IV.l. Proof of existence in a general case. IV.2. An alternative construction when the obstacle cp is constant. V. Proof of Uniqueness: Infinite String. V.J. Results of trace. V.2. Proof of uniqueness. VI. The Finite String with Fixed Ends. VI.l. Existence. VI.2. Uniqueness. Appendix. A. 1. Elementary results about integration by substitution. A.2. The set t =--= a(x) in characteristic coordinates.

It is therefore natural to precribe the following conditions:

Ou~O in the sense of distributions in IR X IR1 = ~ X (0, oo ), (0.5) the support of Du is contained in the "set of contact," the set where u(x, t) = <p(x).

(0.6)

In this paper, we prescribe <p" ~ 0.

(0.7)

This convexity condition on the function <p expresses the fact that the n1aterial obstacle {(x, z)jz ~ cp(x)} is concave. Condition (0. 7) ensures that there will not be "too many" reflections on the obstacle, which would cause the method described hereafter to fail.

We need information on the nature of the reflection on the obstacle and we choose to impose that energy be conserved:; we shall, in fact, need a local energy conservation condition, which we will write as

~ (-2 ou ~) + ~ (lou 1 2 + lou 1 2 ) = 0
ox ox ot at ox at .

(0.8) in the sense of distributions in The aim of this paper is to prove that, if u 0 is in Hfoc( IR) and u 1 is in Lioc( ~), then there exists a unique function u in L~c(~+; Htoc(~)) n Wf~~(IR+; Lioc(IR))

with IR f• = [0, + oo) which satisfies conditions (0.1 )-(0.6) and (0.8). We prove an analogous result in the case of a finite vibrating string, with fixed ends.

Some results of continuity with respect to the data, of regularity, and the convergence of a numerical scheme are shown in the paper of A. Bamberger, and the author [START_REF] Bamberger | Etude d'un probleme hyperbolique avec contrainte unilaterale[END_REF].

Before Amerio and Prouse, who proved the first result on the vibrating string with obstacle in [START_REF] Amerio | Study of the motion of a string vibrating against an obstacle[END_REF], it seems that nobody had seriously progressed toward the solution of this problem. In the case with loss of energy, Citrini has given several results in [START_REF] Crtrini | Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un ostacolo[END_REF][START_REF] Citrini | Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un ostacolo[END_REF], along the line of Amerio and Prouse; the point obstacle has been studied by Amerio [1, 2], Citrini [START_REF] Crtrini | Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un ostacolo[END_REF], and the author [START_REF] Schatzman | Un probleme hyperbolique du 2eme ordre avec contrainte unilaterale: La corde vibrante avec obstacle ponctuel[END_REF].

The plan is the following: In what follows, we shall denote by u(x, t) the transverse displacement from its equilibrium position of the point of abscissa x of the string at the instant t, cp the obstacle, u 0 the initial position of the string, u 1 the initial velocity of the string.

We make the following hypotheses:

" > 0 where Lioc(IR) is the well-known space of locally square-integrable functions; u 0 (x) ~ g>(x) Yx,

(

(1.4)

(this makes sense because u 0 and cp are continuous by hypotheses (I. I) and (1.2)); almost everywhere on the set {xju 0 (x) = cp(x)}.

(1.5)

In the case of a finite string with fixed ends, we replace (I. J) by and <p(O) < 0, g1(L) < 0,

(1. [START_REF] Crtrini | Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un ostacolo[END_REF] and (1.2), (1.3) by Uo E Ho'(O,L) = lv EL 2 (0,L);;; EL"(O,L), v(O) = v(L) = oj ' (1. 7) Ut EL 2 (0,L). (I.8)

We shall prove the following results :

THEOREM IV.l (Infinite String). Under hypotheses (1.1 )-(!.5), there exists a unique function u such that u E Loo (iR+• 1! 1 (IR)) n WL<XJ(iR+• L 2 (IR)) loc ' loc loc ' loc ' u(x, 0) = u 0 (x) ou Bt (x, 0) = u 1 (x) u(x, t) ~ tp(x)

Ou~O 'Vx, almost everywhere,

V(x, t) E iR X !R_+,
in the sense of distributions in IR X IR; , supp D u C {(x, t) fu(x, t) = tp(x)}, ~ (-2 ou ~) + ~ (lou 12 lou 1 2 ) = 0 ox ox ot 8t ot + ox in the sense of distributions in ~ X ~; .

(1.9)

(1.1 0)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15) THEOREM V.I (Finite String with fixed Ends). Under hypotheses (1.4)-(1.8), there • exists a unique function u such that

u E L <XJ (iR+• H 1 (0 L)) (\ WLCXJ(!R+• L 2 (0 L)) loc ' o ' loc ' '
(1.16)

and u satisfies conditions (1.1 0)-(1.15) with the relevant modifications on the domain.

For simplicity, we shall denote problem (1.9)-(I. 1 5) by the symbol P oo , and problem (1.10)-(1.16) by the symbol Pr.

The functional spaceL~c(IR+ ; Hfoc(IR)) n Wt 0 ~(~+;Lioc(IR))is defined as the set of real functions v on IR X IR+ such that, for any finite positive L and T e~~,~p

(( [1 u(x. t)l 2 + 1 :: (x. t) 1• + 1 !~ (x. t) n dt) < + oo. (1.17)
The functional space L~c(IR+ ; H 0 1 (0, L)) n Wf 0 ~(R+ ; L 2 (0, L)) is defined to be the set of real functions v on [0, L] X R + such that, for all finite positive T e~~,~~p (( [1 u(x, t)l 2 + 1 : :

(x, t) 1• + 1 a; (x. t) n dt) < + oo and (1.18) u(O, t) = u(L, t) = 0 'tit ~ 0.
It will be shown in the course of the paper that condition (1.12) implies that

(1.1 1 ) has a meaning.

I.2. Justification of the Mathematical Model

Conditions (I. I 0) to (1.12) are quite natural. Condition (1.14) implies that, when the string does not touch the obstacle, it satisfies the wave equation.

If at a time t and a point x, the string touches the obstacle with a nonzero velocity, there must necessarily be a discontinuity in the time derivative. Hence, generally, Du cannot be a function. As the string must leave the obstacle after the shock, Ou must be positive, i.e., (1.13).

Condition (1. 1 5) expresses that the divergence of the vector field (1.19)

.

IS zero.

The first component of this vector field is an energy flux density; it is similar to the Poynting vector which is well known in electromagnetism; see, for example, Landau and Lifschitz [I 1, p. 98].

The second component of Su is but a total energy density: kinetic plus poten- tial energy. Condition (I.l5) is satisfied on any open set where D u is null: to convince oneself it is enough to multiply Du by oufot, and rewrite the expression in I divergence form. This classical manipulation is done in Courant and Hilbert [9, p. 

660].

It is not enough-for example, in the case of the finite string with fixed ends-to impose an integral condition of the type ( [\ ~ (x, t) 1 2 + I ~= (x , t) n dx = r (I ~: ,. + I u, 1 2 ) dx almost everywhere in t.

(1.20)

Condition (1.20) is not local, and does not ensure that the velocity is reversed everywhere when a shock happens.

Condition (1.15) expresses the conservation of energy across any curve, and especially the discontinuity curves of oujox and oufot. Proposition V.3 lays down precise! y this property.

Idea of the Proof of Existence

Role of the concavity hypothesis. Let us first consider the "free solution'' w, or solution of the problem without obstacle, with the initial data u 0 , u 1 of the problem with obstacle:

Dw = 0, w(x, 0) = u 0 (x), 8w 7ft (x, 0) = u 1 (x).
(1.21)

It is well known that there exists a unique w in the functional class L~0(1R+; Hfoc(IR)} 11 W{~~(IR+;Lroc(IR)) which satisfies (1.21). Such a w is a continuous function.

Let us now consider the set E:

E = {(x, t) E IR X IR+jw(x, t) < <p(x)}.
As w is continuous, E is unambiguously defined. Define the domain of influence to be the union, I, of all forward wave-cones with vortex in E. I is hatched in Of course, E is included in I. By definition

w(x, t) ~ <p(x) if (x, t) f# I.
We can easily see that if w(x, t) > <p(x) for all (x, t) in a backward cone, then the solution u must be equal to w in that cone.

We take u to be equal to w in all the complement of I, and we must now extend u across the boundary of I.

The boundary of I, called line of influence, is the graph t = r(x) of a Lipschitzcontinuous function r:

I r( X) -r(y) I ~ I X -Y I Vx, yE IR.
Section 11 is devoted to studying the line of influence, and proving the following properties:

w(x, T(x)) = <p(x) if I T'(x)l < 1, if w(x, r(x)) = <p(x).
In Section Ill, we consider the following problem:

V E W 1 • 00 (~+ • L2 (!R)) n L 00 (~+ -fll (!R))• loc ' Ioc loc ' loc ' Ov! {(x,t) / t;ea(x)} := 0, v(x, 0) = v 0 (x), ov ot (x, 0) = v 1 (x), (1.22) o+v o-v
Tt (x, a(x)) = -Tt (x, a(x)) a.e. on {x/l a'(x)l < 1 and a(x) > 0}.

Here a is a given nonnegative Lipschitz-continuous function, with Lipschitz constant 1, and v 0 , v 1 are given, respectively, in Hfoc(IR) and Lioc(IR).

We can prove that (I.22) possesses a unique solution v given explicitly in terms of a and w, the free solution with data v 0 and v 1 by

V = W + tf * fL( W ),
where <f is the elementary solution of the wave equation, and p.( w) is a measure given by

<~L(w), t/1) = -2 r (1 -r'(x) 2 ) ~w (x, r(x)) tfo(x, r(x)) dx, J cu t "T(x) > O} ut
To complete the proof of existence, it remains to check that conditions (1.12) and (1.13) are satisfied by u, solution of (1.22) with (]' = r, u 0 = v 0 and u 1 = v 1 • The latter condition is easily verified, but to prove the former, we rely heavily on hypothesis (1.1 ). We can infer indeed from (I. I) that, once the string has touched the obstacle, it does not touch it any more. From the similar hypothesis (1.6), we can deduce that once the finite string has touched the obstacle, it does not touch it again after a finite time, depending only on the geometry of the obstacle and on the initial total energy; thus we can iterate easily the above procedure and obtain a solution at a finite time after a finite number of steps.

If hypothesis (I.l) were left out, let us see what could happen: Let u 0 , u 1 , and q> be given by Then the free solution w is

u 0 (x) = q>(x) = -x 2 , u 1 (x) = 0. w(x, t) = -x"' -tZ so that E = I = 1R X fR+ and -r = 0. The solution v of (1.22) satisfies Ov = 0 if t > 0, v(x, 0) = v 0 (x) = -x2, ov ot (x, 0) = vl(x) = 0
and it is readily computed:

v(x, t) = w(x, t) = -x 2 -t 2 •
We see that condition (1.12) cannot be satisfied for any x and any positive tl Of course if the initial were nowhere zero, we could build a solution of (I.22) which would be positive in a ne~ghborhood of !R X {0}, and define a new line of influence, and perhaps do the same again a certain number of times. But in general nothing guarantees that there will be only a finite number of influence lines in a finite time. The lines of influence could accumulate, and a simple argument shows that in the limit, the velocity would be zero on the limit curve, or more precisely, on the noncharacteristic parts of the limit curve where the obstacle is convex. So we need a more powerful device-which is not yet known -to prove an existence theorem without hypothesis (I.l ).

Finally, the reader should note that the existence proof given here is not at all variational. Of course, conditions (I.12) to (1.14) "look variational" but it is definitely difficult to include condition (1.15) in an efficient variational formulation.

Comparison with the Results of Amerio and Prouse

In their first paper [START_REF] Amerio | Study of the motion of a string vibrating against an obstacle[END_REF], Amerio and Prouse constructed a solution taking a rather unusual functional class of initial data. Lately, they could relax their hypothesis, in a still unpublished paper [START_REF] Amerio | [END_REF]. They consider a constant obstacle ( g;' = 0), and they build a weak solution step by step, following the characteristics, and extending functions across the lines of influence by means of convenient formulas. They do not define a functional class in which they seek a solution of a partial differential problem, in order to have a genuine theorem of uniqueness. The fundamental idea of line of influence originated from Amerio and Prouse's paper [START_REF] Amerio | Study of the motion of a string vibrating against an obstacle[END_REF], and the present work uses this idea to a large extent.

Explicit Computation of Examples

EXAMPLE I. Infinite String. The simplest example one can devise is the following one:

Then u 0 (x) = c > 0, u 1 (x) = -1, g;(x) = 0. w(x, t) = c -t, E=l=~+x[c,+oo]
and the solution of problem P 00 is given by

u(x, t) = c-t u(x, t) = t -c if if tE [0, c], t ;); c.
EXAMPLE 2. Infinite String. This example shows how a wave "coming from minus infinity'' is reflected against a plane, oblique obstacle. Let us set

u 0 (x) = X if x~O 0 if X< 0, u 1 (x) = -1 if x;)=O 0 if X< 0, <p(x) = ax with a E (0, 1).
Then the free solution is given by

w(x, t) = (x -t)+ = sup(O, x -t).
The set E is defined by

E = {(x, t)j(x -t)+ < ax} = {(x, t)jx ~ 0 and t ~ x(I -a)}
and the set I is

I= {(x, t)ft ~ max(-x, (I -a) x)}.
Then the solution of problem P oo is given by

u(x, t) = (x-t)+ u( x, t) = (2a -1) x + t u(x, t) = a(x + t) I if if if t ~ max( -x, (1 -a) x), (1 -a) x ~ t ~ x, t ~I X'• X FIG. 2.
The sets E and I of Example 2. 

u 0 (x) = 0, U 1 (x) = -1T COS 1TX, cp(x) = -!,
we can compute e~plicitly the solution of Pr for any time t.

The initial data correspond to the free solution w(x, t) = -sin 1rt sin 1TX, so that E = {(x, t)/-sin 1Tl sin 1TX < -!} and the (first) line:, of influence is given by (see Fig. 4).

r(x) = -~--x r(x) ~ (l/7T) arc sin(l/(2 sin 1rx)) r(x) = -l + x if if if 0 ~X~ t 1
In the set where t ~ T( x }, u = w; the velocity is reversed in those points where

t = r(x)
and Therefore, in the curvilinear triangle

T(x) ~ t ~ ! -I x -! I we have u = -1-w. I 1 ._ ____ .... ----: -•• 6 ' 1 : l __ _ Ll_ 0 1 1 6 4 .. . .1. --. •••-• _____ ___ I _ -+-----t-•------t>- 1 3 5 l X 2 4 6
Fie . 4. The sets E and I of Example 3 .

.

---•• / / -1 -.3L' IL--n;x: Si?t.-11..t ------. . .. .. --~ Si.,!\-U s[,~ n.t -h--• 0 ... -------1~-x-•-C> FIG. 5.
Values of function u of Example 3 in the different regions of the x, t plane. Next, we compute u as a free solution of the wave equation, with data on the characteristic segments

t = !-!x-ll t = li-xl if if I X -ll < !, l X -lJ . . . . . . . . . . . ~ 2 
:;::::-4! as long as there is no new influence of the obstacle. The value of u is given, according to the regions, in Fig. 5.

There is a new influence of the obstable beyond t == t• More precisely, we shall have the influence line:

7" 1 (x) = 2 -T(x) = 2-x =I+x if if if O~x ~t i~x ~l.
We can see that here, the solution is periodic in time, with period 3, and moreover u(2 -t) = u(t).

Figures 6 and7 show the evolution of u for t comprised between 0 and 1, with a time step of 1/12. The computations were carried out explicitly using Fig. 5.

Jl. THE LINE OF INFLUENCE AND ITS PROPERTIES

II.l. Definition and First Properties of the Domain of Influence and of the Line of Influence

Let us recall that the backward cone (or cone of dependence) of a point (x, t) is the set

r-;.t = {(x', t') ~ IR X ~+;o ~ t' ~ t -l X -x' I} (11.1)
and that the forward cone (or c. one of influence) of a point (x, t) is the set

r;,t = {(x', t') E IR X !R+Jt' ~ t + l X -x' )}. (II.2)
A fundamental result of the. theory of hyperbolic equations is the following; Let v be a solution of the wave equation

Ov = 0, v(x, 0) = v 0 (x), ov ~ (x, 0) = v 1 (x). ut •
If v 0 and v 1 have their support in C, then the support of v is included in u r-:.o.

xec Let us define

E = {(x, t) E IR X !R+fw(x, t) < cp(x)}. (11.3) One must not mistake E for the set {(x, t) E lR X JR+ jzv(x, t) ~ cp(x)} =I= E.
We shall suppose that E is not empty; if it were, then the function w would be a solution of Pro and the existence problem would be solved.

We now proceed to define the domain of influence and the line of influence.

DEFINITION II.l. The domain of influence of the obstacle cp with respect to w, for t nonnegative is the set

1 = U r:.t. (11.4) (x,t)EE DEFINITION 1!.2.
The line of influence of the obstacle g; with respect to w, for t nonnegative, or more simply, the line of influence, is the boundary of the set I.

The reader is referred to Fig. 8, to visualize the sets I, E, and the line of influence.

/ ~-------"--+---------••••••••• • ••• • ••-••--•••x:-!>
Frc. 8. The sets r:,t T ;:t, E, and I; the line and the domain of influence.

The names "domain in influence" and "line of influence" are derived from the fact that outside the domain of influence, the obstacle does not alter the problem, and inside the domain of influence it does. These assertions will be a result of the existence and uniqueness theorem.

The boundary of I has the following properties. 

I= {(x, t) E !R X ~+jt ~ r(x)}
and therefore, I is closed.

Proof. Define on ~ a function r by r(x) = inf{t' + [ x-x' 1/(x', t') E E}. (11.5) Obviously if (x, t) is in J, then t ~ r(x).
Conversely, let t be greater than or equal to r(x). Then, for any positive E, there exists (xE, t,J in E such that

t ~ t" + I X -XE I -€ (11.6)
and therefore

I x" I + t,. ~ t + I x I + €.
Extract from the bounded sequence (xe, t")" a convergent subsequence still denoted by ( x" , t")" . As E is closed, we shall have and using (11.6) (11.7) and that

t ~ 1 0 + [ x -x 0 I . This shows that r(x) = min{t' + I x-x' lf(x', t') E E}
I= {(x, t)/t ~ r(x)}.
Let us show now that r is Lipschitz-continuous, with Lipschitz constant 1. Given x, there exists (x 0 , t 0 ) in E such that

r( x) = t 0 + I x -x 0 I . (11.8)
On the other hand, for any x, the definition of r implies that -r( x) ~ to + I X -Xo I . (11.9) We deduce from (11.8) and (11.9)

r(.x) -T( x) ~ t 0 + I x -x 0 I -t 0 -I x -X 0 I ~ I x -x I .
By exchanging the roles of x and x, we obtain proposition 11.4.

I

II.2. Study of the Values of the Free Solution and of Its Derivatives on the Line of Influence

LEMMA II. 5. The following implication holds: (11.10) Proof (by contradiction). Suppose I -r'(x 0 )[ < 1 and I.e., By continuity of w and cp, there exists a positive number r, such that

I -r'(x)l < I =>-w(x, r(x)) = cp(x).
I x-x 0 1 2 + I t --r(x 0 )[ 2 ~ r 2 => (x, t) ~E.
In particular, we shall have r

I x -x 0 I ~ 2112 => (x, T(x)) Ef= E.

(II.ll)

There exists (x 1 , t') in E, by virtue of (11.7) such that

T( x 0 ) = t' + I x' -x 0 I
and, thanks to (!1.11 ),

x 0 #-x'. Suppose, for instance, x' > x 0 . Then, if x 0 < x < x 0 + rf2 1 1 2 , T(x) = ( T(x) -T(x 0 )) + -r(x 0 ) = T'(x 0 ) (x -x 0 ) + o(x -x 0 ) + t' + x' -x 0 = t' + x' -x + (x -x 0 ) (1 + T'(x 0 )) + o(x -x 0 ) ?;:: -r(x') + x' -x + (x -x 0 ) (1 + T'(x 0 )) + o(x -x 0 ).
We deduce from this last inequality that, for an x near enough to x 0 ,

1(x) > 1(x') + x' -x (II. I 2)
by the hypothesis I r'(x 0 )l < 1.

On the other hand, the Lipschitz constant of r is equal to I, which contradicts (11.12).

1

Our knowledge of the influence line is improved by the following result. (II.l4)

(II.l5) (II.l6)
Adding inequalities (11.15) and (II.16), and comparing the result to (II.I4), we obtain easily

1(X) -X = T(a) -a = r(b) -b,
i.e., relation (11. J 3).

Suppose next that (a, T(a)) and (b, 1(b)) do not both lie on one characteristic segment, and set

-T(x) = min(1(a) + x-a, r(b) + b-x). (I I. I 7) Clearly, on [a, b], we must have r(x) ~ r(x).
Suppose there exists x 0 E (a, b) such that (11.18) Therefore, by (II.7), there exists (x 1 , t 1 ) in E such that (II.I9)

As the Lipschitz constant ofT is 1, the following inequality holds: Hence (11.20) and, by definition of E (11.21)

The number x 1 cannot be equal to a or b. Suppose, for example, that x 1 ~ x 0 • Then, write I.e., which implies

T(a) -(x 1 -a) ~ r(x 1 ) = T(x 0 ) + x 1 -x 0 < f(x 0 ) + x 1 -x 0 ~ T( a) + x 0 -a + x 1 -x 0 = T( a) + x 1 -a, x 1 -a > -I x 1 -a I ,
x 1 >a.

We could show in a similar way that

x 1 <h.

Relation (II. 21) contradicts the hypothesis w(x, ' T' (x)) > <p(x), therefore relation (11.18) cannot be fulfilled.

I

Lemma II.6 shows that on a connected component of U, the line of influence is made either of a characteristic segment (of slope + 1 or -1) or of a characteris- tic segment of slope + 1, followed by a characteristic segment of slope -1.

We introduce now the characteristic coordinates whence In this section, we study a linear problem, whose solution will be a "candidate" for a solution of the nonlinear problem P oo • THEOREM III.l. Let a be a nonnegative Lipschitz-continuous function with Lipschitz constant 1 , and let v 0 be in H[ 00 ( IR), v 1 in L~0 0 ( IR). Then there exists a unique function u such that

-x + t 1]= 21/ 2
V E wl.oo(~+• L 2 (IR)) n L 00 (JR+• H 1 (~)) loe ' loc loc ' loc ' Ov \{(x.t)/t"'a(x).t>O} = 0 (in the sense of distributions), v(x, 0) = v 0 (x), av at (x, 0) = vl(x), o+v 8-v at (x, a(x)) = -8t (x, a(x))
a.e. on {xfa(x) > 0 and I a'(x)l < 1}.

(III.l)

(111.2) (111.3) (III.4) (111.5)
Condition (III.l) does not imply that Conditions (111.4) and (111.5) make sense. Thus, the first stage is to show (Lemma 111.2) that, with the help of (111.2), Conditions (111.4) and (111.5) do make sense.

Next we shall suppose that there exists a solution v of (Ill. I) to (Ill. 5), and we shall compute Ov in the open set IR X IRi . We shall find an explicit formula for ~-t( w) = Ov in terms of a and w, the free solution of the wave equation with initial data v 0 and v 1 (Proposition 111.3).

Then, it will only remain to show that w + C * ~-t(w) is a solution of (III.l)-(III.5), for any a, v 0 , and v 1 ; moreover w + ~ * J.L( w) fulfills condition (1.15) (Proposition 111.6). Here C is the elementary solution of the wave equation.

Computation of Ov in Terms of w and a

LEMMA 111.2. Let v satisfy conditions (Ill. I) and (111.2). Then (8vfot) (x, 0) is defined almost everywhere on IR, and (o+vfot) (x, a(x)) and (8-vfot) (x, o{x))

are defined almost everywhere on the set {xfa(x) > 0 and I a'(x)l < 1}.

Proof. Let V be a connected component of {(x, t) jt > 0, t =1= a(x)}. On any rectangle R included in V, with characteristic sides, and vertices (x + h, t + k), (x -1k, x + h) (x -h, t -k), and (x -k, x -h), a solution v of the wave equation is of the form v(x, t) = f(x + t) + g(x-t); moreover, f E Jll(x + t -I h + k I , x + t + I h + k j) and g E H 1 (x -t - I h -k I ' X + t + J h -k 1), by (III.l).

The functions f and g are well defined save for an additive constant.

We can join any points (x, t) and, (x, i) by a continuous arc in V, and this continuous arc can be covered by a finite number of open rectangles Ri with characteristic sides included in V. On each of these rectangles Ri we have

(xi+ t i -l hi+ ki I , xi+ ti + I hi + ki I) n (xi+! + ti+l -I hi+l + k i +l I , xi+ I + t i +l + I hi+l + ki+r I) =F 0 .
Therefore, we can choose the additive constant in such a way that fi = fH 1 on the intersection of these two intervals. Thus, because V is arcwise connected, we can define, save for an additive constant, two functions f and g such that

f E Hloc(inf(x + t j(x, t) E V), sup(x, tf(x, t) E V)), g E Hloc(inf(x -tf(x, t) E V), sup(x, t/(x, t) E V)), v(x, t) = f(x + t) + g(x -t), 'r/(x, t) E V.
More specifically, if V = {(x, t)/t > a(x)}, which is, of course, connected, we know from Corollary A.3, that almost everywhere on {x// a'(x)l < I}, j'(x + a(x)) and g'(x -a(x)) are defined. Then, in such a point 1 . v(x, a(x) + h) -v(x, a(x)) lffi _ . ; _ _..:._.:__ -: ----' ---.;........c_ hfO h = lim f(x + a(x) +h)-f(x + a(x)) + li f(x-a(x)-h) -f(x-a(x)) h~O h hw h exists, and defines the right time-derivative of vat (x, a(x)). We argue similarly for (o-vjot) (x, a(x)) and (ovfot) (x, 0).

I

We can now compute Ov if vis a solution of problem (III.l)-(111.5).

PROPOSITION 111.3. Let v be a solution of (III.l )-(III.5), then Ov is a measure p,( w) defined by <t-t(w), "') = -2 J (1a'(x) 2 ) t/J(x, a(x)) 8

; (x, a(x)) dx. Proof. To avoid notattonal ambiguities we shall write when f is a function of x and t

(III.7) whence -(X+ t -X+ t) f(x, t) = f 2112 ' • 2112 • (111.8)
Let 1/J be an infinitely differentiable test function with compact support in the open half-plane. We shall suppose that this support meets only one component

V of {(x, t)/0 < t < a(x)}. Then <ov, f> = <ov, {i> = <2v~11, ~> = -2<ve, {111>• Let us denote by Y the graph of a in characteristic coordinates ~ + 1] (~-' 1]) 1] E Y(~) ~ 2112 = a 2112 • By Lemma A.3, Y is a decreasing graph.
Y is the function defined on (111.12) from which, after having integrated in TJ and substituting '= (x + a(x))/2 1 1 2 , we obtain

{~/Y(~) is one-valued} with values Y(e) on this set. Let on V, v( X, t) = j (X + t) + g( X -t) v(x, t) = / 1 (x + t) + g 1 (x-t) on {(x, t)/t > a(x)}.
<Dv, f ) = -2 J [f'(x + a(x)) -f~(x + a(x))] if;(x, a(x)) (I + a'(x)) dx.
As u is continuous,

f(x + a(x)) + g(x-a(x)) = / 1 (x + a(x)) + g 1 (x-a(x)),
which we differentiate; according to Corollary A.2,

(1 + a'(x)) f'(x + a(x)) + (1 -a'(x)) g'(x -a(x)) (III.14) =(I + a'(x))f~(x + a(x)) + (1 -a'(x)) g~(x-a(x)) a.e.
On the other hand, (111.5) is written:

f'(x + a(x))-g'(x-a(x)) = -f~(x + a(x)) + g~(x-a(x)), (111.15) 
a.e. on {xjj a'(x)j < I and a(x) > 0}.

By linear combination of (III.l4) and (III.15), we deduce

f ~ ( x + a( X)) = a' (X) f ' (X + a( X)) + ( I -a' (X)) g' ( x -a( X))
a.e. on {xfj a'(x)j < I and a(x) > 0} and from (III.14) (III.16) f~(x + a(x)) = f'(x + a(x)) a.e. on {x/a'(x) = 1 and a(x) > 0}. (III.l7)

Therefore f'(x + a(x))-f~(x + a(x)) = (f'(x + a(x))-g'(x-a(x))) (1 -a'(x)) (111.18)
a.e. on {x/a'(x) > -1 and a(x) > 0}.

Carrying (III.l8) into (III.13), we obtain (111.6).

I III.3. Partial Results of Existence

Let us recall that the elementary solution t! of the wave equation in one space dimension is where the distribution ~-t(w) is defined by (111.6).

t!(x, t) = ~ C(x, t) = 0 if t ~ I X I ,
LEMMA 111.4. Let a be a Lipschitz-continuous function, with Lipschitz constant J, and let v 0 , v 1 be given, respectively, in Htoc(IR) andLroc(IR). Then the linear form ~ H--2 J ifi(x, a(x)) : (x, a(x)) (1a' 2 (x)) dx defined for all"' in !2J(IR X IRt), is a measure. (Here w is the free solution of the wave equation with initial data v 0 , v 1 ).

Proof. It is enough to show that X H-( ow I ot) ( x, a( X)) ( 1 -a' 2 ( X)) is locally integrable. Classically w(x, t) = f(x + t) + g(x-t)
with f and g in Htoc(IR). Therefore

I ~~ (x, a(x)) (1 -a'(x) 2 ) I ~ 2 I f'(x + a(x)) (1 + a'(x))l + 2 I g'(x-a(x)) (1 -a'(x))l
and by Lemma A. I, the functions x f-+ (1 + a'(x)) f'(x + a(x)) and x ~---+ (Ia'(x)) g'(xu(x)) are locally integrable.

I

The convolution of this measure p.(w) with C can be defined thanks to the support condition of Schwartz [13, p. Condition (111.4) is satisfied almost everywhere on {xja(x) > 0}; it is also satisfied almost everywhere on {xja(x) = 0} as will be proved by next lemma.

LEMMA 111.5. Let A be the set {xfa(x) > 0}, and let B be the set of right and left Lebesgue points of the function 

x ~---+ (1 -a' 2 (x)) ~ (x, a(x)) IA(x).
h.!.O • h -lim ) x -ha(h) • 1 (h) Jx I A(x') ~ (x', a(x')) (1 -a' 2 (x')) dx' h.j.O ~ x -a a(h) ut b(h)-X. 1 fb(h} 1 ( ') ow (I ('))(I '2( '))d '~ + h b( h) -X x A X Ot X ' 0' X - U X X )
and by the hypotheses we made, (o+ufot) (x, a(x)) exists, and o;; 

I

Clearly, the complement of the set ' where ( o+vj ot) (x, a(x)) exists is null, so we obtain (III.4) and (111.5).

Let us compute now the derivatives of v in characteristic coordinates, in the sense of distributions.

We can write <fl, «/ J) = -2 1 12 J [we(x, a(x)) + ~71 (x, a(x))] (1 -a' 2 (x)) lA(x) «/J(x, a(x)) dx.

(III.27) By the substitutions we transform (111.27) into

. f _ ----2Y'(~) (~-Y(g)) <fl, «/J) = -2. we(~, Y(t)) t/1(~, Y(~}) • 1 _ Y'(t) lA 2112 dg f _ ---. -2X'('IJ) (X('IJ)-'IJ) -2 w71(X(7J}, 7J) t/J(X(7J), 7J) • 1 _ X'(7J) lA 2112 d'T],
(III.28

)
where Y is defined in (111.10), X= Y-I, Y is the "one-valued part" of Y, and X is the ''one-valued part'' of X. The functions Y and X are defined everywhere except on a qenumerable set.

If X is one-valued at 7J, and Y is one-valued at t, then, the value of vis given 

h( ') = -2X'(71') • 1 (X(71') -7J' ) 7J 1 -X'('r]') A 2 1 1 2 • (111.33)
Let us compute oyfog in the sense of distributions, from formula (111.30)

Interchange the order of integrations in ~ and t:

(III.34) Formula (111.34) proves that we can identify ay --

{(~, TJ)/~ ~ X(TJ)},
0 ~ (g, TJ) = w€(~, Y(g)) g(g) a.e. on (III.35) =0

a.e. on {(~, TJ){g < X(TJ)} .

Similarly oz .

-

{(g, TJ)/g ~ X(TJ)}, ag (~, TJ) = w1)(g, Y(g)) g(~)
a.e. on (III.36) = 0

a.e. on {(g, TJ) /t < X(TJ)}• Now, formulas (111.35) and (111.36) allow us to compute ovfo~, using the fact that ow;ag does not depend on T):

~ = Wf(g, Y(g)) (I -g(~)) -w1)(g, Y(~)) g(t)
a. e. on {(t, ' YJ)fg ~ X(TJ)},

= wf(g, Y(g))
a.e. on {(g, ' YJ)/ g < X('Y))}.

(III.37) The goal of this section is to prove that the divergence of S;; (and therefore of Sv) is zero, and from that, to infer property (Ill. I).

PROPOSITION III.6. Let v be defined by (111.20). Then -I we(g, Y(g)) (1 -g(g)) -w 71 (g, Y(g)) g(g}l 2 ] ag.

V • Sv = 0 in the
In the same fashion, from formula (111.38), we get

f I av 1 2 of;_ dg d BYJ a~ 1J = f f(X(?J), YJ) [w7l(X(1]), 77)12
(III.43) -1 -u\~(X(?J), YJ) h(TJ) + w 71 (X(?J), .,) (1 -h(.,)}l 2 ] d"l.

Add (III.42) and (III.43), and go back to the x variable by the substitutions Then

g = x + u(x) 21/2 7] = -x + a(x) tn tn 2112 J [J ~~ r ~ + 1 ~:r ~ 1 df d~ (III.42), (III.43). = JA z/;(x, a(x)) {[I We / 2 -/ w~a' -w 11 (1 -a')l 2 ]
(1 + a')

+ [I W 11 ! 2 -/ wE(I + a') + W 11 a' 1 2 ]
(1 -a')} dx and an elementary computation proves (111.40).

I (111.44)

End of the Proof of Theorem (III.l ). It remains only to prove (III.I ). For almost all t 0 in ~R+,

mes{xfa(x) = t 0 } = 0. (III.45) Let D be the set D = {(x, t)/0 < t ~ min(A + t 0 -/ x I , t)},
where t 0 satisfies (111.45), and A is an arbitrary positive number.

Let n be the exterior normal to oD, the boundary of D. Condition (III.45) implies that ovfot and ovfox are defined almost everywhere on IR X {t 0 }; the characteristic derivative ovf at is defined almost everywhere on the g character- istic going through (-At 0 , 0), and likewise, the characteristic derivative ovf O' I' J is defined almost everywhere on the ' fJ characteristic through (A + t 0 , 0). Thanks to (III.40) and therefore f Su 'n = 0 laD L: ( / ~: (x, to) J' + 1 :~ (x, to) J' ) dx < {;~:. (1 v,(xw + 1 : • (x) n dx, which implies (Ill .1 ). 

(IV.6) u(x, 0) = u 0 (x), 8u Vx E IR, (IV.?) ot (x, 0) = ul(x), a.e. 1n IR, (IV.8) u(x, t) ~ cp(x), V(x, t) E IR X IJl+, (IV.9) 
Ou ~O in the sense of distributions in IR X IR! , (IV.lO)

supp Du C {(x, t) fu(x, t) = f~J(x)}, (IV.ll) ~ (-2 ou ~) + ~(I ou 1 2 + IOU 1 2 ) = 0 ox ox ot at ot ox (IV.12)
in the sense of distributions in 1R X Ill! .

Moreover, the solution u is explicitly known:

THEOREM IV.2. Let w be the free solution of the wave equation with initial data u 0 and u 1 Ow =0,

w(x, 0) = u 0 (x), ow Tt (x, 0) = u 1 (x).

Define a measure t-t(w) on IR

X ]0, + oo[ by (~-t(w), if;) = -2 J ~w (x, T(x)) (1 -T ' 2 (x)) if;(x, T(x)) dx, T(x)>o t (IV.13) (IV.14)
On the set {x/'r(x) = 0}, the relation holds (still Lemma 11.51), and condition (IV.5) implies 1 cp'(x) ft(x + T(x)) ~ -2-a.e. on {x/-r(x) = 0}.

(IV.23) Relation (111.17

) implies 0 ) 1/2 I ( ) cp' (X) 0 ~ [ft(x + t) + Ct(x -t ] !t=T<x> = 2 f t(x + -r x) = 2112
a.e. on {x/-r'(x) = 1, -r(x) > 0, w(x, -r(x)) = cp(x)}.

(IV.24)

We can deduce from relations (IV.22)-(IV.24) that az where C is defined as

~ (x, T(x)) ~ 0 a.e. on {x/-r'(x) > -1, w(x, T(x)) = cp(x)},
C = {~/2(~, Y(~)) = 0} (IV.27)
and thus, (IV.28)

Recall the definition of the set V,

U = {xjw(x, -r(x)) > cp(x)}.
Save for a null set, there is the obvious relation between U and C and besides, on U, the function -r is known very precisely.

Let U be the (at most) denumerable union of disjoint open intervals (ai, hi) (i E /), define ci by and define a subset J of I by Denote Then~ by Lemma II.6~ sa, ve for a null set,. the following relation holds:

cc = U (ai , Yi)• (IV.29) iEJ Moreover if (IV.30)
On the other hand, by relation (111.37), az aw -

1 I (g-Y(~)) a{(~, TJ) =a{(~, Y(~))-2112 cp 2112 if ai ~ ~ < Y i , TJ ~ Y (g), (IV.31)
we can now estimate using relations (IV.29)-(IV.31 ).

Let ~0 belong to the interval [ai, rd• Then (IV.32)

As we suppose that X is one-valued in 7J, we never have

Proof. If we suppose that v is smooth, we can write for arbitrary a, bin [a 0 , b 0 ] and c, din [c 0 , d 0 ). Then the conclusion is obvious.

In the general case, regularize v by convolution with a smooth nonnegative function, and let this function tend to a Dirac mass; the conclusion still holds.

I

Let u be a function in W{~~( ~ X !Rt), such that Du is nonnegative. As a result of Lemma V .1 , the functions

(V.l) (V.2)
are defined on the set{(~, 77)/g ~ N~, "fJ > -g}, with N( a null set, and increasing in "fJ• Similarly, the functions ~ r-+ lim ~u (g + h, 7J) = ij+(~, 7J),

1)~0 U'YJ t r-+ lim ~u (~ -h, 71) = ij_(~, 7J) h~O UT) (V.3) (V.4)
are defined on the set {(~, 7])/77 ~ N 17 and g > -71}, with N 71 a null set, and increasing in g.

LetL~oc(X; m dx) be the set of functions on a subset X of 1R which are locally integrable with respect to the measure m(x) dx; here m is a locally integrable function (with respect to the Lebesgue measure).

We have more precise information on P± and q± in the following proposition.

PROPOSITION V.2. Let u be in W{~~( 1R X IRi) and let Du be nonnegative. Let a be an arbitrary Lipschitz-continuous function, with Lipschitz constant 1, and let a be positive on IR.

Then P±(x, a(x)) E Lloc(IR; (1 + a') dx), q±(x, a(x)) E Lloc(IR; (1 -a') dx), (V.5) (V.6)
and, almost everywhere on {xfj a'(x)j < 1},

o+u ( ( )) _ 1 . u(x, a(x) + h) -u(x, a(x)) 8 x , a x -tm h t h~O 1 = 2112 (p+(x, a(x)) + q+(x, a(x))), (V.7) 8-u ( ( )) -l' u(x, a(x) -h) -u(x, a(x)) 8 x, a x -tm h t h-l-0 - I = 2112 (p_(x, a(x)) + q_(x, a(x)).
(V.8) a.e. on 1R X IR; .

0 < t 1 ~ min a(x) ~ max a(x) ~ t 2 [a,b] [a,h]
and

The functions p+ and p_ are increasing in ' r' J, so that (V.9) which proves (V.5). Here Y is the graph of a in characteristic coordinates. Relation (V.6) is proved in the same fashion.

On the other hand, the following equality holds for almost all A in (-rr1in~ a, +oo):

ou 1 [au ou ] 8 t (x, a(x) + A) = 2112 8 ~ (x, a(x) + A) + 07J (x, a(x) + A) • (V.lO)
Let us show that ' lfol ~~ (x, a(x) + .\) = 2 ~1, (P+(x, a(x)) + q+(x, a(x))) (V.ll) in the L{ 0 c(~: (1 -a' 2 ) dx) topology.

Let A =(a+ a(a))/2 1 1 2 , B = (b + a(b))/2 1 1 2 ; we shall estimate p+(x, a(x)) -uE(x, a(x) + A) by a computation in ~, 1' J coordinates. Substitute in the first integral of (V.l2), g + A/2 1 1 2 = ,, which supplies Estimate (V.9) and the Lebesgue dominated convergence theorem imply that expression (V.l3) tends to zero as A decreases to zero.

The same estimate (V.9) allows us to conclude that the second term of (V.l2) converges to zero.

Therefore, we have shown that l.im topology. Thus we get (V.ll).

To conclude, denote k(x, A) = u(x, a(x) + A);

(V.l5)

we have just proved that :~ ELfoc(-mjn a(x), +oo;Lloc(IR;

(1-a' 2

) dx))

(V.16)
and that okjoA has right and left limits at any A. This implies that 1 . k(

•, A + h) -k( •, A) = 1 . ~ (. \ + h) lffi h lffi ':I\ , 1\ ' h+O h+O Ul\
in the Lf 00 (1R; (1a' 2 ) dx) topology, i.e., for A = 0,

1 2112 (P+(x, u(x)) + q+(x, u(x))) _ 1 . u(x, u(x) + h) -u(x, u(x)) _ o+u ( ( )) - lffi h -'=~ X, a X htO ut a.e. on {x E IR/1 a'(x)l < 1}.
This completes the proof of Proposition V.2.

I

The next result accounts for the fact that the derivative (ofox) u(x, a(x) +A) has no jumps across the line t = a(x). PROPOSITION V.3. Let u be in Wf 0 ~(R X Rt) and let Du be nonnegative. Let a be an arbitrary Lipschitz-continuous function, with Lipschitz constant 1, and let a be positive on IR. Then

P+(x, a(x)) (1 + a'(x)) -q+(x, a(x)) (1 -a'(x)) = p_(x, a(x)) (1 + a'(x)) -q_(x, a(x)) (1 -a'(x))
a.e. on {xfl a'(x)l < 1}.

(V.17)

Proof. With notation (V.l5), the following relation holds for almost all A.

~= (' , . \ )

= (1 + u'(•)) ~; (•, u{•) + .\)-{1 -u'{•)) ~ {•, u{•) +A). (V.18)
From (V.15), we can infer that 0 ~2:x ELfoc(-mJn u(x), +oo; .@'(IR)).

Therefore ( ok I ox) (., A) is continuous to P)' ( IR) with the weak topology.

On the other hand, by (V. Similar relations hold when the limit is taken as A increases to zero. The (very weak) continuity of okf ox with respect to ,\ completes the proof. I

We need the weaker assumption that a is only nonnegative; to obtain conclusions analogous to those of Propositions V.2, and V.3, we shall make a stronger assumption on u.

CoROLLARY V.4. Suppose that a is nonnegative and

au ou L(XJ ( +.£ 1 ( )• ot , ox E loc IR , loc IR) ,
let the other assumptions of Proposition V.2 remain.

(V.19)

Then, the functional inclusion of Proposition V.2 on P+ and q+ as well as (V.7) still hold. On the other side, p_(x, a(x)) eLloc({xfa(x) > 0}, (1 + a') dx), q_(x, a(x)) eLloc({x/a(x) > 0}, (1 -a') dx), a-u 1 at (x, a-(x)) = 2112 (p_(x, a(x)) + q_(x, a(x)))

a.e. on {x/1 a'(x)l < 1 and a(x) > 0}, and the conclusion of Proposition V.3 is replaced by p+(x, a(x)

) (I + a'(x)) -q+(x, a(x)) (1 -a'(x)) = p_(x, a(x)) (1 + a'(x)) -q_(x, a(x)) (1 -a'(x)) (V.20)
a.e. on {xfl u'(x)l < 1 and a(x) > 0}~

Proof. Hypothesis (V.I9) implies that the function

t t-+ P+(. -t, t) 1 [a-t,b-t]
which takes values in L 1 (1R) and is increasing, tends to a certain function p+ 0 • I [a.b] when t decreases to zero.

This simple remark allows us to relieve ourselves of the condition t 1 > 0 for estimate (V.9). Then (V.ll) is still true.

Concerning p_ and q_ , one must consider a compact interval [a, b] included in {xfa(x) > 0}, and argue as before.

I V.2. Proof of Uniqueness

Note first that conditions (IV.lO) and (IV.6) allow us to apply Corollary V.4, and to take a trace of oufot on the curve a(x) = 0. Thus, condition (IV.8) makes sense.

With the help of subsection V.l, it is now possible to state how the timederivative of a function satisfying the local energy conservation condition is transformed across a space-like curve. This is the goal of next proposition . a.e. on {x/1 a'(x)l < 1 and a(x) > 0}.

(V.22)

Proof By Lemma V.l, the functions e ~ ! uTI(~, 7J)! 

r = {(x, t) I a~ x ~band t = a(x)},
in terms of the functions P± and q± defined in (V.l)-(V.4). We assume that a(x) is positive on (a, b).

(b+a(l;l))/2 1 1 2 • p(T) = p(f) = 2 1 1 2 f [P+(g, Y(g)) 2 -p_(g, Y(0)2] dg (a+o(a)) /2 1 / 2 (-a+a(a))/2 1 / 2 + I [q+(X(T)), '7)2 -ij_(X(YJ), 7])2] d7j. (-b+a(b))/2112 Substitute ~ = (x + a(x))/2 1 1 2 in the first integral and 7J = (-x + a(x))/2 1 / 2 in the second one. Then b p(F) = J {[p+(x, a(x)) 2 -p_(x, (x))2] (1 + a'(x)) a + [q+(x, a(x)) 2 -q_(x, a(x)) 2 ] (1 -a'(x))} dx. (V.23)
By Corollary V.4, the following relation holds:

(p+(x, a(x)) (1 + a'(x)) -q+(x, a(x)) (1 -a'(x))) 2 -(p_(x, a(x)) (1 + a'(x)) -q_(x, a(x)) (1 -a'(x))) 2 = 0 (V.24)
a.e. on {x/1 a'(x)l < 1 and a(x) > 0}.

Thanks to the identities

2p± 2 (l + a') + 2q± 2 (1 -a') -(P±(I +a')-q±(l -a')) 2 = (P± +. q±)2 (1 -a'2)
we obtain by subtracting the half of (V.24) from (V.23

) b p(T) = ~• J [(p+(x, a(x)) + q+(x, a(x)))2 a -(p_(x, a(x)) + q_(x, a(x)))2] (1 -a' 2 (x)) dx
and by relations (V. 7) and (V.20),

J b (\ o+u \2 j o-u \2) p(F) = (L Tt (x, a(x)) -Tt (x, a(x)) (1 -a'2(x)) dx.
As a and b are arbitrary, we obtain (V.22), if (V.21) is fulfilled.

I

Let u be the solution of P oo defined in (IV.I5), with associated measure 1-L = Du and let v be another solution of P oo , with associated measure v === Ov.

Let F be the support of v, and define a set J, analogous to the set I defined in We may apply Proposition V.5, and obtain o+v ot (x, a(x)) = 0 a. e. on {x/0 < a(x) < T(x) and I a'(x)\ < 1 }. (V.30) On the other hand, if we argue as in Proposition 111.3, we can estimate v \ 1 c by f ( o+v

8-v ) (v ! 1 c, ljJ) = (I -a' 2 (x)) 8t (x, a(x)) -Bt (x, a(x)) if;(x, a(x)) dx.
Using (V.29) and (V.30), we conclude that v ! 1 c = 0, and therefore V n Jc is empty. This contradicts (V.28).

I

Let us now apply relation (V.22) to v on the line t = r(x).

l fJ+v I I aw I Tt (x, T(x)) = Bt (x, T(x))
a.e. on {xjT(x) > 0, \ T'(x)\ < l}.

We may infer from Lemma 11.27 and condition (IV.9) that a+v ow Tt (x, T(x)) = -Tt (x, T(x)) and we obtain a contradiction when we compute v with a formula analogous to (V.31).

o+u = Tt (x, T(x)) a.e. on {x(T(x) > 0 \ T'(x)] < 1}, Moreover, the function v -u satisfies v(x, T(x)) -u(x, T(x)) = 0 on D(v -u) IHx,t)/t>-
Therefore P is empty, and the proof of uniqueness is completed. I

VI. THE FINITE STRING WITH FIXED ENDS

The solution of problem P 00 will enable us to solve problem Pr, and to give existence and uniqueness theorems analogous to Theorem IV.l.

We are given a function ({J such that cp(O) < 0, and initial data in the sense of distributions on (0, L), q;(L) < 0,

U 0 E H 0 1 (0, L), UI E L 2 (0, L ),
with the compatibility conditions u 0 (x) ):: rp(x) u 1 (x) ):: 0

'Vx E [0, L],
a.e. on {x E (0, L]/u 0 (x) = cp(x)}.

Then, the following result holds: It is elementary to check that u 0 , 11 1 , and cp satisfy conditions (IV.l) to (IV.5). Therefore, by Theorem IV.l, problem P oo possesses a unique solution u. Our goal is to show that u, restricted to ]0, L[ X ]0, 0::( solves problem Pr if a is suitably chosen.

Let w be the free solution of the wave equation in all of !R, with periodic data u 0 and u 1 • This function w is classically known to be odd and 2L-periodic.

There exists a positive number Ci. such that or I Lx I < a => w(x, t) -ffl(x) > 0.

(VI.l6) (VI.l9) where E = r (I ~: r + I ul 1") dx.

Let w be the free solution of the wave equation with data u 0 , u 1 • Then, by (VI.16), W = W In TL; 2 ,L; 2 +a = {(x, t)/0 ~ t ::;; L/2 + a:-I Lj2-X I}• (VI.20)

Besides, the influence line of the obstacle cp, with respect to w, satisfies

f'(x) = -1 f'(x) = +1 if if X E (0, a)
and f(x) < x + a, x E [ La:, L + a:] and f(x) < L + ex -x.

To prove this, define the sets E = {(x', t')fw(x', t') < q>(x')} and E' = {(x', t') E E and x' ~a:}. Let v be a solution of (VI. 7)-(VI.13). We shall extend v to !R+ X [0, cx/2] as foilows.

Let u be the solution of problem P oc; with initial data (VI.l4), (VI.I5), and the obstacle f;. Then, using (VI.l6), we can check that v is a solution of P cc• with data u 0 , u 1 , and f;.

The theorem of uniqueness for P oo shows that necessarily v is equal to u in [0, L] X [0, ~J2]. This process can be iterated any number of times to prove uniqueness in [0, L J X !R+.

I

APPENDIX Throughout this appendix, we will denote by a a Lipschitz-continuous function, with Lipschitz constant 1, defined on ~. 

A. I . Elementary Results about Integration by Substitution
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 67 FIG. 6. Evolution of function u of Example 3.

PROPOSITION 11 . 3 .

 113 The line of influence is the graph of a Lipschitz-continuous function r, with Lipschitz constant I,

LEMMA 11 . 6 .

 116 Let U = {xjw(x, r(x)) > <p(x)}, and let (a, b) be any connected component of U. Then r(x) = min(r(a) + xa, r(h) + bx), Vx E [a, b]. (II.I3) Proof. Suppose first that (a, r(a)) and (b, -r(b)) both lie on one characteristic segment. For instance, r(b) -b = r(a) -a. By Proposition 11.4, we know that r(x) -x .:s; T(a) -a, r(b) -b ~ r(x)x, if a~ x ~b.

  elsewhere.We shall study in this section the distributionv = w + C * ~-t(w), (111.19) (111.20)

  170]. According• to Lemma A.5; p.(w) * tff is a continuous function, because the parts of characteristics are null with respect to the measure IL• Obviously, the function v defined by (111.20) satisfies conditions (111.2) and (111.3).

  (x, a(x)) = ~~ (x, a(x)) -[ 1 _ 1 a'(x) + I + l~'(x)l (I -a' 2 (x) 1,.(~).(III.26) Relation (Ill.26). giv~s (111.21) and••(I1I.22).

  by v(~, 77 ) = w(~, TJ)-_y(~, 77 ) -z(~, TJ), (IIL29) where .Y(~, 7J) = J~ we(f, Y(f)) g(f) df ) = I -Y'(f). 1,. ( 2112 ) ,(111.31)z(~, 'TJ) = fn wn(X(1J'), 'TJ') h(1J') d1J'

  TJ)ITJ ~ Y(t)}, OTJ = w 11 (X(TJ), TJ) h(TJ) a.e. on = 0 a. e. on {(t, 'YJ)/7J < Y(~)}; ay -07J = w{(X(TJ), TJ) h(TJ) a.e. on {(~, TJ)ITJ ~ Y(g)}, = 0 a.e. on {(~, TJ)fTJ < Y(t)}; and therefore ~ --OTJ = -wf(X(TJ), TJ) h(TJ) + (I -h(7J)) w 11 (X(7J), TJ) a.e. on {(t, TJ)/TJ ~ Y(~)}, (IIL38) = wn(X(TJ), TJ) a.e. on {(~, TJ)/7J < Y(~)}. 111.4. Energy Condition. End of the Proof of Theorem Ill. I The vector field S v is given by In characteristic coordinates, Sv is transformed into (III.39)
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  IV. PROOF OF EXISTENCE; INFINITE STRING IV.I. Proof of Existence in the General Case Let us recall the hypotheses and the statement we have in the Introduction The function cp represents the obstacle, and in the sense of distributions. The initial data are Uo E Hloc(IR), ui ELroc(IR) with the compatibility conditions u 0 (x) ~ cp(x) u 1 (x) ~ 0 Vx E IR, a.e. on {xfu 0 (x) = cp(x)}.

  l (Infinite String). Under hypotheses (IV.l)-(IV.5), there exists a unique function u such that

(

  IV.25) we know from (IV.l5) that DZ ~ 0, and we can now infer from (IV.25) that a. e. on {(g, TJ)/Y(e) ~ TJ and~ E C}, (IV.26)

.

  fl!-At•'l' I :~ ( ~, y ( ~-2~/2) + 2~/2) -P+(~, Yg)) Id~. A-~/21/2 S (V.l3) As Y is decreasing, and by definition of P+, a.e.

8 8 ~

 8 (x, a(x) + A) -P+(x, a(x)) = 0"-l-0 £ . . . (V.l4)in the Lloc(IR; (I -a') dx) topology; the result is still true in the Lf 0 c(IR;(1a' 2 ) dx) topology, which is weaker. In the same fashion we showthatlim ~u (x, u(x) + A)-q+(x, q(x)) = U AtO O'YJin the Lfoc(IR;(1 + a') dx) topology, and therefore in the Lf 0 c(IR; (1 -a' 2 ) dx)

  14) lim ~~ ( •, a(•) + ,\)p +( •, a(•)) = 0 A~O u~ tn Lloc([R, (1 + a') dx) and analogously lfi Lloc(IR, (1 -a') dx).

. PROPOSITION V. 5 . 2 )J

 52 Let u be in the space Wf~~(~;; Ltoc(IR+)) n L~c(~;; Htoc(R)), such that Du is nonnegative, and let a be a Lipschitz-continuous, nonnegative function, with Lipschitz constant 1. If u satisfies ~ ( _ 2 ou ou ) c ( lou 1 2 + I [}u 1 Tt (x, a(x)) = Tt (x, a(x))

(

  II.4) by I = U r:..t • (V.25) (z,t}EF hence OW Tt (x, a(x)) = 0 a.e. on {x/0 < a(x) < T(x) and I a'(x)l < 1}. (V.29)

  VI.J. Under hypotheses (VI.1 )-(VI.6) there existe a unique function u such that(VI.7) u(x, 0) = u 0 (x) ou ot (x, 0) = ul(x) u(x, t) ? cp(x) Vx E IR, 'VxE ~' \f(x, t) E ~ X !R+, Ou~O in the sense of distributions in ~ X ~R; , Supp Du C {(x, t)ju(x, t) = cp(x)}, ~ ~ (-2 ou ~) ~ ( ot + ot ot + oxin the sense of distrz"butions in iR X IR~ .VI.l. ExistenceExtend the function cp to all of 1R by settingcp(x) = cp(O) + xcp'(O+) cp(x) = cp(L) + (x-L) cp'(L-) if ifExtend the functions u 0 and u 1 to all of IR by setting fori= 0, 1.ui(x) = ui(-x), ui(x + 2L) = ui(x)Define initial data u 0 , z1 1 on IR by u 0 (x) = max(u 0 (x), cp(x)), x) > cp(x), u 0 (x) ~ ffl(x).

  Then f(x) = min{l x-x' I + t'f(x', t') E 2}. (VI.21) Taking as new initial data u(•, a) and ut(•, a), we can solve again a problem Pr in a bounded time interval [ ~, a' + a]. But the number ex' depends only on the energy of the data, and therefore can be taken to be equal to ex. By recurrence problem Pr can be solved on the whole infinite rectangle [0, L J X ~+; relation (VI. 7) holds, because (VI.23) is true almost everywhere on fR~. I VI.2. Uniqueness

  LEMMA A.l. The following equivalence holds:(i) f ELloc((l + a) R, dx), (ii) f o (I+ a) ELfoc(~, (1 +a') dx).Moreover, if one of conditions (i) or (ii) is satisfied, then the identity b b+a(b)J j(x + a(x)) (1 + a'(x)) dx = J f(x) dxa a+a(a) (A.l) £s true for arbitrary real numbers a and b.

  Under the hypothesis that E is nonvoid, M 7 (and therefore M 7 + and M 7 -) is not null (with respect to the Lebesgue measure); this is a result of Theorems IV.2 and III.l below; see the end of subsection IV.l.

				(IL24)
	a 1 (a a) ax = 2 112 8~ -81) ' IlL SoLUTION OF A LINEAR AuxiLIARY PRoBLEM	
	III.l. Statement of the Result, Idea of the Proof		(II.25)
				then the
	following inequality holds:			
	ow a~ (x, r(x)) ~ 2112 tp'(x+)		(II.26)
	(respectively			
	aw	(<p' (x-)) 21 / 2	•	(II.27}
	Proof By hypothesis			
		w(x, r(x)) = cp(x)		(11.29}
	and, by definition of r,			
	w(x + h, r(x) +h) ~ <p(x +h), Vh ~ 0.	(II.22) (11.30}
		g-T}		
		X= 2112 ,		

(II.23) and therefore a 1 (a a )

of = 2 112 ox + ot ' a 1 ( a a ) O'YJ = 2 112 -ox + Tt ' LEMMA I I. 7. Let x be such that w(x, r(x)) = cp(x). If moreover (3wfo~) (x, r(x)) exists (respectively (owfih]) (x, T(x)) exists), OTJ (x, -r(x)) ~ -If (owjot) (x, -r(x)) exists, then ow Tt (x, T(x)) ~ 0.

(II.28)

Subtracting (11.29

) from (II.30) and passing to the limit, (II.26) obtains. The other two inequalities are similarly proved.

I

As a result of Corollary A.2 note that

(11.26) 

holds almost everywhere on MT + = {x/T'(x) > -1 }, (II.27) holds almost everywhere on MT-= {xjT'(x) < 1}, and (11.28) holds almost everywhere on M 7 = {x/1 T'(x)! < 1}.

  Proof We can write formula (111.20) in the form v(x, t) = w(x, t) + f J dp.(w).

					(111.22)
					lx.t
	Suppose t is greater than r(x), and let a(x, t) be the greatest number such that
			a(x, t) -a(a(x, t)) = x -t,
	and let a' be any number such that
			a' -a(a') = x -t.
	Then a'(s) = 1 on (a', a(x, t)) and
	f a(x,t) ,	OW 1 A(x') Tt (x', a(x')) ( 1 -o.7(x') 2 ) dx' = 0.
	v(x; t) = w(x, t)-	f a(x,t) b(x.t)	OW IA(x') T (x', a(x')) (l -a'(x') 2 ) dx. t	(111.23)
	For simplicity, set a(x, a(x) + h) = a(h) and b(x, a(x) + h) = b(h). From the
	hypothesis I a'(x)l < I, we deduce
			lim x -a(h) = h~O h	1 1 -a'(x)'	(111.24)
			lim b( h) -. x = 1 h~O h 1 + a'(x)	.	(111.25)
	Using (111.23), we may write	
	1 . v(x, a(x) + h) -v(x, a(x)) lffi _..;_____;:..._.:...__-=--~_,;..._:....:.... h.j.O h
	= lim w(x, a(x) +h)-w(x, a(x))

Then, if the point xis in B, zf (owfot) (x, a(x)) exists, if a'(x) exists, and if

I a'(x)l < 1, then ( ()+vfot) (x, a(x)) exists. Moreover, if a(x) > 0, then o+v ow . Tt (x, a(x)) = -ot (x, a(x)).

(III.21)

If a(x) = 0, then fJ+v Tt (x, a(x)) = 0. a If, similarly, b(x, t) is the smallest number s~ch that b(x, t) + a(h(~, >t)) = x + .t

then we may write, if t is greater than a(x),

  Proof. The divergence of S v , in the sense of distributions is given by

	sense of distributions.	(111.40)
	Now, using formula (111.37)	
	Integrate by parts in ?J;	
	f I av l2 ot/!_ dg d ag a?J 11	
	= f {l(g, Y(g)) [I we(g, Y(g))l 2	(III.42)

< v . s .r.> _ 21, 2 [(I Bv 1 2 a{l) (I av 1 2 a{;)] v ' 'f --aTJ ' a g + a g ' a 11 •

(111.41) 

  Proof. Let us show, for instance, that P+ and p_ are in L} 00 (!R, (1 + a') dx), and for this purpose, fix two arbitrary numbers a < b. By definition,

	ou .P+(x, t) = p_(x, t) = ag (x, t)	a.e. on 1R X ~R;
	and, in the same way	
	ou q+(x, t) = q_(x, t) = 8 ' YJ (x, t)	
	We can find real numbers t 1 and t 2 such that	

  2 and 7J ~I iiE(~, 7])[ 2 are of bounded variation, respeqtively, for almost every ' rJ and almost every t.

	Therefore the distribution

a ( au ou ) o ( jou \ 2 jou j 2 ) P = ax -2 ax Tt + ot • ox + 8i '

which is written, in characteristic coordinates, is in fact the sum of two measures.

Let us compute the measure by p of the set

  I a'(x)l < 1, we obtain as in the proof of Lemma V.6 that

	cp(x) = v(x, a(x)) >-u((x, a(x)) >-cp(x);
	hence			
	o+v Tt (x, a(x)) = 0	a.e. on {xja(x) > T(x) and I a(x)/' < 1},
					(V.31)
					(V.32)
					(V.33)
					(V.34)
	We deduce from (V.32)-(V.34) that		
	v(x, t)-u(x, t) ~ 0	on	{(x, t)ft > T(x)}.	(V.35)
	Set			
	V= V l{(x.t)/t>T(x)}'	
	P = suppv,		
	and			

r(x}} ):: 0.

J = u r;t = {(x, t)Jt ~ a(x)}.

(:x:,t>eP Suppose P is nonvoid. Then if t is greater than a(x), v(x, t) = u(x, t) + lv( T;,t) > u(x, t). lf

  ~ w(O, t) -cp(O) -I x [ 112 0 ox (x, t) + cp'(x) dx) -I x 11 cp'(O+)! , mtn Evz + (f~ cp'(x)2 dx)112 + I cp'(O+)I Ll/2 '

					2	1 /2
					1
					(VI.l7)
	w(x, t) -cp(x)		
	~ w(L, t)-cp(L)		
	-	( rL low I L-x 1 112 Jo ox (x, t) + cp'(x) dx) -(L-x) I cp'(L-)1, lz 112
					(VI.18)
	which supplies a possible a,
		112 _	•	[	-<p(O)
					-cp(L)

Indeed w(x, t) -cp(x) (f t I ow a: -J Ellz + (f ~cp'(x)2 dx)vz + 1 cp'(L -)I £1 12 '

where x ~ r(x) is the line of influence of the obstacle 9' with respect tow, following Definition 

11.2.

Then the junction u = w + C * tt(w), (IV.l5) with 8 the elementary solution of the wave equation solves problem (IV.6}-(IV.12).

Proof of Theorem IV.2. By Theorem III.l, we know that u given by (IV.15) satisfies conditions (IV.6)-(IV.8) and (IV.ll ). Condition (IV.lO) is seen to be satisfied by Lemma (II. 7) and the explicit expression (IV.I4) and condition (IV.12) results from Proposition 11!. [START_REF] Crtrini | Sull'urto parzialmente elastico o anelastico di una corda vibrante contro un ostacolo[END_REF].

So it remains to check condition (IV.9), for t ~ r(x). Set if X is one-valued in TJ (same notations as in subsection III.2).

With notations (III.ll) and (11!.12), and thanks to Lemma II.5, we have

a.e. on M,. = {x/1 r'(x)l < 1 and -r(x) > 0}.

(IV.19)

Let us differentiate (IV.l9); then by a linear combination with (III.I5) which we write again as

a.e. on M,.

we obtain

Therefore, Lemma Ill. 7 implies a.e. on M ., , a.e. on M., .

a.e. on M ,. .

By the definition of the line of influence 2(X(?J), ?J) ~ 0. Uniqueness will be proved in next chapter.

We can infer from Theorems III.l and IV.2 that if E is nonvoid, then I T'(x)l l T'(x)l is not almost everywhere equal to one. Assume indeed that \ T'(x)l = 1 a.e. on {x/T(x) > 0}.

(IV.35)

Then, w is clearly the unique solution of problem (111.5)-(III.9) as conditions (111.6) and (111.9) are automatically fulfilled. We have proved by Theorem IV.2 that on IR X IR+.

Here, the measure /L(w) is equal to zero; therefore on IR X lfl+, (IV.36)

and E is void.

I

In the same fashion, if u 1 is almost everywhere nonnegative, E is void.

IV.2. An Alternate Construction when the Obstacle cp is Constant

A. Bamberger has the idea of a simpler construction, which is especially convenient when cp is a constant, which can be taken equal to zero.

For this purpose, we can deduce from the results established between (IV.21) and (IV.24) the formulas if ~ ?: X(?J), ~ + Y(e) > 0, Y'(e) <:: 0, and w(~, Y(~)) = 0;

(IV.37)

elsewhere.

If we define almost everywhere a kernel K by (IV.39) Formula (IV.39) can be converted into the still simpler expression, where r -= -inf(r, 0), (IV.40) Formula (IV.40) will be proved, and generalizations and consequences will be given, in a joint work with Bamberger [START_REF] Bamberger | Etude d'un probleme hyperbolique avec contrainte unilaterale[END_REF].

V. PROOF OF UNIQUENESS: INFINITE STRING

The proof of uniqueness relies on several trace results which, I believe, do not appear elsewhere in the literature. The main difficulty is to define cleanly traces of derivatives ux and Ut on a space-like curve, i.e., a curve x ~ r(x) with I -r' loo < 1, when u is a solution of P oo . Once these traces are defined, we can derive from (IV. J 2) how the derivatives are transformed across a discontinuity line. Then, by comparison with the solution built in Section I V, uniqueness is proved. Note that allowing the initial position u 0 to be equal to rp introduces an extra difficulty, as we have to give a meaning to (IV.8), using the other relations.

V .l. Results of Trace

We prove how condition (IV.IO) can be used to define traces. LEMMA V.l. Let il be a function in WI• 1 ([a 0 , b 0 ] X [c 0 , d 0 J), such that Then YJ ~ (Oil( o~) ( ~, YJ) is an -increasing function from ( a 0 , b 0 ] to L 1 ( a 0 , h 0 ) and e~ (oujor;) (t, 17) is an increasing junction from [a 0 , h 0 ] to L 1 (c 0 , d 0 ).

Arguing as in Section II, we can see that

where a is Lipschitz continuous, with Lipschitz constant l. Moreover, if

Let t be greater than a(x). Then, by the definition of the support of a measure v(x, t) = w(x, t) + }v(T;,t) > w(x, t).

As a first stage, we shall show, by contradiction, LEMMA V.6.

Proof. We need to show that

Let V= {(x, t)fv(x, t) > w(x, t)} and suppose that

(V.28)

and in particular V I Vrll(J = 0.

If a(x) is smaller than r(x), and if I a'(x)l is smaller than 1, then relation (V.26) holds, and moreover

If (x', t') is in /t, then by (V1.16) and (VI.20) or t' ~ x' + a:.

. By the assumption that f(x) < x + ex, we see that

and this proves (VL21 ). Relation (VI.22) is similarly proved.

Note that u satisfies the boundary conditions, for t ~ ex. Indeed

then, thanks to (VI.21) and (V1.22),

Then by (VI.20), and since w is odd and 2L-periodic, This classical result is proved for instance by Hewitt and Stromberg [10, 18.24, 18.25, and 20.5].

Applying this result to t/; . I + a,

the implication (i) ~ (ii) obtains, with identity (A.l ).

The inverse of I+ a=~ can be multivalued; in this lies the difficulty of the converse.

The first point to check is that if f o if; is measurable with respect to the measure if/ dx, then f is measurable with respect to dx.

For this purpose, let

Set M is measurable with respect to if/ dx. Therefore, there exists for any positive e and compact K, a compact set K' such that

As the function ~-~ defined almost everywhere is increasing, it is measurable. Let K 1 be any compact set in IR, and E 1 be any positive number. Then, there exists a compact K~ such that is continuous;

Then llb(M) = lM o l{;-I, restricted to the compact set K{ n if;(K'), is continu- ous. Besides, the measure of K 1 n ~(K)i(K~ n f(K')) is majorized by e + e 1 .

Therefore, i{l(M) is measurable. Now the proof of (ii) ::::? (i) is easy by contra- diction: Suppose that f is not locally integrable. Then there exists a sequence of integrable functions fn converging to I almost everywhere on [a + a( a), b + a( h)] such that J I fn(x + a(x))l dx--+-+ oo; a+a(a)

Vn, a.e. in x.

This gives a contradiction, using identity ( A.l ).

I

CoROLLARY A.2. Let I be in Wl;~(ll + a) IR), then f o (I + a) is absolutely continuous on any compact interval of IR and

Proof. By Lemma A.l we have

a if~ =I+ a, and [a, b] is an arbitrary compact interval.

The left-hand side of (A.5) can be expressed as tb(b)

since f is absolutely continuous. This proves Corollary A.2.

I

A.2. The Set t = a(x) in Characteristic Coordinates

The characteristic coordinates (~, ' YJ) are defined as

The graph of a in characteristic coordinates is the set We shall write Y-1 =X and

The set Y has the following property. 

and this expression is non positive for all x and x'.

I

We shall denote by Y the function defined on the set

and likewise, we define X as the "one-valued part" of X = Y-1 • It is possible to show that Y is maximal monotone (for a definition see Brezis [START_REF] Brezis | Operateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert[END_REF]) in IR X IR. A.3. (i) u is continuous. (ii) The parts of characteristics are null with respect to Du.

Proof. Let Du = ,_,+ -,..,_be the decomposition of Du = ,..,_ in its positive and negative parts.

Let us prove first (i) => (ii). The following inequalities hold:

If u is continuous, we can pass to the limit in (A. 7), and which shows that f.J-(Roc) = 0. Conversely, to prove (ii) ==> (i), suppose that the parts of characteristics are null with respect to Du, and fix an arbitrary point ( x 0 , t 00 ) with t 00 > 0.

Let tn be a sequence decreasing to too , and t~ a sequence increasing to ! 00 • Then (A.8) n U T~. t~ = int T~. tctJ • (A.9) n As the parts of characteristics are Ou-null, Therefore, thanks to (A.8) and (A.9), This shows that ( tff * !L±) (x, t) is continuous with respect to t in any point.

To prove the continuity of u with respect to x and t, just note the inclusions T;;,.t-l x-x 0 1 C T;,t C T~.t+ lx-x 0 1 • We have thus the inequalities and this completes the proof of Lemma A.4.