, z, w ∈ D.

A celebrated result of Carleson says that this holds if and only if
infn 6=m ρ(zn, zm) > 0 and

(1) sup
z∈D

∑

n

(1− |zn|2)(1− |z|2)
|1− znz|2

<∞.

It was also proved by Carleson that (1) is equivalent to the em-
bedding H1 ⊂ L1(dµ), where H1 is the standard Hardy space and
dµ =

∑

n(1 − |zn|2)δzn , δzn being the point mass at zn. In other
words, (1) holds if and only if there exists a constant C > 0 such
that

∑

n(1 − |zn|2)|f(zn)| ≤ C‖f‖1 , for any function f in the Hardy
space H1 of the analytic functions in D for which

‖f‖1 = sup
0<r<1

∫ 2π

0

|f(reit)|dt <∞.

It is well known that a Blaschke product B is an interpolating
Blaschke product if and only if there exists a constant C = C(B) > 0
such that

(2) |B(z)| > Cρ(z, Z(B)),

where Z(B) denotes the zero set of B (see the monographs [12], [11, p.
217] or [14]). This fact easily extends to general inner functions.

1.2. Weak Embedding Property. In 2008, Gorkin, Mortini, and
Nikolski [8] introduced the following new class of inner functions. An in-
ner function I satisfies the Weak Embedding Property (WEP), a weaker
version of (2), if for any ε > 0 one has

ηI(ε) := inf{|I(z)| : ρ(z, Z(I)) > ε} > 0.

A Blaschke product I with zeros (zn)n satisfies the WEP if and only
if for every ε > 0,

sup
z∈D, infn ρ(z,zn)>ε

{

∑ (1− |zn|2)(1− |z|2)
|1− znz|2

}

<∞ ,

which is a weakening of the Carleson embedding property (1).
Finite products of interpolating Blaschke products satisfy the WEP

with ηI(ε) � εN and in fact, a Blaschke product B is the product of N
interpolating Blaschke products if and only if there exists a constant
C = C(B) > 0 such that |B(z)| > Cρ(z, Z(B))N for any z ∈ D [7].
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However there are other inner functions that satisfy the WEP. In
[8], an explicit example was presented of a Blaschke product satisfying
the WEP which cannot factor into a finite product of interpolating
Blaschke products. This example was extended and complemented in
[13]. A different class of examples has been given in [2] showing that
for every strictly increasing function ψ : (0, 1) → (0, 1) there exists a
Blaschke product B satisfying the WEP such that ηB(ε) = o(ψ(ε)) as
ε→ 0.

1.3. Operator Theory motivations. Given an inner function I con-
sider the quotient algebra H∞/IH∞. The zeros Z(I) of I in D are
naturally embedded in the maximal ideal space M of H∞/IH∞. It is
proved in [8] that I satisfies the WEP if and only if H∞/IH∞ has no
corona, that is, Z(I) is dense in M.
Another condition shown to be equivalent to the WEP in [8] is the

norm controlled inversion property which says that for any ε > 0 , there
exists m(ε) > 0 such that if f ∈ H∞, ‖f‖H∞ = 1 and inf{|f(z)| : z ∈
Z(I)} > ε > 0, then f is invertible in H∞/IH∞ and ‖1/f‖H∞/IH∞ ≤
m(ε).
Consider a vector-valued version of this: for f := (f1, . . . , fn) ∈

(H∞)n, let ‖f‖2∞,n := supz∈D

∑n
j=1 |fj(z)|2 and for I inner,

χI(f) := inf{‖g‖∞,n : ∃h ∈ H∞ :

n
∑

j=1

gjfj + hI ≡ 1}.

This is like a “Corona constant” for the n-tuple f in the quotient space
H∞/IH∞.
Following Gorkin, Mortini and Nikolski, for δ ∈ (0, 1), n ≥ 1, we

define

cn(δ, I) := sup

{

χI(f) : δ
2 ≤ inf

λ∈Z(I)

n
∑

j=1

|fj(λ)|2, ‖f‖∞,n ≤ 1

}

,

which is a decreasing function of δ, and

δn(I) := inf {δ : cn(δ, I) <∞} .
It turns out that these values do not depend on n.

Proposition 1. For any n ≥ 1, δn(I) = δ̃(I) := inf{ε : ηI(ε) > 0}.
Another result concerns possible rates of growth of cn(δ, I).

Proposition 2. For every decreasing function φ : (0, 1) → (0,∞) there
exists a Blaschke product B such that δn(B) = 0 and cn(δ, B) ≥ φ(δ),
0 < δ < 1, n ≥ 1.
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Note that by the definition of δ̃, the function I satisfies the WEP if
and only if δ̃(I) = 0.
Inner functions I satisfying the WEP can also be described in terms

of spectral properties of the model operator acting on the Model Space
KI = H2/IH2, see [8].

1.4. Wepable functions. An inner function I is called wepable [2] if
it can enter as a factor in a WEP inner function, i.e. if there exists J
inner such that IJ satisfies the WEP. Clearly, if I is a singular inner
function, thus without zeros, it cannot be WEP, but it can be wepable.
It is easy to see that only the Blaschke factor in J will help make IJ a
WEP function.
Let us describe some of the results in [2]. Let dA(z) be area measure

in the unit disc. An inner function I such that for any ε > 0 one has

(3)

∫

{z:|I(z)|<ε}

dA(z)

1− |z|2 = ∞

is not wepable. Moreover there exist singular inner functions I sat-
isfying (3). Hence there exists singular inner functions which are not
wepable, answering a question in [8]. Condition (3) is a sort of Blaschke
condition and has also appeared in [9]. It was also shown in [2] that
condition (3) does not characterise (non)-wepable inner functions.

1.5. Results about the support of the singular measure. Given
a measurable set E ⊂ T = ∂D, let |E| denote its normalised length,
|T| = 1. Recall that a closed set E ⊂ T with |E| = 0 has finite entropy
(has finite Carleson characteristic, is a Beurling–Carleson set) if

E(E) :=
∑

|Jk| log |Jk|−1 <∞,

where (Jk)k are the connected components of T\E; more precisely, this
value is the entropy of the family (Jk)k. A classical result of Carleson
says that a closed set E ⊂ T is the zero set of an analytic function
whose derivatives of any order extend continuously to the closed unit
disc if and only if E has zero length and finite entropy [3].
Given an inner function I let sing(I) denote the set of points of the

unit circle where I can not be extended analytically. If I = BS where
B is a Blaschke product with zeros (zn)n and

Sµ(z) = exp

(

−
∫ 2π

0

eit + z

eit − z
dµ(t)

)

, z ∈ D,

where µ is a positive singular measure, then sing(I) = ({zn} ∩ T) ∪
supp µ, where supp µ denotes the (closed) support of µ.
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Theorem 1. Let E be a closed subset of the unit circle. The following
conditions are equivalent:
(a) Every singular inner function whose singular set is contained in

E is wepable;
(b) E has zero length and finite entropy.

The sufficiency of the conditions in (b) is obtained by careful con-
structions of Blaschke products which are carried out in Section 3.
The necessity of the conditions in (b) is related to estimate (3) and

follows from the following result which may be of independent interest.
We identify the unit circle with the interval [0, 2π) and consider the
dyadic arcs [2π · k2−n, 2π · (k + 1)2−n), 0 ≤ k < 2n, n ≥ 0. Those arcs
have normalised length equal to 2−n.
Given an arc J ⊂ T of center ξJ , write z(J) = (1− 3

4
|J |)ξJ . We also

denote Q(J) := {reiθ : eiθ ∈ J, 1 − |J | ≤ r < 1} (the Carleson box
associated to J) and T (J) := {reiθ : eiθ ∈ J, 1 − |J | ≤ r ≤ 1 − |J |/2}
(the top half of the box).
Given a finite measure µ in the unit circle let P [µ] be its Poisson

integral.

Lemma 1. Let E be a closed subset of the unit circle. The following
conditions are equivalent:
(a) E has zero length and finite entropy;
(b)

∑ |J | < ∞, where the sum is taken over all dyadic arcs J such
that J ∩ E 6= ∅;
(c) For any positive singular measure µ whose support is contained

in E and any C > 0 one has
∑

|J | <∞, where the sum is taken over
all dyadic arcs J ⊂ T such that P [µ](z(J)) ≥ C.

The condition in (c) can be understood as a discrete version of (3)
with I = Sµ.

The condition in (b) can be seen as a discrete version of
∫

Γ(E)
dA(z)
1−|z|2

<

∞, where Γ(E) denotes the union of all the Stolz angles with vertex
on a point of E. For a related result, see [4, Lemma A.1].

1.6. Results about regularity of singular measures. Positive sin-
gular measures can fairly distribute their mass. For instance, there exist
singular probability measures µ on the unit circle such that

sup
{
∣

∣

∣

µ(J)

µ(J ′)
− 1
∣

∣

∣
+
∣

∣

∣

µ(J)− µ(J ′)

|J |
∣

∣

∣

}

→ 0 as |J | → 0,

where the supremum is taken over any pair of adjacent arcs J, J ′ ⊂ T

of the same length (see [1]). As a consequence of Theorem 1 we will
prove that positive singular measures µ such that Sµ is wepable cannot
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distribute their mass as evenly. Actually a Dini type condition governs
the growth of the density of such measures.

Corollary 1. (a) Let µ be a positive singular measure on the unit circle
and consider w(t) = sup µ(J), where the supremum is taken over all
arcs J ⊂ T with |J | = t. Assume that

∑

n≥1

2−n

w(2−n)
= ∞.

Then Sµ satisfies condition (3) and, hence, it is not wepable.
(b) Let w : [0, 1] → [0,∞) be a nondecreasing function with w(0) = 0

such that w(2t) < 2w(t) for any t > 0. Assume that

∑

n≥1

2−n

w(2−n)
<∞.

Then there exists a positive singular measure µ in the unit circle satis-
fying µ(J) < w(|J |) for any arc J ⊂ T, such that its support has zero
length and finite entropy, and hence Sµ is wepable.

Definition 1. A closed subset E of the unit circle is called porous if
there exists a constant C > 0 such that for any arc J ⊂ T, there exists
a subarc J ′ ⊂ J \ E with |J ′| > C|J |.
The porosity condition (the Kotochigov condition, the (K) condition)

appears naturally in the free interpolation problems for different classes
of analytic functions smooth up to the boundary, see [5].
The next auxiliary result is a scale invariant version of Lemma 1.

Lemma 2. Let E be a closed subset of the unit circle. The following
conditions are equivalent:
(a) E is porous;
(b) There exists a constant C > 0 such that for any dyadic arc J

one has
∑

I∈E(J)

|I| ≤ C|J |,

where E(J) is the family of the dyadic arcs I ⊂ J such that I ∩E 6= ∅;
(c) There exists a constant C > 0 such that for any finite positive

measure µ with support contained in E, any number A > 0 and any
dyadic arc J ⊂ T, one has

∑

I∈E(A)

|I||J |
|1− z(I)z(J)|2

≤ C

A
P [µ](z(J)),

where E(A) is the family of the dyadic arcs I such that P [µ](z(I)) ≥ A.
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Let S be a wepable inner function. It may happen that any Blaschke
product B such that BS satisfies the WEP must have some of its
zeros (zn)n located at points where |S| is close to 1; more precisely,
lim supn→∞ |S(zn)| = 1. (Theorems 1 and 2 together prove the exis-
tence of such S).

Definition 2. An inner function S will be called easily wepable if
there exists a constant m < 1 and a Blaschke product B such that SB
satisfies the WEP and Z(B) ⊂ {z ∈ D : |S(z)| < m}.
Theorem 2. Let E be a closed subset of the unit circle. The following
conditions are equivalent:
(a) Every singular inner function whose singular set is contained in

E is easily wepable;
(b) The set E is porous.

In [10] it was proved that a closed set E of the unit circle is porous
if and only if for any singular inner function S whose singular set is
contained in E and any a ∈ D\{0} the inner function (S−a)/(1−aS)
is a finite product of interpolating Blaschke products.
Now we describe the critical decay rate of masses of atomic measures

(with no restrictions on support) guaranteeing that the corresponding
singular inner functions are easily wepable.

Theorem 3. Let (bs)s≥1 be a non-increasing summable sequence of
positive numbers. The following conditions are equivalent:
(a) Every atomic singular inner function with point masses (bs)s≥1

is easily wepable;
(b)

(4) bs ≍
∑

k≥s

bk, s ≥ 1.

Note that given any decreasing sequence of masses, they can give
rise to a measure µ with easily wepable singular function Sµ, simply
by locating the masses at points of the form exp(i2−n), for instance,
and applying Theorem 2. It would be interesting to have a similar
statement to Theorem 3 with “wepable” instead of “easily wepable”;
in particular to know whether any condition weaker than (4) can imply
automatic wepability, and what rate of decrease of the (bs) guarantees
that there always exists some choice of location of the point masses
with produces a non-wepable Sµ. In particular, the construction in
the proof of [2, Proposition 6] shows that there exists a non-wepable
atomic singular inner function as soon as the point masses decay no
more rapidly than 1/(n(log n)2), n→ ∞.
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1.7. Organization of the paper. In Section 2, we prove Lemmas 1
and 2, and therefore the necessity part of Theorem 1. In Section 3, we
prove the remaining part of Theorem 1 and Corollary 1. In Section 4,
we give the proof of Theorem 3. In Section 5, we give the proof of
Theorem 2, which deals with a situation where the entropy of the
singular set is very well controlled. Finally, the proofs of Propositions 1
and 2, which are quite independent from the rest, appear in Section 6.
The letter C will denote a constant whose value may change from

line to line.
We denote by D = ∪n≥0Dn the family of the dyadic arcs, with Dn =

{J ⊂ D : |J | = 2−n}. Note that Card Dn = 2n.
Given an arc J ⊂ T of center ξ and length |J | and M > 0 let MJ

be the arc of the unit circle of center ξ and length M |J |.
Let z, w ∈ D. Later on, we use the following standard estimates:

1

2
· (1− |z|2)(1− |w|2)

|1− w̄z|2 ≤ log
∣

∣

∣

1− w̄z

z − w

∣

∣

∣
,(5)

log
∣

∣

∣

1− w̄z

z − w

∣

∣

∣
≤ C(δ)

(1− |z|2)(1− |w|2)
|1− w̄z|2 , ρ(z, w) ≥ δ > 0.(6)

Acknowledgments. We are grateful to Nikolai Nikolski for stimulat-
ing discussions.
This work was initiated in 2011 when the third author was invited

by the Centre de Recerca Matemàtica in the framework of the thematic
semester on Complex Analysis and Spectral Problems.

2. Proofs of Lemmas 1 and 2

Proof of Lemma 1. (a)⇔(b) Let T\E be the disjoint union of the arcs
Ik, k ≥ 1. Suppose first that |E| = 0. Then

∑

J∈D, J∩E 6=∅

|J | =
∑

k≥1

∑

J∈D, J∩E 6=∅, J∩Ik 6=∅

|J ∩ Ik|

=
∑

k≥1

∑

n≥0

∑

J∈Dn, J∩E 6=∅, J∩Ik 6=∅

|J ∩ Ik|

≍
∑

k≥1

(

∑

0≤n≤log(1/|Ik|)

|Ik|+
∑

n>log(1/|Ik|)

2−n
)

≍ E(E).

Next, if |E| > 0, then
∑

J∈D, J∩E 6=∅

|J | = ∞.
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(b)⇒(c) Arguing as above,

∑

J∈D, P [µ](z(J))≥C

|J | =
∑

k≥1

∑

n≥0

∑

J∈Dn, P [µ](z(J))≥C, J∩Ik 6=∅

|J ∩ Ik|

.
∑

k≥1

(

∑

0≤n≤2 log(1/|Ik |)

|Ik|+
∑

n>2 log(1/|Ik |)

2−n/2
)

≍ E(E).

(c)⇒(a) If |E| > 0, then we can just take µ0 = KχE dm with K to
be chosen later on. By the Lebesgue density theorem, for a subset E1

of E, |E1| ≥ |E|/2 and for some δ > 0 we have

|E ∩ J |
|J | ≥ 1

2

for every arc J such that J ∩ E1 6= ∅, |J | ≤ δ. Hence, for K ≥ K(C)
we obtain

∑

J∈D, P [µ0](z(J))≥C

|J | ≥
∑

J∈D, |J |≤δ, J∩E1 6=∅

|J | = ∞.

Next, we can replace µ0 by a Cantor type singular measure µ1 while
keeping the sum

∑

J∈D, P [µ1](z(J))≥C

|J |

infinite.
Now, suppose that (c) holds and |E| = 0, E(E) = ∞, so that (a)

and, hence, (b) do not hold. Let T\E be the disjoint union of the arcs
Ik = (ak, bk), k ≥ 1, and take

µ = K
∑

k≥1

|Ik|(δak + δbk)

with K to be chosen later on. Given J ∈ D, if J ∩ E 6= ∅, then
µ(J) ≥ K|J |, and for K ≥ K(C) we have P [µ](z(J)) ≥ C. Therefore,

∑

J∈D, P [µ](z(J))≥C

|J | ≥
∑

J∈D, J∩E 6=∅

|J | = ∞.

�

Proof of Lemma 2. (a)⇒(b) If E is porous, then there exists a ∈ N

such that for every n ≥ 0, J ∈ Dn, and for every m ≥ 0, the set J ∩E
is covered by 2m−s arcs I ∈ Dn+m, sa ≤ m < (s + 1)a. Fix J ∈ D,
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|J | = 2−n. Then
∑

I∈D, I⊂J, I∩E 6=∅

|I| ≤
∑

m≥n

∑

I∈Dm, I⊂J, I∩E 6=∅

|I|

≤
∑

s≥0

∑

sa≤m<(s+1)a

2m−s2−n−m =
∑

s≥0

a2−n−s = 2a|J |.

(b)⇒(a) If E is not porous, then for every N ≥ 1 there exist n ≥ 0,
J ∈ Dn such that if I ∈ Dn+N , I ⊂ J , then I ∩ E 6= ∅. Then

∑

I∈D, I⊂J, I∩E 6=∅

|I| ≥
∑

n≤s≤n+N

∑

I∈Ds, I⊂J, I∩E 6=∅

|I|

=
∑

n≤s≤n+N

|J | = (N + 1)|J |.

(c)⇒(a) As above, if E is not porous, then for every N ≥ 1 we can
find J = [2π · k2−n, 2π · (k + 1)2−n) ∈ Dn and points xs ∈ E ∩ [2π ·
(k2N + s)2−n−N , 2π · (k2N + s+ 1)2−n−N), 0 ≤ s < 2N . Set

µ = 10 · 2−n−NA
∑

0≤s<2N

δxs
.

Then

P [µ](z(I)) ≥ A, I ∈ Dm, n ≤ m ≤ n+N, I ⊂ J,

and
∑

I∈D, P [µ](z(I))≥A

|I||J |
|1− z(I)z(J)|2

&
∑

n≤m≤n+N

2m−n · 2
−m2−n

2−2n
= N + 1.

For large N this contradicts to (c), because

P [µ](z(J)) ≤ CA.

To complete the proof of our lemma, we need an auxiliary statement.

Lemma 3. Let u be a function positive and harmonic on the unit disc,
let A > 0, and let G be a subfamily of D such that the arclength ds on
L = ∪J∈G∂T (J) is a Carleson measure,

sup
z∈D

∑

J∈G

∫

∂T (J)

1− |z|2
|1− w̄z|2 ds(w) ≤ B.

Assume that u ≥ A on L. Then for every J ⊂ D we have
∑

I∈G

|I||J |
|1− z(I)z(J)|2

≤ CB

A
u(z(J))

for some absolute constant C.
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Proof. Consider the function

h(z) =
∑

J∈G

∫

∂T (J)

log
∣

∣

∣

1− w̄z

z − w

∣

∣

∣

ds(w)

1− |w| .

It is harmonic on D \ L and by (6),

CBu(z) ≥ Ah(z)

for z ∈ T ∪ L. By the maximum principle,

CBu(z(J)) ≥ Ah(z(J)),

and hence, by (5),

C1Bu(z(J)) ≥ A
∑

I∈G

|I||J |
|1− z(I)z(J)|2

.

�

It remains to prove the implication (a)⇒(c). Set u = P [µ]. Arguing
as in the part (a)⇒(b) we obtain that

∑

I∈D, I⊂J, 3I∩E 6=∅

|I| ≤ C|J |, J ⊂ D.

Hence, the arclength ds on ∪I∈D, 3I∩E 6=∅∂T (I) is a Carleson measure.
Fix A > 0 and denote by G the family of all I ∈ D such that 3I∩E 6= ∅

and u(z(I)) ≥ A. Fix J ∈ D. Applying Lemma 3, we obtain that

u(z(J)) ≥ CA
∑

I∈G

|I||J |
|1− z(I)z(J)|2

.

Now we need only to estimate
∑

I∈D, 3I∩E=∅, u(z(I))≥A

|I||J |
|1− z(I)z(J)|2

.

We set
H = {I ∈ D : 3I ∩ E = ∅, u(z(I)) ≥ A}

and
Hk = {I ∈ H : 2k−1A ≤ u(z(I)) < 2kA}, k ≥ 1,

so that H = ∪k≥1Hk. If I ∈ H, then an easy estimate of the Poisson
integral shows that

u(z(L))

u(z(I))
≍ |L|

|I| , L ∈ D, L ⊂ I.

Hence, every arc I ∈ Hk, k ≥ 1, contains at most C subarcs I ′ ∈ Hk.
Therefore, the arclength ds on ∪I∈Hk

∂T (I) is a Carleson measure with
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Carleson constant uniformly bounded in k ≥ 1. Lemma 3 gives now
that

2−ku(z(J)) ≥ CA
∑

I∈Hk

|I||J |
|1− z(I)z(J)|2

.

Summing up in k ≥ 1 we complete the proof. �

3. Proof of Theorem 1 and Corollary 1

The proof of the sufficiency of Theorem 1 uses the following auxiliary
result.

Lemma 4. Let E be a closed subset of the unit circle of zero length and
finite entropy. Let G = {Jn} be the family of maximal dyadic subarcs
Jn ⊂ T such that 2Jn ⊂ T \ E. Then
(a) The interiors of Jn are pairwise disjoint and T \ E = ∪Jn.
(b) We have

∑

n |Jn| log |Jn|−1 <∞.
(c) If Jn and Jm are in the same connected component of T \E and

Jn ∩ Jm 6= ∅, then 4|Jn| ≥ |Jm| ≥ |Jn|/4.
(d) Let J be a connected component of T \ E and consider the sub-

family G(J) = {Ln} of the arcs L ∈ G with L ⊂ J ordered so that
|Ln+1| ≤ |Ln| for any n. Then |L1| ≥ |J |/8, |Lk|/4 ≤ |Lk+1| ≤ |Lk|
and |Lk+4| ≤ |Lk|/2 for any k ≥ 1.

Proof. The maximality gives that the interiors of Jn are pairwise dis-
joint. It is also clear that T \E = ∪Jn. Let us now prove (c). Assume
that |Jn| ≥ |Jm|. Since 2Jn ⊂ T \ E, every dyadic arc J adjacent to
Jn of length |J | = |Jn|/4 satisfies 2J ⊂ T \ E. Since Jn ∩ Jm 6= ∅

we can assume that J ∩ Jm 6= ∅. By maximality, J ⊂ Jm. Hence
|Jm| ≥ |J | = |Jn|/4 and (c) is proved. Let us now prove (d). The
maximality gives that |L1| ≥ |J |/8 and (c) gives that |Lk|/4 ≤ |Lk+1|.
Assume that |Lk+4| > |Lk|/2. Then |Lk+i| = |Lk|, 0 ≤ i ≤ 4. Then
there would exist i ∈ {0, 1, 2, 3, 4} such that the dyadic arc L contain-
ing Lk+i of length |L| = 2|Lk+i| satisfies 2L ⊂ T \ E. This would
contradict the maximality of Lk+i and (d) is proved. Finally, let us
prove (b). Take a connected component J of T \ E. The estimates in
(d) give that

∑

L∈G(J)

|L| log |L|−1 ≤ C|J | log |J |−1,

and (b) follows because E has finite entropy. �

Proof of Theorem 1. The necessity part follows from Lemma 1 and
property (3).



WEPABLE INNER FUNCTIONS 13

Let us now prove the sufficiency part. Let µ be a positive singular
measure whose support E has zero length and finite entropy. Let G be
the family given by Lemma 4 of maximal dyadic arcs of the unit circle
whose double is contained in T \E. Let F be the family of dyadic arcs
of T which are not contained in any arc of G. Then
(7)

∑

J∈F

|J | <∞.

Indeed, for every J ∈ F , 2J is the union of four dyadic intervals of the
same length such that at least one of them intersects E. Since E has
zero length and finite entropy, Lemma 1 gives that

∑

J∈F

|J | ≤
∑

J∈F

|2J | .
∑

J∈D, J∩E 6=∅

|J | <∞.

We want to find a Blaschke product B such that SB satisfies the WEP.
We will describe now the first family of zeros of B. By (7), one can
pick a sequence of integers kj increasing to infinity such that

∞
∑

j=1

kj
∑

J∈F∩Dj

|J | <∞.

Next, for each J ∈ F∩Dj, we choose a set Λ(J) = {zn(J) : 1 ≤ n ≤ kj}
uniformly distributed in T (J). Uniform distribution means that

min
z,w∈Λ(J), z 6=w

|z − w| ≍ max
z∈T (J)

dist (z,Λ(J)) ≍ min
z∈Λ(J)

dist (z, ∂T (J)).

Let B1 be the Blaschke product with zeros Z(B1) = ∪J∈FΛ(J). Since
kj tends to infinity, for any 0 < δ < 1 there exists r = r(δ) < 1 such
that

(8) {z ∈ D : ρ(z, Z(B1)) > δ} ⊂ {z ∈ D : |z| < r}
⋃

∪J∈GQ(J).

Next we will construct certain additional zeros of B which are contained
in ∪J∈GQ(J). Set f = SB1. Since infJ∈G ρ(z(J), Z(B1)) > 0, we have
log |f(z(J))|−1 . (1 − |z(J)|)−1, J ∈ G. Now, applying Lemma 4 (b),
we obtain

∑

J∈G

|J | log log |f(z(J))|−1 <∞.

Next, for every J ∈ G and every z ∈ Q(J) with 1 − |z| < |J |/8, we
have

(9) log |f(z)|−1 .
1− |z|

1− |z(J)| log |f(z(J))|
−1.

To prove (9) consider the measure dσ = dµ +
∑

z∈Z(B1)
(1 − |z|2)δz,

where dµ is the positive singular measure associated to S. Fix for a
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moment J ∈ G. There exists a constant C > 0 such that if z ∈ Q(J)
and 0 < 1 − |z| < |J |/8, then ρ(z, Z(B1)) ≥ C. Then, by (6), there
exists a constant C1 > 0 such that

log |f(z)|−1 ≤ C1

∫

D

1− |z|2
|1− wz|2dσ(w).

Applying Lemma 4 (c) and using that the support of µ does not inter-
sect 2J , for every w in the support of σ and every z ∈ Q(J) we obtain
that |1− wz| ≥ C2|1− wz(J)|, where C2 > 0 is a constant. Hence,

log |f(z)|−1 <
C1(1− |z|2)

C2
2(1− |z(J)|2)

∫

D

1− |z(J)|2
|1− wz(J)|2dσ(w).

By (5), this integral is bounded by a fixed multiple of log |f(z(J))|−1,
and estimate (9) follows.
In particular, for any constant K > 0 there exists K1 = K1(K) > 0

such that for every J ∈ G we have

(10) |f(z)| > K1 if z ∈ Q(J), 1− |z| < K|J |
log |f(z(J))|−1

.

Let M(J) = log2 |J |−1. Pick a sequence of positive integers tk increas-
ing to infinity and such that tk+1 ≤ tk + 1 and

∑

J∈G

|J |
M(J)
∑

k=1

tk <∞.

For 1 ≤ k ≤M(J) consider the strips

Ωk = Ωk(J) = {z ∈ Q(J) : 2k−1|J |2 < 1− |z| ≤ 2k|J |2}

and choose sets Λk(J) = {zj(Ωk)}1≤j≤sk of sk = tk2
M(J)−k points uni-

formly distributed in Ωk. Let Λ(J) = ∪1≤k≤M(J)Λk(J). Then

∑

z∈Λ(J)

(1− |z|) =
M(J)
∑

k=1

sk
∑

j=1

(1− |zj(Ωk)|) ≤ |J |
M(J)
∑

k=1

tk.

Thus, the set ∪J∈GΛ(J) satisfies the Blaschke condition. Let B2 be the
Blaschke product with these zeros.
We will now show that SB1B2 satisfies the WEP. Fix η > 0 and

take z ∈ D such that ρ(z, Z(B1B2)) > η. Applying (8) we obtain
that either |z| ≤ r(η) < 1 or z ∈ Q(J) for some J ∈ G. In the
first case |S(z)B1(z)B2(z)| > ε(η) > 0. Assume that z ∈ Q(J) for
some fixed J ∈ G. Since limk→∞ tk = ∞ and ρ(z, Z(B2)) > η, there
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exists C1 = C1(η) > 0 such that 1 − |z| < C1|J |2. Furthermore,
z ∈ ∪0≤k≤k(η)Ωk(J), where

Ω0(J) = {z ∈ Q(J) : 1− |z| ≤ |J |2}.
Since log |f(z(J))|−1 < C/|J |, applying (10) we obtain that |f(z)| ≥ C2

for some C2 = C2(η) > 0. Let J− and J+ be two arcs of the family G
contiguous to J . Factor B2 = B3B4, where B3 is the Blaschke product
with zeros Λ(J−)∪Λ(J)∪Λ(J+). By Lemma 4 (c), dist (Z(B4), Q(J)) &
|J |. Hence there exists a constant C > 0 such that |1−wz| > C|J | for
any zero w of B4. Therefore, by (6),

log |B4(z)|−1 ≤ C3

∑

w∈Z(B4)

(1− |z|2)(1− |w|2)
|1− wz|2 ≤ C4

∑

w∈Z(B4)

(1− |w|2).

On the other hand, if we reorder the zeros of B3 as Z(B3) = (zs)s and
use that ρ(z, Z(B2)) > η, estimate (6) gives that there exists a constant
C5 = C5(η) > 0 such that

log |B3(z)|−1

≤ C5

∑

zs∈Q(z)(1− |zs|)
1− |z| + C5

∞
∑

j=1

1

22j(1− |z|)
∑

zs∈2jQ(z)

(1− |zs|),

where Q(z) = Q(J̃) is the Carleson box defined by the arc J̃ satisfying
z = z(J̃), 2jQ(z) = Q(2j J̃).
Next, again by Lemma 4 (c), log2 |J |−1 ≍ log2 |J±|−1. Hence, the

densities of zeros zs ∈ Q(z) are bounded by tk(η),

1

1− |z|
∑

zs∈Q(z)

(1− |zs|) ≤
∑

1≤k≤k(η)

tk ≤ C6(η).

Similarly,

1

1− |z|
∑

zs∈2jQ(z)

(1− |zs|) ≤ 2j
∑

1≤k≤k(η)+j

tk

≤ 2j(C6(η) + jtk(η) + j(j + 1)/2),

and
∞
∑

j=1

1

22j(1− |z|)
∑

zs∈2jQ(z)

(1− |zs|) ≤ C7(η).

�

Proof of Corollary 1. (a) Fix 0 < ε < 1 and consider A(ε) = {z ∈ D :
|Sµ(z)| < ε}. Let Ln be the collection of dyadic arcs J ∈ Dn such
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that µ(J) > 10|J | log ε−1 and let L = ∪n≥0Ln. Since log |Sµ(z)|−1 >
µ(J)/(10|J |) for z ∈ T (J), we deduce that

∫

A(ε)

dA(z)

1− |z|2 ≥ C
∑

J∈L

|J | = C
∑

n

2−nan,

where an is the number of dyadic arcs in the collection Ln. Since µ is
singular, there exists n0 = n0(ε) > 0 such that for n ≥ n0, one has

∑

J∈Ln

µ(J) ≥ 1

2
µ(T).

We deduce that anw(2
−n) ≥ µ(T)/2. Thus,

∫

A(ε)

dA(z)

1− |z|2 ≥ Cµ(T)
∑

n≥n0

2−n

w(2−n)
,

which finishes the proof of (a).
(b) We may assume that w(1) = 1. Set n1 = 0 and for k = 2, 3, . . .

let nk be the smallest positive integer such that w(2−nk) < 2−k+1.
Since 2−k+1 ≤ w(2−nk+1) < 2w(2−nk), we have 2−k < w(2−nk) < 2−k+1.
Hence for any k = 1, 2 . . . and any integer n with nk ≤ n < nk+1 we
have 2−k ≤ w(2−n) < 2−k+1. Let Lk = Dnk

, k ≥ 1. The measure µ will
be defined by prescribing inductively its mass µ(J) over any dyadic arc
J ∈ ∪kLk. Define µ(T) = 1. Assume that µ(J) has been defined for any
arc J ∈ Lk and we will define the mass of µ over dyadic arcs of Lk+1.
Fix J ∈ Lk and let G(J) be the family of arcs in Lk+1 contained in J .
If µ(J) = 0, define µ(L) = 0 for any dyadic arc L ∈ G(J). If µ(J) > 0,
pick two (arbitrary) arcs Ji ∈ G(J), i = 1, 2, define µ(Ji) = µ(J)/2
for i = 1, 2 and µ(L) = 0 for any other L ∈ G(J) with L 6= Ji,
i = 1, 2. In other words, in each dyadic arc of generation nk of positive
measure µ, this measure distributes its mass among two (arbitrary)
arcs of generation nk+1 and gives no mass to the others. Let J be a
dyadic arc of the unit circle with 2−nk+1 < |J | ≤ 2−nk for a certain
integer k = k(J). By construction, µ(J) ≤ 2−k ≤ w(|J |). Since any
arc is contained in the union of two dyadic arcs of comparable length,
there exists a constant C > 0 such that µ(J) < Cw(|J |) for any arc
J ⊂ T. Next we will show that the support of µ has finite entropy. For
any integer k ≥ 1 there are 2k−1 arcs J of Lk with µ(J) > 0. Similarly
if nk < n ≤ nk+1, then there are at most 2k dyadic arcs J of normalised
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length 2−n with µ(J) > 0. Then

∑

J∈D, µ(J)>0

|J | ≤ 1 +

∞
∑

k=1

nk+1
∑

n=nk+1

2−n2k

≤ 1 +

∞
∑

k=1

2k2−nk ≤ 1 + 2

∞
∑

k=1

2−nk

w(2−nk)
≤ 1 + 2

∑

n≥0

2−n

w(2−n)
.

Applying Lemma 1 we deduce that the support of µ has finite entropy
and zero Lebesgue measure. By Theorem 1, Sµ is wepable. �

Remark 1. Let µ be a positive singular measure in the Zygmund class,
that is, there exists a constant C > 0 such that for any pair of contigu-
ous arcs J, J ′ ⊂ T of the same length one has

|µ(J)− µ(J ′)| ≤ C|J |.
As in Corollary 1, consider w(t) = supµ(J), where the supremum is
taken over all arcs J ⊂ T with |J | = t. Then there exists a constant
C > 0 such that w(2−n) ≤ Cn2−n for any positive integer n and Corol-
lary 1 gives that Sµ is non wepable.

4. Atomic Measures and Easily Wepable Singular

Functions

We start with a modification of a construction from the proof of
Proposition 6 in [2].

Lemma 5. Given a large A, there exists m≫ 1 satisfying the following
property: if J ∈ Dk, J is the union of 2m arcs Js ∈ Dk+m, xs ∈ Js,
0 ≤ s < 2m, then there exists a set Y ⊂ (xs)0≤s<2m, Card Y . 2m/A2,
such that if

µ =
∑

y∈Y

cyδy

with 10 · 2−k−mA ≤ cy ≤ 20 · 2−k−mA (and we have ‖µ‖ . |J |/A), if Λ
is a subset of D such that

P [µ](z(I)) ≥ A =⇒ Λ ∩ T (I) 6= ∅, I ∈ D,
and if BΛ is the corresponding Blaschke product, then

log |BΛ(z(J))| . −A2.

Proof. Let J = [0, 2π · 2−k). Fix q ∈ N, q ≥ A2, n = q2, and m ≥ 1
such that 2m−1 ≤ q22n < 2m and define

Y = {xs : s = jq2n + ℓ, 0 ≤ j < 2n, 0 ≤ ℓ < 2n}.
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Then ‖µ‖ ≍ 2−kA/q . |J |/A, and

2−k−m ≤ 1− r ≤ 2n−k−m & 0 ≤ θ − jq2n−k−m ≤ 2n−k−m

=⇒ P [µ](re2πiθ) ≥ A.

Hence, for every I ∈ ∪k+m−n≤p≤k+mDp such that

I ⊂ ∪0≤j<2n [2π · jq2n−k−m, 2π · (jq + 1)2n−k−m]

we have

Λ ∩ T (I) 6= ∅.

Thus, applying (5),

log |BΛ(z(J))| . −q.
�

Proof of Theorem 3. (a) ⇒ (b) If (4) does not hold, then we can choose
a sequence of groups (bsn , . . . , bsn+n)n≥1 such that bsn ≤ 2bsn+n. By
Lemma 5, passing to a subsequence of (sn) denoted also by (sn) we
construct a sequence of dyadic arcs Jn and measures

µn =
∑

sn≤y<sn+2mn

byδxy

such that

supp µn ⊂ Jn, ‖µn‖ = o(|Jn|), dist (Jn, Jn′) & max(|Jn|, |Jn′|).
Furthermore, if the sets Λn satisfy the property

(11) P [µn](z(I)) ≥ n =⇒ Λn ∩ T (I) 6= ∅, I ∈ D,
then the corresponding Blaschke products BΛn

satisfy the estimate

|BΛn
(z(Jn))| ≤ exp(−n2).

Finally, we take x ∈ T \ ∪nJn and set

µ =
∑

n≥1

µn +
(

∑

s≥1

bs −
∑

n≥1

‖µn‖
)

δx.

Suppose that BΛ is a Blaschke product with zero set Λ such that
SµBΛ has the WEP. Then for every n ≥ n0, the set Λ∩Q(Jn) satisfies
the property (11), and hence,

|BΛ(z(Jn))| ≤ exp(−n2).

Therefore, BΛ should have a zero in T (Jn), n ≥ n1. However,

P [µ](z(Jn)) → 0, n→ ∞.

Thus, Sµ is not easily wepable.
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(b) ⇒ (a) Given z, w ∈ D, set

β(z, w) = log2
1

1− ρ(z, w)
.

Let J1, J2 ∈ D, 2−n = |J1| ≤ |J2| = 2−m, J ∈ D, J1 ⊂ J , |J | = |J2|,
J = [k2−m, (k + 1)2−m], J2 = [k′2−m, (k′ + 1)2−m]. Then

βJ1,J2
def
= β

(

z(J1), z(J2)
)

= n−m+ 2 log2(|k − k′|+ 1) +O(1).

Furthermore, if T (J1) ∩ T (J2) = ∅, then

min
z1∈T (J1), z2∈T (J2)

β(z, w) = βJ1,J2 +O(1).

Let φ be an increasing subadditive function on (0,+∞) such that
φ(x) = x, 0 < x ≤ 1, φ(x) ≍ log x, x→ ∞.
Let µ =

∑

s≥1 bsδxs
. For every J ∈ D we set λ(J) = P [µ](z(J)).

Harnack’s principle gives us a Lipschitz type estimate

(12) |φ(λ(J1))− φ(λ(J2))| . βJ1,J2.

Now, for every J ∈ D we denote by kJ the integer part of φ(λ(J)), and
choose kJ points zJ,1, . . . , zJ,kJ uniformly distributed in T (J). Let B
be the Blaschke product with zeros in the points zJ,1, . . . , zJ,kJ , J ∈ D.
To check that BSµ has the WEP (and incidentally that B exists) we
need only to verify that for every J ∈ D we have

(13)
∑

I∈D\{J}

2−βJ,Iφ(λ(I)) . max(λ(J), 1).

Fix J ∈ D. Let |J | = 2−n. By (12), we have

∑

I∈D, |I|>|J |

2−βJ,Iφ(λ(I)) .
∑

I∈D, |I|>|J |

2−βJ,I(φ(λ(J)) + βJ,I)

.
∑

0≤k<n

2k
∑

s=1

2k−ns−2(φ(λ(J))+n−k+log s+O(1)) . max(λ(J), 1).

Next, we set µ′ = χ10Jµ, µ
′′ = µ−µ′, and define λ′(I) = P [µ′](z(I)),

λ′′(I) = P [µ′′](z(I)), I ∈ D. To prove (13), we need only to check that
∑

I∈D\{J}, |I|≤|J |

2−βJ,Iφ(λ′(I)) . max(λ′(J), 1),

∑

I∈D\{J}, |I|≤|J |

2−βJ,Iφ(λ′′(I)) . max(λ′′(J), 1).(14)
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We have µ′ =
∑

s∈N ′ bsδxs
, and we set a = max{bs : s ∈ N ′}. (If

µ′ = 0, we just pass to µ′′.) By (4), P [µ′](z(J)) ≍ 2na, and hence,
∑

I∈D\{J}, |I|≤|J |

2−βJ,Iφ(λ′(I)) .
∑

s∈N ′

∑

I∈D\{J}, |I|≤|J |

2−βJ,Iφ(bsP [δxs
](z(I))).

Fix for a moment s ∈ N ′. Without loss of generality, xs = 0, and for
m ≥ n, I = [2π · t2−m, 2π · (t + 1)2−m), I 6= J , we have

βJ,I ≥ n−m+O(1), P [δxs
](z(I)) . 2mt−2.

Hence,
∑

I∈D\{J}, |I|≤|J |

2−βJ,Iφ(λ′(I)) .
∑

s∈N ′

∑

m≥n

∑

t≥1

2n−mφ(bs2
mt−2)

=
∑

s∈N ′

∑

m≥n

∑

t2≤2mbs

2n−mφ(2mbst
−2) +

∑

s∈N ′

∑

m≥n

∑

t2>2mbs

2n−mφ(2mbst
−2)

.
∑

s∈N ′

∑

m≥n

2m/2
√

bs2
n−m(φ(2mbs) + 1)

.
∑

s∈N ′

∑

m≥n

2n−m/2
√

bs max(m+ log bs, 1)

.
∑

s∈N ′

2n/2
√

bs max(n+ log bs, 1)

. 2n/2
√
amax(n + log a, 1) . max(2na, 1) . max(λ′(J), 1).

We have µ′′ =
∑

s∈N ′′ bsδxs
. To prove (14), we need to verify that

(15)
∑

s∈N ′′

∑

I∈D\{J}, |I|≤|J |

2−βJ,Iφ(bsP [δxs
](z(I)))

. 1 +
∑

s∈N ′′

P [bsδxs
](z(J)).

Fix s ∈ N ′′ and choose r = r(s) ≥ 2 such that

2r|J | = dist (xs, J).

Then
∑

I∈D\{J}, |I|≤|J |

2−βJ,Iφ(bsP [δxs
](z(I)))

=
∑

I∈D\{J}, |I|≤|J |,dist (I,J)≤r|J |

2−βJ,Iφ(bsP [δxs
](z(I)))

+
∑

I∈D\{J}, |I|≤|J |,dist (I,J)>r|J |

2−βJ,Iφ(bsP [δxs
](z(I))) = A1 + A2.
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Next, we can assume that J = [0, 2−n) and for I = [2π · t2−m, 2π · (t+
1)2−m), m ≥ n, we have βJ,I = m−n+2 log2(1+t2

n−m)+O(1). Hence,

A1 .
∑

m≥n

∑

t≥1

2n−m(1 + t2n−m)−2φ(bs2
−mr−222n)

.
∑

m≥n

φ(22n−mbsr
−2) . 2nbsr

−2 ≍ P [bsδxs
](z(J)).

Furthermore,

A2 .
∑

m≥n

∑

t≥1

2n−mr−2φ(bs2
mt−2)

=
∑

m≥n

∑

t2≤2mbs

2n−mr−2φ(2mbst
−2) +

∑

m≥n

∑

t2>2mbs

2n−mr−2φ(2mbst
−2)

.
∑

m≥n

2m/2
√

bs2
n−mr−2φ(2mbs) +

∑

m≥n

2n−mr−22mbs2
−m/2b−1/2

s

. 2n/2
√

bsr
−2max(n + log bs, 1) + 2n/2

√

bsr
−2.

If bs ≥ 2−n, then

A2 . 2nbsr
−2 ≍ P [bsδxs

](z(J)).

Thus, to complete the proof, we need only to estimate

H =
∑

s∈N ′′, bs<2−n

2n/2
√

bsr(s)
−2.

By (4),
∑

bs<2−n

√

bs . 2−n/2.

Hence,

H . 1,

and (15) follows. �

5. Porous Sets and Easily Wepable Singular Functions

Proof of Theorem 2. (b) ⇒ (a). Suppose that E is porous and set u =
P [µ]. Set

Gk := {I ∈ D : k2 < u(z(I)) ≤ (k + 1)2}, k ≥ 1.

We claim that there exists a constant C > 0 such that

(16)
∑

k≥1

k
∑

I∈Gk

|I||J |
|1− z(J)z(I)|2

≤ Cu(z(J)), J ∈ D.
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Indeed, by Lemma 2 (c),

∑

k≥1

k
∑

I∈Gk

|I||J |
|1− z(J)z(I)|2

≤
∑

k≥1

∑

I∈D, k2<u(z(I))

|I||J |
|1− z(J)z(I)|2

≤ C
∑

k≥1

u(z(J))

k2
.

Now for each integer k ≥ 1 and each I ∈ Gk we consider the set
Λ(I) consisting of k points, uniformly distributed in T (I). Let Λ :=
∪k≥1 ∪I∈Gk

Λ(I). Taking J = ∂D in (16), we see that Λ is a Blaschke
sequence. Let B be the Blaschke product with the zero set Λ.
Notice that the zeros of B are restricted to the sets T (I) where the

modulus of Sµ is small, so if we prove that BSµ has the WEP, we will
have shown that Sµ is easily wepable.
Furthermore, the zeros of B are more and more densely packed as

k → ∞, i.e. as the modulus of Sµ gets smaller; thus for any ε > 0
there exists η = η(ε) > 0 such that |Sµ(z)| > η whenever ρ(z,Λ) > ε.
Thus, to prove that BSµ has the WEP, we only need to show that
inf{|B(z)| : ρ(z,Λ) > ε} > 0. Fix z such that ρ(z,Λ) > ε and let
J ∈ D be such that z ∈ T (J). Then by Harnack’s inequality,

(17) u(z(J)) ≤ C log η−1.

By (6),

log |B(z)|−1 ≤ C(ε)
∑

λ∈Λ

(1− |λ|2)(1− |z|2)
|1− λ̄z|2

= C(ε)
∞
∑

k=1

∑

I∈Gk

∑

λ∈Λ∩T (I)

(1− |λ|2)(1− |z|2)
|1− λ̄z|2

≤ C(ε)

∞
∑

k=1

k
∑

I∈Gk

|I||J |
|1− z(J)z(I)|2

.

Applying (16) and (17), we conclude that log |B(z)|−1 ≤ C(ε) log η−1.
�

Proof of Theorem 2. (a) ⇒ (b). Assume now that E is not porous. We
can find a sequence of arcs Jn ∈ Dkn, kn → ∞, and a sequence of
numbers Mn → ∞, n → ∞, such that every J ∈ Dkn+Mn

, J ⊂ Jn,
meets E. Passing to a subsequence and using Lemma 5 we obtain
a sequence of arcs Jn ∈ Dkn , kn → ∞, and a sequence of measures
µn such that supp µn ⊂ Jn ∩ E, ‖µn‖ = o(|Jn|), and dist (Jn, Jn′) &
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max(|Jn|, |Jn′|). Furthermore, if sets Λn ⊂ D satisfy the property

P [µn](z(I)) ≥ n =⇒ Λn ∩ T (I) 6= ∅, I ∈ D,
then the corresponding Blaschke products BΛn

satisfy the estimate

|BΛn
(z(Jn))| ≤ exp(−n2).

Let
µ =

∑

n≥1

µn.

To conclude that Sµ is not easily wepable we use the same argument
as in the part (a) ⇒ (b) of the proof of Theorem 3. �

6. Corona type constants

First, we make an easy remark: cn(δ, I) ≥ cn−1(δ, I), thus δn(I) ≥
δn−1(I).
Indeed, suppose that γ < cn−1(δ, I), then there are (f1, . . . , fn−1) =:

f such that δ2 ≤∑n−1
j=1 |fj(λ)|2 ≤ ‖f‖2∞,n ≤ 1, and that

γ < inf{‖g‖∞,n−1 : ∃h ∈ H∞ :

n−1
∑

j=1

gjfj + hI ≡ 1}.

Given f̃ := (f1, . . . , fn−1, 0), for every g ∈ (H∞)n we obtain that
∑n

j=1 gjfj =
∑n−1

j=1 gjfj, so that χI(f̃) ≥ γ. Since f̃ fulfils the con-

dition to be a candidate in the supremum, we obtain that cn(δ, I) ≥ γ,
q.e.d.

Lemma 6. For any n, δn(I) ≤ δ̃(I).

Proof. Pick any number ε0 > δ̃(I), then choose ε1 such that ε0 > ε1 >

δ̃(I). Suppose that f := (f1, . . . , fn) ∈ (H∞)n satisfies the estimates
ε20 ≤ infk

∑n
λ∈Z(I) |fj(λ)|2, ‖f‖∞,n ≤ 1. Take z ∈ D such that for

some λ ∈ Z(I) we have ρ(z, λ) < ε1. Then, applying the Schwarz-Pick
Lemma to the function ϕ := f · v̄, where v is a unit vector in Cn parallel
to f(λ), we see that

(

n
∑

j=1

|fj(z)|2
)1/2

≥ |ϕ(z)| ≥ ε0 − ε1
1− ε0ε1

=: ε2.

On the other hand, suppose that ρ(z, Z(I)) ≥ ε1, then |I(z)| ≥
ηI(ε1) > 0. Finally,

inf
z∈D

(

n
∑

j=1

|fj(z)|2 + |I(z)|2
)

≥ min(ε22, ηI(ε1)
2).
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By Carleson’s Corona Theorem, we can find g ∈ (H∞)n, h ∈ H∞

with ‖g‖∞,n ≤ C(ε2, ηI(ε1)) such that
∑n

j=1 gjfj + hI ≡ 1, therefore

cn(ε0, I) <∞. Since this holds for any ε0 > δ̃(I), we are done. �

The following will end the proof of Proposition 1.

Lemma 7. δ1(I) ≥ δ̃(I).

Proof. Let ε0 < δ̃(I). We want to prove that c1(ε0, I) = ∞. Pick

ε1 such that ε0 < ε1 < δ̃(I). Then there exists an infinite sequence
(ζn)n ⊂ D such that ρ(ζn, Z(I)) ≥ ε1 and |I(ζn)| → 0.
Choose a subsequence (ξn) of this sequence, with

1− inf
k

∏

j:j 6=k

ρ(ξj, ξk)

so small that the Blaschke product B with zeros (ξn) satisfies the prop-
erty |B(z)| > ε0 if ρ(z, Z(B)) > ε1 (see, for instance [6, p. 395]). Then
for any λ ∈ Z(I) we have |B(λ)| ≥ ε0. On the other hand, for any
g, h ∈ H∞,

g(ξn)B(ξn) + h(ξn)I(ξn) = h(ξn)I(ξn) → 0, n→ ∞.

This proves that gf + hI 6≡ 1. �

Proof of Proposition 2. The argument is anologous to that in the proof
of Lemma 7. Take a strictly increasing function ψ : (0, 1) → (0, 1) such
that ψ · (φ+1) ≤ 1. Using the above mentioned result from [2, p. 1199]
we find a Blaschke product B satisfying the WEP and such that for
every δ ∈ (0, 1) there exists zδ ∈ D satisfying

ρ(zδ, Z(B)) = δ, |B(zδ)| ≤ ψ(δ).

Denote bδ(z) = (z − zδ)/(1 − z̄δz). We have minZ(B) |bδ| = δ. If
g, h ∈ H∞, gbδ + hB ≡ 1, then

‖h‖∞ ≥ 1 + φ(δ),

and hence,

c1(δ, B) ≥ inf
gbδ+hB≡1

‖g‖∞ ≥ φ(δ), δ ∈ (0, 1).

�

References

[1] Aleksandrov, A. B.; Anderson, J. M.; Nicolau, A. Inner functions,

Bloch spaces and symmetric measures, Proc. London Math. Soc. (3) 79 (1999)
318–352.

[2] Borichev, A. Generalized Carleson–Newman inner functions, Math. Z., 275
(2013) 1197–1206.



WEPABLE INNER FUNCTIONS 25

[3] Carleson, L. Sets of uniqueness for functions regular in the unit circle, Acta
Math., 87 (1952) 325–345.

[4] El Fallah, O.; Kellay, K.; Ransford, T. Cyclicity in the Dirichlet space,
Ark. Mat., 44 (2006) 61–86.

[5] Dyn’kin, E. M. Free interpolation sets for Hölder classes, Mat. Sb., 109
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