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Abstract. Following the emergence of Kim and Barbulescu’s new num-
ber field sieve (exTNFS) algorithm at CRYPTO’16 [21] for solving dis-
crete logarithm problem (DLP) over the finite field; pairing-based cryp-
tography researchers are intrigued to find new parameters that con-
firm standard security levels against exTNFS. Recently, Barbulescu and
Duquesne have suggested new parameters [3] for well-studied pairing-
friendly curves i.e., Barreto-Naehrig (BN) [5], Barreto-Lynn-Scott (BLS-
12) [4] and Kachisa-Schaefer-Scott (KSS-16) [19] curves at 128-bit secu-
rity level (twist and sub-group attack secure). They have also concluded
that in the context of Optimal-Ate pairing with their suggested param-
eters, BLS-12 and KSS-16 curves are more efficient choices than BN
curves. Therefore, this paper selects the atypical and less studied pairing-
friendly curve in literature, i.e., KSS-16 which offers quartic twist, while
BN and BLS-12 curves have sextic twist. In this paper, the authors op-
timize Miller’s algorithm of Optimal-Ate pairing for the KSS-16 curve
by deriving efficient sparse multiplication and implement them. Further-
more, this paper concentrates on the Miller’s algorithm to experimentally
verify Barbulescu et al.’s estimation. The result shows that Miller’s al-
gorithm time with the derived pseudo 8-sparse multiplication is most
efficient for KSS-16 than other two curves. Therefore, this paper defends
Barbulescu and Duquesne’s conclusion for 128-bit security.
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1 Introduction

Since the inception by Sakai et al. [25], pairing-based cryptography has gained
much attention to cryptographic researchers as well as to mathematicians. It
gives flexibility to protocol researcher to innovate applications with provable



security and at the same time to mathematicians and cryptography engineers
to find efficient algorithms to make pairing implementation more efficient and
practical. This paper tries to efficiently carry out the basic operation of a specific
type of pairing calculation over certain pairing-friendly curves.

Generally, a pairing is a bilinear map e typically defined as G1 ×G2 → GT ,
where G1 and G2 are additive cyclic sub-groups of order r on a certain elliptic
curve E over a finite extension field Fpk and GT is a multiplicative cyclic group
of order r in F∗pk . Let E(Fp) be the set of rational points over the prime field
Fp which forms an additive Abelian group together with the point at infinity
O. The total number of rational points is denoted as #E(Fp). Here, the order r
is a large prime number such that r|#E(Fp) and gcd(r, p) = 1. The embedding
degree k is the smallest positive integer such that r|(pk−1). Two basic properties
of pairing are

– bilinearity is such that ∀Pi ∈ G1 and ∀Qi ∈ G2, where i = 1, 2, then e(Q1 +
Q2, P1) = e(Q1, P1).e(Q2, P1) and e(Q1, P1 + P2) = e(Q1, P1).e(Q1, P2),

– and e is non-degenerate means ∀P ∈ G1 there is a Q ∈ G2 such that
e(Q,P ) 6= 1 and ∀Q ∈ G2 there is a P ∈ G1 such that e(P,Q) 6= 1.

Such properties allows researchers to come up with various cryptographic ap-
plications including ID-based encryption [8], group signature authentication [7],
and functional encryption [24]. However, the security of pairing-based cryptosys-
tems depends on

– the difficulty of solving elliptic curve discrete logarithm problem (ECDLP)
in the groups of order r over Fp,

– the infeasibility of solving the discrete logarithm problem (DLP) in the mul-
tiplicative group GT ∈ F∗pk ,

– and the difficulty of pairing inversion.

To maintain the same security level in both groups, the size of the order r and
extension field pk is chosen accordingly. If the desired security level is δ then
log2 r ≥ 2δ is desirable due to Pollard’s rho algorithm. For efficient pairing, the
ratio ρ = log2 p

k/ log2 r ≈ 1, is expected (usually 1 ≤ ρ ≤ 2). In practice, elliptic
curves with small embedding degrees k and large r are selected and commonly
are knows as “pairing-friendly” elliptic curves.

Galbraith et al. [15] have classified pairings as three major categories based
on the underlying group’s structure as

– Type 1, where G1 = G2, also known as symmetric pairing.
– Type 2, where G1 6= G2, known as asymmetric pairing. There exists an effi-

ciently computable isomorphism ψ : G2 → G1 but none in reverse direction.
– Type 3, which is also asymmetric pairing, i.e., G1 6= G2. But no efficiently

computable isomorphism is known in either direction between G1 and G2.

This paper chooses one of the Type 3 variants of pairing named as Optimal-Ate
[29] with Kachisa-Schaefer-Scott (KSS) [19] pairing-friendly curve of embedding
degree k = 16. Few previous works have been done on this curve. Zhang et al.



[31] have shown the computational estimation of the Miller’s loop and proposed
efficient final exponentiation for 192-bit security level in the context of Optimal-
Ate pairing over KSS-16 curve. A few years later Ghammam et al. [16] have
shown that KSS-16 is the best suited for multi-pairing (i.e., the product and/or
the quotient) when the number of pairing is more than two. Ghammam et al.
[16] also corrected the flaws of proposed final exponentiation algorithm by Zhang
et al. [31] and proposed a new one and showed the vulnerability of Zhang’s
parameter settings against small subgroup attack. The recent development of
NFS by Kim and Barbulescu [21] requires updating the parameter selection for
all the existing pairings over the well known pairing-friendly curve families such
as BN [5], BLS [13] and KSS [19]. The most recent study by Barbulescu et al.
[3] have shown the security estimation of the current parameter settings used in
well-studied curves and proposed new parameters, resistant to small subgroup
attack.

Barbulescu and Duquesne’s study finds that the current parameter settings
for 128-bit security level on BN-curve studied in literature can withstand for
100-bit security. Moreover, they proposed that BLS-12 and surprisingly KSS-16
are the most efficient choice for Optimal-Ate pairing at the 128-bit security level.
Therefore, the authors focus on the efficient implementation of the less studied
KSS-16 curve for Optimal-Ate pairing by applying the most recent parameters.
Mori et al. [23] and Khandaker et al. [20] have shown a specific type of sparse
multiplication for BN and KSS-18 curve respectively where both of the curves
supports sextic twist. The authors have extended the previous works for quartic
twisted KSS-16 curve and derived pseudo-8 sparse multiplication for line eval-
uation step in the Miller’s algorithm. As a consequence, the authors made the
choice to concentrate on Miller’s algorithm’s execution time and computational
complexity to verify the claim of [3]. The implementation shows that Miller’s al-
gorithm time has a tiny difference between KSS-16 and BLS-12 curves. However,
they both are more efficient and faster than BN curve.

2 Fundamentals of Elliptic Curve and Pairing

2.1 Kachisa-Schaefer-Scott (KSS) Curve

In [19], Kachisa, Schaefer, and Scott proposed a family of non super-singular
pairing-friendly elliptic curves of embedding degree k = {16, 18, 32, 36, 40}, using
elements in the cyclotomic field. In what follows, this paper considers the curve
of embedding degree k = 16, named as KSS-16, defined over extension field Fp16
as follows:

E/Fp16 : Y 2 = X3 + aX, (a ∈ Fp) and a 6= 0, (1)

where X,Y ∈ Fp16 . Similar to other pairing-friendly curves, characteristic p,
Frobenius trace t and order r of this curve are given by the following polynomials



of integer variable u.

p(u) = (u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2

+2398u+ 3125)/980, (2a)

r(u) = (u8 + 48u4 + 625)/61255, (2b)

t(u) = (2u5 + 41u+ 35)/35, (2c)

where u is such that u ≡ 25 or 45 (mod 70) and the ρ value is ρ = (log2 p/ log2 r) ≈
1.25. The total number of rational points #E(Fp) is given by Hasse’s theorem
as, #E(Fp) = p + 1 − t. When the definition field is the k-th degree extension
field Fpk , rational points on the curve E also form an additive Abelian group
denoted as E(Fpk). Total number of rational points #E(Fpk) is given by Weil’s
theorem [30] as #E(Fpk) = pk+1− tk, where tk = αk+βk. α and β are complex
conjugate numbers.

2.2 Extension Field Arithmetic and Towering

Pairing-based cryptography requires performing the arithmetic operation in ex-
tension fields of degree k ≥ 6 [28]. Consequently, such higher degree extension
field needs to be constructed as a tower of sub-fields [6] to perform arithmetic
operation cost efficiently. Bailey et al. [2] have explained optimal extension field
by towering by using irreducible binomials.

Towering of Fp16 extension field: For KSS-16 curve, Fp16 construction pro-
cess given as follows using tower of sub-fields.

Fp2 = Fp [α]/(α2 − c),
Fp4 = Fp2 [β]/(β2 − α),

Fp8 = Fp4 [γ]/(γ2 − β),

Fp16 = Fp8 [ω]/(ω2 − γ),

(3)

where p ≡ 5 mod 8 and c is a quadratic non residue in Fp. This paper considers
c = 2 along with the value of the parameter u as given in [3].

Towering of Fp12 extension field: Let 6|(p−1), where p is the characteristics
of BN or BLS-12 curve and −1 is a quadratic and cubic non-residue in Fp since
p ≡ 3 mod 4. In the context of BN or BLS-12, where k = 12, Fp12 is constructed
as a tower of sub-fields with irreducible binomials as follows:

Fp2 = Fp [α]/(α2 + 1),

Fp6 = Fp2 [β]/(β3 − (α+ 1)),

Fp12 = Fp6 [γ]/(γ2 − β).

(4)



Table 1. Number of arithmetic operations in extension field based on Eq. (3)

Mp2 = 3Mp + 5Ap + 1mα → 3Mp Sp2 = 3Sp + 4Ap + 1mα → 3Sp
Mp4 = 3Mp2 + 5Ap2 + 1mβ → 9Mp Sp4 = 3Sp2 + 4App

2 + 1mβ → 9Sp
Mp8 = 3Mp4 + 5Ap4 + 1mγ → 27Mp Sp8 = 3Sp4 + 4Ap4 + 1mγ → 27Sp
Mp16 = 3Mp8 + 5Ap8 + 1mω → 81Mp Sp16 = 3Mp8 + 4Ap8 + 1mω → 81Sp

Table 2. Number of arithmetic operations in Fp12 based on Eq. (4)

Mp2 = 3Mp + 5Ap + 1mα → 3Mp Sp2 = 2Sp + 3Ap → 2Sp
Mp6 = 6Mp2 + 15Ap2 + 2mβ → 18Mp Sp6 = 2Mp2 + 3Sp2 + 9Ap2 + 2mβ → 12Sp
Mp12 = 3Mp6 + 5Ap6 + 1mγ → 54Mp Sp12 = 2Mp6 + 5Ap6 + 2mγ → 36Sp

Extension Field Arithmetic of Fp16 and Fp12 Among the arithmetic opera-
tions multiplication, squaring and inversion are regarded as expensive operation
than addition/subtraction. The calculation cost, based on number of prime field
multiplication Mp and squaring Sp is given in Table 1. The arithmetic opera-
tions in Fp are denoted as Mp for a multiplication, Sp for a squaring, Ip for an
inversion and m with suffix denotes multiplication with basis element. However,
squaring is more optimized by using Devegili et al.’s [11] complex squaring tech-
nique which cost 2Mp + 4Ap + 2mα for one squaring operation in Fp2 . In total
it costs 54Mp for one squaring in Fp16 . Table 1 shows the operation estimation
for Fp16 .

Table 2 shows the operation estimation for Fp12 according to the towering
shown in Eq. (4). The algorithms for Fp2 and Fp3 multiplication and squaring
given in [12] have be used in this paper to construct the Fp12 extension field
arithmetic.

2.3 Ate and Optimal-Ate On KSS-16, BN, BLS-12 Curve

A brief of pairing and it’s properties are described in Sect.1. In the context
of pairing on the targeted pairing-friendly curves, two additive rational point
groups G1,G2 and a multiplicative group GT of order r are considered. G1, G2

and GT are defined as follows:

G1 = E(Fp) [r] ∩Ker(πp − [1]),

G2 = E(Fpk)[r] ∩Ker(πp − [p]),

GT = F∗pk/(F∗pk)r,

e : G1 ×G2 → GT , (5)

where e denotes Ate pairing [9]. E(Fpk)[r] denotes rational points of order r and
[n] denotes n times scalar multiplication for a rational point. πp denotes the
Frobenius endomorphism given as πp : (x, y) 7→ (xp, yp).



Table 3. Optimal Ate pairing formulas for target curves

Curve Miller’s Algo. Final Exp.

KSS-16 (fu,Q(P ) · l[u]Q,[p]Q(P ))p
3

· lQ,Q(P ) (p16 − 1)/r

BN f6u+2,Q(P ) · l[6u+2]Q,[p]Q(P ) · l[6u+2+p]Q,[p2]Q(P ) (p12 − 1)/r

BLS-12 fu,Q(P ) (p12 − 1)/r

KSS-16 Curve: In what follows, we consider P ∈ G1 ⊂ E(Fp) and Q ∈ G2 ⊂
E(Fp16) for KSS-16 curves. Ate pairing e(Q,P ) is given as follows:

e(Q,P ) = ft−1,Q(P )
p16−1

r , (6)

where ft−1,Q(P ) symbolizes the output of Miller’s algorithm and blog2(t − 1)c
is the loop length. The bilinearity of Ate pairing is satisfied after calculating the
final exponentiation (pk − 1)/r.

Vercauteren proposed more efficient variant of Ate pairing named as Optimal-
Ate pairing [29] where the Miller’s loop length reduced to blog2 uc. The previous
work of Zhang et al. [31] has derived the optimal Ate pairing on the KSS-16
curve which is defined as follows with fu,Q(P ) is the Miller function evaluated
on P :

eopt(Q,P ) = ((fu,Q(P ) · l[u]Q,[p]Q(P ))p
3

· lQ,Q(P ))
p16−1

r . (7)

The formulas for Optimal-Ate pairing for the target curves are given in Table 3.

The naive calculation procedure of Optimal-Ate pairing is shown in Alg. 1.
In what follows, the calculation steps from 1 to 11, shown in Alg.1, is identified
as Miller’s Algorithm (MA) and step 12 is the final exponentiation (FE). Steps
2-7 are specially named as Miller’s loop. Steps 3, 5, 7 are the line evaluation to-
gether with elliptic curve doubling (ECD) and addition (ECA) inside the Miller’s
loop and steps 9, 11 are the line evaluation. These line evaluation steps are the
key steps to accelerate the loop calculation. The authors extended the work of
[23],[20] for KSS-16 curve to calculate pseudo 8-sparse multiplication described
in Sect. 3. The ECA and ECD are also calculated efficiently in the twisted curve.
The Q2 ← [p]Q term of step 8 is calculated by applying one skew Frobenius map

over Fp4 and f1 ← fp
3

of step 10 is calculated by applying one Frobenius map in



Fp16 . Step 12, FE is calculated by applying Ghammam et al.’s work for KSS-16
curve [16].

Algorithm 1: Optimal Ate pairing on KSS-16 curve

Input: u, P ∈ G1, Q ∈ G′2
Output: (Q,P )
f ← 1, T ← Q1

for i = blog2(u)c downto 1 do2

f ← f2 · lT,T (P ), T ← [2]T3

if u[i] = 1 then4

f ← f · lT,Q(P ), T ← T +Q5

if u[i] = −1 then6

f ← f · lT,−Q(P ), T ← T −Q7

Q1 ← [u]Q, Q2 ← [p]Q8

f ← f · lQ1,Q2
(P )9

f1 ← fp
3

, f ← f · f110

f ← f · lQ,Q(P )11

f ← f
p16−1

r12

return f13

2.4 Twist of KSS-16 Curves

In the context of Type 3 pairing, there exists a twisted curve with a group
of rational points of order r, isomorphic to the group where rational point
Q ∈ E(Fpk)[r] ∩ Ker(πp − [p]) belongs to. This sub-field isomorphic rational
point group includes a twisted isomorphic point of Q, typically denoted as
Q′ ∈ E′(Fpk/d), where k is the embedding degree and d is the twist degree.

Since points on the twisted curve are defined over a smaller field than Fpk ,
therefore ECA and ECD become faster. However, when required in the Miller’s
algorithm’s line evaluation, the points can be quickly mapped to points on
E(Fpk). Since the pairing-friendly KSS-16 [19] curve has CM discriminant of
D = 1 and 4|k; therefore, quartic twist is available.

Quartic twist Let β be a certain quadratic non-residue in Fp4 . The quartic
twisted curve E′ of KSS-16 curve E defined in Eq. (1) and their isomorphic
mapping ψ4 are given as follows:

E′ : y2 = x3 + axβ−1, a ∈ Fp,
ψ4 : E′(Fp4)[r] 7−→ E(Fp16)[r] ∩Ker(πp − [p]),

(x, y) 7−→ (β1/2x, β3/4y), (8)

where Ker(·) denotes the kernel of the mapping and πp denotes Frobenius map-
ping for rational point.



Table 4. Vector representation of Q = (xQ, yQ) ∈ G2 ⊂ Fp16

1 α β αβ γ αγ βγ αβγ ω αω βω αβω γω αγω βγω αβγω

xQ 0 0 0 0 b4 b5 b6 b7 0 0 0 0 0 0 0 0

yQ 0 0 0 0 0 0 0 0 0 0 0 0 b12 b13 b14 b15

Table 4 shows the vector representation ofQ = (xQ, yQ) = (β1/2xQ′ , β
3/4yQ′) ∈

Fp16 according to the given towering in Eq. (3). Here, xQ′ and yQ′ are the coor-
dinates of rational point Q′ on quartic twisted curve E′.

3 Proposal

3.1 Overview: Sparse and Pseudo-Sparse Multiplication

Aranha et al. [1, Section 4] and Costello et al. [10] have well optimized the
Miller’s algorithm in Jacobian coordinates by 6-sparse multiplication 4 for BN
curve. Mori et al. [23] have shown the pseudo 8-sparse multiplication 5 for BN
curve by adapting affine coordinates where the sextic twist is available. It is
found that pseudo 8-sparse was efficient than 7-sparse and 6-sparse in Jacobian
coordinates.

Let us consider T = (γxT ′ , γωyT ′), Q = (γxQ′ , γωyQ′) and P = (xP , yP ),
where xp, yp ∈ Fp given in affine coordinates on the curve E(Fp16) such that
T ′ = (xT ′ , yT ′), Q

′ = (xQ′ , yQ′) are in the twisted curve E′ defined over Fp4 . Let
the elliptic curve doubling of T + T = R(xR, yR). The 7-sparse multiplication
for KSS-16 can be derived as follows.

lT,T (P ) = (yp − yT ′γω)− λT,T (xP − xT ′γ), when T = Q,

λT,T =
3x2

T ′γ
2+a

2yT ′γω
=

3x2
T ′γω

−1+a(γω)−1

2yT ′
=

(3x2
T ′+ac

−1αβ)ω

2yT ′
= λ′T,Tω,

since γω−1 = ω, (γω)−1 = ωβ−1, and

aβ−1 = (a+ 0α+ 0β + 0αβ)β−1 = aβ−1 = ac−1αβ, where α2 = c.

Now the line evaluation and ECD are obtained as follows:

lT,T (P ) = yp − xpλ′T,Tω + (xT ′λ
′
T,T − yT ′)γω,

x2T ′ = (λ′T,T )2ω2 − 2xT ′γ = ((λ′T,T )2 − 2xT ′)γ

y2T ′ = (xT ′γ − x2T ′γ)λ′T,Tω − yT ′γω = (xT ′λ
′
T,T − x2T ′λ

′
T,T − yT ′)γω.

4 6-Sparse refers the state when in a vector (multiplier/multiplicand), among the 12
coefficients 6 of them are zero.

5 Pseudo 8-sparse refers to a certain length of vector’s coefficients where instead of 8
zero coefficients, there are seven 0’s and one 1 as coefficients.



The above calculations can be optimized as follows:

A = 1
2yT ′

, B = 3x2
T ′ + ac−1, C = AB,D = 2xT ′ , x2T ′ = C2 −D,

E = CxT ′ − yT ′ , y2T ′ = E − Cx2T ′ ,

lT,T (P ) = yP + Eγω − CxPω = yP + Fω + Eγω, (9)

where F = −CxP .
The elliptic curve addition phase (T 6= Q) and line evaluation of lT,Q(P ) can

also be optimized similar to the above procedure. Let the elliptic curve addition
of T +Q = R(xR, yR).

lT,Q(P ) = (yp − yT ′γω)− λT,Q(xP − xT ′γ), T 6= Q,

λT,Q =
(yQ′−yT ′ )γω
(xQ′−xT ′ )γ

=
(yQ′−yT ′ )ω
xQ′−xT ′

= λ′T,Qω,

xR = (λ′T,Q)2ω2 − xT ′γ − xQ′γ = ((λ′T,Q)2 − xT ′ − xQ′)γ
yR = (xT ′γ − xRγ)λ′T,Qω − yT ′γω = (xT ′λ

′
T,Q − xR′λ′T,Q − yT ′)γω.

Representing the above line equations using variables as following :

A = 1
xQ′−xT ′

, B = yQ′ − yT ′ , C = AB,D = xT ′ + xQ′ ,

xR′ = C2 −D,E = CxT ′ − yT ′ , yR′ = E − CxR′ ,
lT,Q(P ) = yP + Eγω − CxPω = yP + Fω + Eγω, (10)

F = −CxP ,

Here all the variables (A,B,C,D,E, F ) are calculated as Fp4 elements. The
position of the yP , E and F in Fp16 vector representation is defined by the basis
element 1, γω and ω as shown in Table 4. Therefore, among the 16 coefficients
of lT,T (P ) and lT,Q(P ) ∈ Fp16 , only 9 coefficients yP ∈ Fp, CxP ∈ Fp4 and
E ∈ Fp4 are non-zero. The remaining 7 zero coefficients leads to an efficient
multiplication, usually called sparse multiplication. This particular instance in
KSS-16 curve is named as 7-sparse multiplication.

3.2 Pseudo 8-Sparse Multiplication for BN and BLS-12 Curve

Here we have followed Mori et al.’s [23] procedure to derive pseudo 8-sparse
multiplication for the parameter settings of [3] for BN and BLS-12 curves. For
the new parameter settings, the towering is given as Eq. (4) for both BN and
BLS-12 curve. However, the curve form E : y2 = x3 + b, b ∈ Fp is identical for
both BN and BLS-12 curve. The sextic twist obtained for these curves are also
identical. Therefore, in what follows this paper will denote both of them as Eb
defined over Fp12 .

Sextic twist of BN and BLS-12 curve: Let (α + 1) be a certain quadratic
and cubic non-residue in Fp2 . The sextic twisted curve E′b of curve Eb and their



Table 5. Vector representation of Q = (xQ, yQ) ∈ G2 ⊂ Fp12 vector representation

1 α β αβ β2 αβ2 γ αγ βγ αβγ β2γ αβ2γ

xQ 0 0 0 0 b4 b5 0 0 0 0 0 0

yQ 0 0 0 0 0 0 0 0 b8 b9 0 0

isomorphic mapping ψ6 are given as follows:

E′b : y2 = x3 + b(α+ 1), b ∈ Fp,
ψ6 : E′b(Fp2)[r] 7−→ Eb(Fp12)[r] ∩Ker(πp − [p]),

(x, y) 7−→ ((α+ 1)−1xβ, (α+ 1)−1yβ2γ). (11)

The line evaluation and ECD/ECA can be obtained in affine coordinate for
the rational point P and Q′, T ′ ∈ E′b(Fp2) as follows:

Elliptic curve addition when T ′ 6= Q′ and T ′ +Q′ = R′(xR′ , yR′)

A = 1
xQ′−xT ′

, B = yQ′ − yT ′ , C = AB,D = xT ′ + xQ′ ,

xR′ = C2 −D,E = CxT ′ − yT ′ , yR′ = E − CxR′ ,
lT ′,Q′(P ) = yP + (α+ 1)−1Eβγ − (α+ 1)−1CxPβ

2γ, (12a)

y−1
P lT ′,Q′(P ) = 1 + (α+ 1)−1Ey−1

P βγ − (α+ 1)−1CxP y
−1
P β2γ, (12b)

Elliptic curve doubling when T ′ = Q′

A = 1
2yT ′

, B = 3x2
T ′ , C = AB,D = 2xT ′ , x2T ′ = C2 −D,

E = CxT ′ − yT ′ , y2T ′ = E − Cx2T ′ ,

lT ′,T ′(P ) = yP + (α+ 1)−1Eβγ − (α+ 1)−1CxPβ
2γ, (13a)

y−1
P lT ′,T ′(P ) = 1 + (α+ 1)−1Ey−1

P βγ − (α+ 1)−1CxP y
−1
P β2γ, (13b)

The line evaluations of Eq. (12b) and Eq. (13b) are identical and more sparse
than Eq. (12a) and Eq. (13a). Such sparse form comes with a cost of computa-
tion overhead. But such overhead can be minimized by the following isomorphic
mapping, which also accelerates the Miller’s loop iteration.

Isomorphic mapping of P ∈ G1 7→ P̂ ∈ G′1 :

Ê : y2 = x3 + bẑ,

Ê(Fp)[r] 7−→ E(Fp)[r],
(x, y) 7−→ (ẑ−1x, ẑ−3/2y), (14)

where ẑ ∈ Fp is a quadratic and cubic residue in Fp. Eq. (14) maps rational point

P to P̂ (xP̂ , yP̂ ) such that (xP̂ , y
−1

P̂
) = 1. The twist parameter ẑ is obtained as:

ẑ = (xP y
−1
P )6. (15)



From the Eq. (15) P̂ and Q̂′ is given as

P̂ (xP̂ , yP̂ ) = (xP z
−1, yP z

−3/2) = (x3
P y
−2
P , x3

P y
−2
P ), (16a)

Q̂′(xQ̂′ , yQ̂′) = (x2
P y
−2
P xQ′ , x

3
P y
−3
P yQ′). (16b)

Using Eq. (16a) and Eq. (16b) the line evaluation of Eq. (13b) becomes

y−1

P̂
lT̂ ′,T̂ ′(P̂ ) = 1 + (α+ 1)−1Ey−1

P̂
βγ − (α+ 1)−1CxP̂ y

−1

P̂
β2γ,

l̂T̂ ′,T̂ ′(P̂ ) = 1 + (α+ 1)−1Ey−1

P̂
βγ − (α+ 1)−1Cβ2γ. (17a)

The Eq. (12b) becomes similar to Eq. (17a). The calculation overhead can be
reduced by pre-computation of (α + 1)−1, y−1

P̂
and P̂ , Q̂′ mapping using x−1

P

and y−1
P as shown by Mori et al. [23].

Finally, pseudo 8-sparse multiplication for BN and BLS-12 is given in

Algorithm 2: Pseudo 8-sparse multiplication for BN and BLS-12 curves

Input: a, b ∈ Fp12
a = (a0 + a1β + a2β

2) + (a3 + a4β + a5β
2)γ, b = 1 + b4βγ + b5β

2γ
where ai, bj , ci ∈ Fp2(i = 0, · · ·, 5, j = 4, 5)

Output: c = ab = (c0 + c1β + c2β
2) + (c3 + c4β + c5β

2)γ ∈ Fp12
c4 ← a0 × b4, t1 ← a1 × b5, t2 ← a0 + a1, S0 ← b4 + b51

c5 ← t2 × S0 − (c4 + t1), t2 ← a2 × b5, t2 ← t2 × (α+ 1)2

c4 ← c4 + t2, t0 ← a2 × b4, t0 ← t0 + t13

c3 ← t0 × (α+ 1), t0 ← a3 × b4, t1 ← a4 × b5, t2 ← a3 + a44

t2 ← t2 × S0 − (t0 + t1)5

c0 ← t2 × (α+ 1), t2 ← a5 × b4, t2 ← t1 + t26

c1 ← t2 × (α+ 1), t1 ← a5 × b5, t1 ← t1 × (α+ 1)7

c2 ← t0 + t18

c← c+ a9

return c = (c0 + c1β + c2β
2) + (c3 + c4β + c5β

2)γ10

3.3 Pseudo 8-sparse Multiplication for KSS-16 Curve

The main idea of pseudo 8-sparse multiplication is finding more sparse form
of Eq. (9) and Eq. (10), which allows to reduce the number of multiplication
of Fp16 vector during Miller’s algorithm evaluation. To obtains the same, y−1

P

is multiplied to both side of Eq. (9) and Eq. (10), since yP remains the same
through the Miller’s algorithms loop calculation.

y−1
P lT,P (P ) = 1− CxP y−1

P ω + Ey−1
P γω, (18a)

y−1
P lT,Q(P ) = 1− CxP y−1

P ω + Ey−1
P γω, (18b)

Although the Eq. (18a) and Eq. (18b) do not get more sparse, but 1st coeffi-
cient becomes 1. Such vector is titled as pseudo sparse form in this paper. This



form realizes more efficient Fp16 vectors multiplication in Miller’s loop. However,
the Eq. (18b) creates more computation overhead than Eq. (10), i.e., computing
y−1
P lT,Q(P ) in the left side and xP y

−1
P , Ey−1

P on the right. The same goes be-
tween Eq. (18a) and Eq. (9). Since the computation of Eq. (18a) and Eq. (18b)
are almost identical, therefore the rest of the paper shows the optimization tech-
nique for Eq. (18a). To overcome these overhead computations, the following
techniques can be applied.

– xP y
−1
P is omitted by applying further isomorphic mapping of P ∈ G1.

– y−1
P can be pre-computed. Therefore, the overhead calculation of Ey−1

P will
cost only 2 Fp multiplication.

– y−1
P lT,T (P ) doesn’t effect the pairing calculation cost since the final expo-

nentiation cancels this multiplication by y−1
P ∈ Fp.

To overcome the CxP y
−1
P calculation cost, xP y

−1
P = 1 is expected. To ob-

tain xP y
−1
P = 1, the following isomorphic mapping of P = (xP , yP ) ∈ G1 is

introduced.

Isomorphic map of P = (xP , yP ) → P̄ = (xP̄ , yP̄ ). Although the KSS-16
curve is typically defined over Fp16 as E(Fp16), but for efficient implementation
of Optimal-Ate pairing, certain operations are carried out in a quartic twisted
isomorphic curve E′ defined over Fp4 as shown in Sec. 2.4. For the same, let
us consider Ē(Fp4) is isomorphic to E(Fp4) and certain z ∈ Fp as a quadratic
residue (QR) in Fp4 . A generalized mapping between E(Fp4) and Ē(Fp4) can be
given as follows:

Ē : y2 = x3 + az−2x,

Ē(Fp4)[r] 7−→ E(Fp4)[r],

(x, y) 7−→ (z−1x, z−3/2y),

where z, z−1, z−3/2 ∈ Fp. (19)

The mapping considers z ∈ Fp is a quadratic residue over Fp4 which can be

shown by the fact that z(p4−1)/2 = 1 as follows:

z(p4−1)/2 = z(p−1)(p3+p2+p+1)/2

= 1(p3+p2+p+1)/2

= 1 QR ∈ Fp4 . (20)

Therefore, z is a quadratic residue over Fp4 .
Now based on P = (xP , yP ) be the rational point on curve E, the considered
isomorphic mapping of Eq. (19) can find a certain isomorphic rational point
P̄ = (xP̄ , yP̄ ) on curve Ē as follows:

y2
P = x3

P + axP ,

y2
P z
−3 = x3

P z
−3 + axP z

−3,

(yP z
−3/2)2 = (xP z

−1)3 + az−2xP z
−1, (21)



where P̄ = (xP̄ , yP̄ ) = (xP z
−1, yP z

−3/2) and the general form of the curve Ē is
given as follows:

y2 = x3 + az−2x. (22)

To obtain the target relation xP̄ y
−1
P̄

= 1 from above isomorphic map and rational

point P̄ , let us find isomorphic twist parameter z as follows:

xP̄ y
−1
P̄

= 1

z−1xP (z−3/2yP )−1 = 1

z1/2(xP .y
−1
P ) = 1

z = (x−1
P yP )2. (23)

Now using z = (x−1
P yP )2 and Eq. (21), P̄ can be obtained as

P̄ (xP̄ , yP̄ ) = (xP z
−1, yP z

−3/2) = (x3
P y
−2
P , x3

P y
−2
P ), (24)

where the x and y coordinates of P̄ are equal. For the same isomorphic map we
can obtain Q̄ on curve Ē defined over Fp12 as follows:

Q̄(xQ̄, yQ̄) = (z−1xQ′γ, z
−3/2yQ′γω), (25)

where from Eq. (8), Q′(xQ′ , yQ′) is obtained in quartic twisted curve E′.
At this point, to use Q̄ with P̄ in line evaluation we need to find another

isomorphic map that will map Q̄ 7→ Q̄′, where Q̄′ is the rational point on curve
Ē′ defined over Fp4 . Such Q̄′ and Ē′ can be obtained from Q̄ of Eq. (25) and
curve Ē from Eq. (22) as follows:

(z−3/2yQ′γω)2 = (z−1xQ′γ)3 + az−2z−1xQ′γ,

(z−3/2yQ′)
2γ2ω2 = (z−1xQ′)

3γ3 + az−2z−1xQ′γ,

(z−3/2yQ′)
2βγ = (z−1xQ′)

3βγ + az−2z−1xQ′γ,

(z−3/2yQ′)
2 = (z−1xQ′)

3 + az−2β−1z−1xQ′ .

From the above equations, Ē′ and Q̄′ are given as,

Ē′ : y2
Q̄′ = x3

Q̄′ + a(z2β)−1xQ̄′ . (26)

Q̄′(xQ̄′ , yQ̄′) = (z−1xQ′ , z
−3/2yQ′)

= (xQ′x
2
P y
−2
P , yQ′x

3
P y
−3
P ). (27)

Now, applying P̄ and Q̄′, the line evaluation of Eq. (18b) becomes as follows:

y−1
P̄
lT̄ ′,Q̄′(P̄ ) = 1− C(xP̄ y

−1
P̄

)γ + Ey−1
P̄
γω

l̄T̄ ′,Q̄′(P̄ ) = 1− Cγ + E(x−3
P y2

P )γω, (28)

where xP̄ y
−1
P̄

= 1 and y−1
P̄

= z3/2y−1
P = (x−3

P y2
P ). The Eq. (18a) becomes the

same as Eq. (28). Compared to Eq. (18b), the Eq. (28) will be faster while using
in Miller’s loop in combination of the pseudo 8-sparse multiplication shown in
Alg.2. However, to get the above form, we need the following pre-computations
once in every Miller’s Algorithm execution.



– Computing P̄ and Q̄′,
– (x−3

P y2
P ) and

– z−2 term from curve Ē′ of Eq. (26).

The above terms can be computed from x−1
P and y−1

P by utilizing Montgomery
trick [22], as shown in Alg. 3. The pre-computation requires 21 multiplication, 2
squaring and 1 inversion in Fp and 2 multiplication, 3 squaring in Fp4 .

Algorithm 3: Pre-calculation and mapping P 7→ P̄ and Q′ 7→ Q̄′

Input: P = (xP , yP ) ∈ G1, Q
′ = (xQ′ , yQ′) ∈ G′2

Output: Q̄′, P̄ , y−1
P , (z)−2

A← (xP yP )−1
1

B ← Ax2
P2

C ← AyP3

D ← B2
4

xQ̄′ ← DxQ′5

yQ̄′ ← BDyQ′6

xP̄ , yP̄ ← DxP7

y−1
P ← C3y2

P8

z−2 ← D2
9

return Q̄′ = (xQ̄′ , yQ̄′), P̄ = (xP̄ , yP̄ ), y−1
P , z−2

10

The overall mapping and the curve obtained in the twisting process is shown
in the Fig. 1.

Finally the Alg.4 shows the derived pseudo 8-sparse multiplication.

Algorithm 4: Pseudo 8-sparse multiplication for KSS-16 curve

Input: a, b ∈ Fp16
a = (a0 + a1γ) + (a2 + a3γ)ω, b = 1 + (b2 + b3γ)ω
a = (a0 + a1ω + a2ω

2 + a3ω
3), b = 1 + b2ω + b3ω

3

Output: c = ab = (c0 + c1γ) + (c3 + c4γ)ω ∈ Fp16
t0 ← a3 × b3 × β, t1 ← a2 × b2, t4 ← b2 + b3, c0 ← (a2 + a3)× t4 − t1 − t01

c1 ← t1 + t0 × β2

t2 ← a1 × b3, t3 ← a0 × b2, c2 ← t3 + t2 × β3

t4 ← (b2 + b3), c3 ← (a0 + a1)× t4 − t3 − t24

c← c+ a5

return c = (c0 + c1γ) + (c3 + c4γ)ω6

3.4 Final Exponentiation

Scott et al. [27] show the process of efficient final exponentiation (FE) fp
k−1/r

by decomposing the exponent using cyclotomic polynomial Φk as

(pk − 1)/r = (pk/2 − 1) · (pk/2 + 1)/Φk(p) · Φk(p)/r (29)



Fig. 1. Overview of the twisting process to get pseudo sparse form in KSS-16 curve.



The 1st two terms of the right part are denoted as easy part since it can be easily
calculated by Frobenius mapping and one inversion in affine coordinates. The
last term is called hard part which mostly affects the computation performance.
According to Eq. (29), the exponent decomposition of the target curves is shown
in Table 6.

Table 6. Exponents of final exponentiation in pairing

Curve Final exponent Easy part Hard part

KSS-16 p16−1
r

p8 − 1 p8+1
r

BN, BLS-12 p12−1
r

(p6 − 1)(p2 + 1) p4−p2+1
r

This paper carefully concentrates on Miller’s algorithm for comparison and
making pairing efficient. However, to verify the correctness of the bilinearity
property, the authors made a “not state-of-art” implementation of Fuentes et
al.’s work [14] for BN curve case and Ghammam’s et al.’s works [16,17] for KSS-
16 and BLS-12 curves. For scalar multiplication by prime p, i.e., p[Q] or [p2]Q,
skew Frobenius map technique by Sakemi et al. [26] is adapted.

4 Experimental Result Evaluation

This section gives details of the experimental implementation. The source code
can be found in Github6. The code is not an optimal code, and the sole pur-
pose of it compare the Miller’s algorithm among the curve families and validate
the estimation of [3]. Table 7 shows implementation environment. Parameters

Table 7. Computational Environment

CPU* Memory Compiler OS Language Library

Intel(R) Core(TM)

i5-6500 CPU @ 3.20GHz
4GB GCC 5.4.0 Ubuntu 16.04 LTS C GMP v 6.1.0 [18]

*Only single core is used from two cores.

chosen from [3] is shown in Table 8. Table 9 shows execution time for Miller’s
algorithm implementation in millisecond for a single Optimal-Ate pairing. Re-
sults here are the average of 10 pairing operation. From the result, we find that
Miller’s algorithm took the least time for KSS-16. And the time is almost closer
to BLS-12. The Miller’s algorithm is about 1.7 times faster in KSS-16 than BN

6 https://github.com/eNipu/pairingma128.git



Table 8. Selected parameters for 128-bit security level [3]

Curve u HW(u) blog2 uc blog2 p(u)c blog2 r(u)c blog2 p
kc

KSS-16 u = 235 − 232 − 218 + 28 + 1 5 35 339 263 5424

BN u = 2114 + 2101 − 214 − 1 4 115 462 462 5535

BLS-12 u = −277 + 250 + 233 3 77 461 308 5532

Table 9. Comparative results of Miller’s Algorithm in [ms].

KSS-16 BN BLS-12

Miller’s Algorithm 4.41 7.53 4.91

curve. Table 12 shows that the complexity of this implementation concerning
the number of Fp multiplication and squaring and the estimation of [3] are al-
most coherent for Miller’s algorithm. Table 12 also show that our derived pseudo
8-sparse multiplication for KSS-16 takes fewer Fp multiplication than Zhang et
al.’s estimation [31]. The execution time of Miller’s algorithm also goes with this
estimation [3], that means KSS-16 and BLS-12 are more efficient than BN curve.
Table 10 shows the complexity of Miller’s algorithm for the target curves inFp
operations count.

The operation counted in Table 10 are based on the counter in implementa-
tion code. For the implementation of big integer arithmetic mpz t data type of
GMP [18] library has been used. For example, multiplication between 2 mpz t

variables are counted as Fp multiplication and multiplication between one mpz t

and one “unsigned long” integer can also be treated as Fp multiplication. Ba-
sis multiplication refers to the vector multiplication such as (ao + a1α)α where
a0, a1 ∈ Fp and α is the basis element in Fp2 .

Table 10. Complexity of this implementation in Fp for Miller’s algorithm [single pair-

ing operation]

Multiplication
Squaring

Addition/

Subtraction
Basis Multiplication Inversion

mpz t * mpz t mpz t * ui

KSS-16 6162 144 903 23956 3174 43

BN 10725 232 157 35424 3132 125

BLS-12 6935 154 113 23062 2030 80



As said before, this work is focused on Miller’s algorithm. However, the au-
thors made a “not state-of-art” implementation of some final exponentiation
algorithms [16,14,17]. Table 11 shows the total final exponentiation time in [ms].
Here final exponentiation of KSS-16 is slower than BN and BLS-12. We have
applied square and multiply technique for exponentiation by integer u in the
hard part since the integer u given in the sparse form. However, Barbulescu et
al. [3] mentioned that availability of compressed squaring [1] for KSS-16 will lead
a fair comparison using final exponentiation.

Table 11. Final exponentiation time (not state-of-art) in [ms]

KSS-16 BN BLS-12

Final exponentiation 17.32 11.65 12.03

Table 12. Complexity comparison of Miller’s algorithm between this implementation

and Barbulescu et al.’s [3] estimation [Multiplication + Squaring in Fp]

KSS-16 BN BLS-12

Barbulescu et al. [3] 7534Mp 12068Mp 7708Mp

This implementation 7209Mp 11114Mp 7202Mp

5 Conclusion and Future Work

This paper has presented two major ideas.

– Finding efficient Miller’s algorithm implementation technique for Optimal-
Ate pairing for the less studied KSS-16 curve. The author’s presented pseudo
8-sparse multiplication technique for KSS-16. They also extended such mul-
tiplication for BN and BLS-12 according to [23] for the new parameter.

– Verifying Barbulescu and Duquesne’s conclusion [3] for calculating Optimal-
Ate pairing at 128-bit security level; that is, BLS-12 and less studied KSS-
16 curves are more efficient choices than well studied BN curves for new
parameters. This paper finds that Barbulescu and Duquesne’s conclusion on
BLS-12 is correct as it takes the less time for Miller’s algorithm. Applying
the derived pseudo 8-sparse multiplication, Miller’s algorithm in KSS-16 is
also more efficient than BN.

As a prospective work authors would like to evaluate the performance by finding
compressed squaring for KSS-16’s final exponentiation along with scalar multi-
plication of G1, G2 and exponentiation of GT . The execution time for the target



environment can be improved by a careful implementation using assembly lan-
guage for prime field arithmetic.
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