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Mantle Convection Modeling with Viscoelastic/Brittle

Lithosphere: Numerical Methodology

and Plate Tectonic Modeling

LOUIS MORESI,1� FRÉDÉRIC DUFOUR,1 and HANS-BERND MÜHLHAUS1

Abstract—The earth’s tectonic plates are strong, viscoelastic shells which make up the outermost part

of a thermally convecting, predominantly viscous layer. Brittle failure of the lithosphere occurs when

stresses are high. In order to build a realistic simulation of the planet’s evolution, the complete visco-

elastic/brittle convection system needs to be considered. A particle-in-cell finite element method is

demonstrated which can simulate very large deformation viscoelasticity with a strain-dependent yield stress.

This is applied to a plate-deformation problem. Numerical accuracy is demonstrated relative to analytic

benchmarks, and the characteristics of the method are discussed.

Key words: Mantle convection, viscoelasticity, brittle failure, finite element, Lagrangian, geodynamics.

Introduction

Solid state convection in the earth’s mantle drives the surface motion of a cool

thermal boundary layer comprising a number of distinct lithospheric plates. Motions

in the mantle are described by the equations of fluid dynamics for substantial

deformation. The rheology needed to describe deformation in the lithosphere is

highly nonlinear, and near the surface where temperatures are less than approx-

imately 600�C it becomes necessary to consider the role of elasticity (WATTS et al.,

1980). The strong correlation between seismicity and plate boundaries (e.g.,

BARAZANGI and DORMAN, 1969) makes it seem likely that plate motions are

associated with localization of deformation occurring when stresses reach the yield

strength of the lithosphere.

This picture of the earth’s interior is widely accepted by geophysicists (Fig. 1). It

clearly indicates that the fundamental process is thermal convection; plate tectonics is

the manner in which the system organizes. Therefore, a consistent model of plate
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behavior should contain a description of the convection system of which the plate is a

part. The principle difficulty for modeling is that plate tectonics is itself only a

kinematic description of the observations: a fully consistent dynamic description of

the motion of the plates is still sought. Another issue is the very large range of time-

and length-scales which must be considered in a complete model. For example, plates

span up to 10,000 km horizontally, the elastic thickness is less than 100 km, and the

relevant scale of plate bounding faults may be a few hundreds of metres.

There have been major steps towards the simulation of plate tectonics in recent

years by solving brittle/viscous fluid flow equations (e.g., TACKLEY, 1998, 2000;

MORESI and SOLOMATOV, 1998; OGAWA, 2001). The importance of elasticity has not

been quantified by such modeling. In the past, strongly viscoelastic convection

simulations with a lithosphere component have been limited to models with explicit

layering in which a nonconvecting viscoelastic layer is coupled to a viscous

convecting domain (PODLADCHIKOV et al., 1993). Viscoelastic mantle convection

simulations have been limited to considering constant viscosity (HARDER, 1991).

Models of subduction zones which incorporate viscoelasticity, faulting, and free-

surface behavior have generally been limited to modest evolution times, after which

further deformation produces severe remeshing problems (e.g., MELOSH, 1978,

GURNIS et al., 1996).
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Figure 1

A simplified cross section of the earth with major layerings shown to scale except for the upper boundary

layer which is exaggerated in thickness by a factor of roughly two.
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Having identified the need for efficient, large-scale convection simulations with

elastic effects in an evolving cool lithosphere, we present a method for simulating

viscoelastic-brittle materials in extreme deformation. The method is first tested on a

number of very simple benchmark cases in which analytic solutions are known, or

where the accuracy can otherwise be quantified in large deformation. We then

demonstrate the application of the method to mantle convection with a viscoelastic,

brittle lithosphere.

Mathematical Model

We begin our analysis in a general way with the classical momentum conservation

equation:

r:r ¼ f ð1Þ

where r is the stress tensor and f a force term. As we are interested only in very slow

deformations of highly viscous materials, (infinite Prandlt number) we have neglected

all inertial terms in (1). It is convenient to split the stress into a deviatoric part, s, and
an isotropic pressure, p,

r ¼ s� pI ; ð2Þ

where I is the identity tensor.

Viscoelasticity

We will employ a Maxwell viscoelastic model which has been used in previous

studies of lithospheric deformation where viscous and elastic effects are important

such as post-glacial rebound (PELTIER, 1974). SCHMALHOLZ et al. (2001) provide an

excellent discussion of the formulation of numerical schemes for large-deformation

viscoelastic modeling of geological folding, which highlights many of the issues which

our method is designed to overcome.

This model assumes that the strain rate tensor, D, defined as:

Dij ¼
1

2

@Vi
@xj
þ @Vj

@xi

� �
ð3Þ

is the sum of an elastic strain rate tensor De and a viscous strain rate tensor Dv.

The velocity vector, V, is the fundamental unknown of our problem and all these

entities are expressed in the fixed reference frame xi. Now we decompose each

strain tensor

De ¼ 1
3 trðDeÞIþ D̂De and Dv ¼ 1

3 trðDvÞIþ D̂Dv ; ð4Þ

where D̂D is the deviatoric part of D and tr(D) represents the trace of the tensor.
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Individually we express each deformation tensor as a function of the deviatoric

stress tensor s and pressure p:

s
r

2l
þ s

2g
¼ D̂De þ D̂Dv ¼ D̂D ; ð5Þ

where s
r
is the Jaumann corotational stress rate for an element of the continuum, l is

the shear modulus and g is shear viscosity.

s
r ¼ Ds

Dt
þ sW�Ws ; ð6Þ

where W is the material spin tensor,

Wij ¼
1

2

@Vi
@xj
� @Vj

@xi

� �
: ð7Þ

The W terms account for material spin during advection which reorients the elastic

stored-stress tensor.

The Jaumann derivative is an objective (observer independent) rate, although

others exist which account further for the effects of a deforming coordinate system.

In particular, the Olroyd derivative contains terms to account for material stretching

during advection. HARDER (1991) discusses the influence of the different objective

derivatives on convection solutions and finds that the stretching terms strongly effect

rapidly shearing boundary layers near corners. In our proposed application where

viscoelasticity is important in the stiff, cool thermal boundary layer but not

elsewhere, the simpler Jaumann derivative is probably adequate. However, we plan

to test this assumption in further studies.

The isotropic part provides a scalar equation for the pressure:

1

Ke

Dp
Dt
þ p

n
¼ �trðDÞ ; ð8Þ

where Ke is the bulk modulus, n is the bulk viscosity and D=Dt is a material time

derivative. We note that the form of equation (8) is unsuited to conventional fluids

as the material has no long-term resistance to compression. This behavior is,

however, relevant to the simulation of the coupled porous-flow, matrix deformation

problem where it is common to ascribe an apparent bulk viscosity to the matrix

material in order to model compaction effects on large scales (e.g., MCKENZIE,

1984).

Brittle Failure

Rocks in the cool lithosphere have a finite strength which may be exceeded by

tectonic stresses. For a full description of the lithosphere, therefore, it is necessary to

include a description of the brittle nature of the near-surface material. Here we use
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the term ‘‘brittle’’ quite loosely to distinguish fault-dominated deformation which

may result in seismic activity, from ductile creep which occurs at higher temperature

and pressure. In all recent studies of mantle convection where the brittle lithospheric

rheology has been considered, the brittle behavior has been parameterized using a

nonlinear effective viscosity which is introduced whenever the stress would otherwise

exceed the yield value syield. This approach ignores details of individual faults, and

treats only the influence of fault systems on the large-scale convective flow. It

produces a lithospheric strength profile in accord with Byerlee’s law (e.g., BYERLEE,

1978).

To determine the effective viscosity we extend (5) by introducing a Prandtl-Reuss

flow rule for the plastic part of the stretching, Dp:

s
r

2l
þ s

2g
þ k

s
2 sj j ¼ D̂De þ D̂Dv þ D̂Dp ¼ D̂D ; ð9Þ

where k is a parameter to be determined such that the stress remains on the yield

surface, and sj j 
 sijsij=2
� �ð1=2Þ

. The plastic flow rule introduces a nonlinearity into

the constitutive law which, in general, requires iteration to determine the equilibrium

state.

Numerical Implementation

As we are interested in solutions where very large deformations may occur –

including thermally driven fluid convection, we would like to work with a fluid-like

system of equations. Hence we obtain a stress/strain-rate relation from (5) by

expressing the Jaumann stress-rate in a difference form:

s
r � stþDte � st

Dte
�Wtst þ stWt ð10Þ

where the superscripts t; t þ Dte indicate values at the current and future timestep,

respectively. Equations (5) and (8) become respectively

stþDte ¼ 2
gDte

aþ Dte
D̂D

tþDt e þ a
aþ Dte

st þ aDte

Dte þ a
ðWtst � stWtÞ ð11Þ

and

ptþDte ¼ � nDte

bþ Dte
DtþDt e

kk þ b
bþ Dte

pt ; ð12Þ

where a ¼ g=l is the shear relaxation time and b ¼ n=Ke is the bulk relaxation time.

We can simplify the above equations by defining an effective viscosity geff and an

effective compressibility neff:

geff ¼ g
Dte

Dte þ a
and neff ¼ n

Dte

Dte þ b
ð13Þ
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Then the deviatoric stress is given by

stþDte ¼ geff 2D̂DtþDte þ st

lDte
þWtst

l
� stWt

l

� �
ð14Þ

and the pressure by

ptþDte ¼ neff DtþDt e
kk � pt

DteKe

� �
: ð15Þ

To model an incompressible material Ke and n are made very large such that Dkk � 0.

Our system of equations is thus composed of a quasi-viscous part with modified

material parameters and a right-hand-side term depending on values from the

previous timestep. This approach minimizes the modification to the viscous flow

code. Instead of using physical parameters for viscosity and bulk modulus, we use

effective material properties (13) to take into account elasticity. The discretization

of the stress rates in this manner produces an additional ‘‘force’’ term in the right-

hand side of (1) commonly called the internal force which consist of stresses from

the previous timestep or from initial conditions (which we refer to as stored

stresses).

fe;t ¼ neff

KeDt e
rpt�Dt e � geff

lDt e
r � st�Dt e : ð16Þ

Implementation of Yielding

Starting from equation (9), we again express the Jaumann stress rate in difference

form (in the Lagrangian particle reference frame) to give:

stþDte 1

2lDte
þ 1

2g
þ k

2 sj j þ
� �

¼ D̂DtþDt e þ 1

2lDte
st þ 1

2l
ðWtst � stWtÞ : ð17Þ

No modification to the isotropic part of the problem is required when the von Mises

yield criterion is used. At yield we use the fact that sj j ¼ syield to write

stþDte ¼ g0 2D̂D
tþDte þ 1

lDte
st þ 1

l
ðWtst � stWtÞ

� �
ð18Þ

using an effective viscosity, g0 given by

g0 ¼ gsyieldlDte

gsyield þ syieldlDte þ kglDte
: ð19Þ

We determine k by equating the value of jstþDte j with the yield stress in (18).

Alternatively, in this particular case, we can obtain g0 directly as

g0 ¼ syield= D̂Deff

�� �� ; ð20Þ
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where

D̂Deff ¼ 2D̂D
tþDte þ 1

lDte
st þ 1

l
ðWtst � stWtÞ ð21Þ

and Dj j ¼ ð2DijDijÞ1=2.
The value of k or g0 is iterated to allow stress to redistribute from points which

become unloaded. The iteration is repeated until the velocity solution is unchanged

to within the error tolerance required for the solution as a whole.

Computational Method

Having devised a suitable mathematical representation of the class of problems

we wish to model, we need to choose a numerical algorithm which can obtain an

accurate solution for a wide range of conditions. Our formulation, while simple, still

contains many difficult problems which require particular attention.

Numerical Scheme

In fluid dynamics, where strains are generally very large however not important in

the constitutive relationship of the material, it is common to transform the equations

to an Eulerian mesh and deal with convective terms explicitly. Problems arise

whenever advection becomes strongly dominant over diffusion since an erroneous

numerical diffusion dominates. In our case, the advection of material boundaries and

the stress tensor are particularly susceptible to this numerical diffusion problem.

Mesh-based Lagrangian formulations alleviate this difficulty, although at the expense

of remeshing and the eventual development of a less-than optimal mesh configura-

tion which increases complexity and can hinder highly efficient solution methods

such as multigrid iteration.

A number of mesh-free alternatives are available: smooth particle hydrodynamics

(e.g., see MONAGHAN, 1992 and references therein) and discrete element methods

(CUNDALL and STRACK, 1979) are common examples from the fluid and solid

mechanics fields, respectively. These methods are extremely good at simulating the

detailed behavior of highly deforming materials with complicated geometries (e.g.,

free surfaces, fracture development), and highly dynamic systems. They are generally

formulated to calculate explicitly interactions on a particle-particle scale, which is

usually impossible for creeping flow which has no inherent timescale for stress

transfer.

We have developed a hybrid approach – a particle in cell finite element method

which uses a standard Eulerian finite element mesh (for a fast, implicit solution) and

a Lagrangian particle framework for carrying details of interfaces, the stress history,

etc.
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The Particle in Cell Approach

Our method is based closely on the standard finite element method, and is a direct

development of the Material Point Method of SULSKY et al. (1995). Our particular

formulation could best be described as a finite element representation of the

equations of fluid dynamics with moving integration points.

A mesh is used to discretize the domain into elements, and the shape functions

interpolate node points in the mesh in the standard fashion. Material points

embedded in the fluid are advected using the nodal point velocity field interpolated

by the shape functions. A typical updating scheme for the location, xp of particle p is

xtþDtp
p ¼ xtp þ Dtp

X
nodes

vnNnðxpÞ ; ð22Þ

where v is the nodal velocity and N are the shape functions associated with the nodes,

n, of the element in which the particle currently resides. Dtp is the timestep used in

advecting the particles. In practice, a higher order scheme such as second- or fourth-

order Runge-Kutta produces a more accurate result. Particle updates can be done in

a predictor-corrector fashion, although to date we have found no benefit in doing

this.

The problem is formulated in a weak form to devise an integral equation, and the

shape function expansion produces a discrete (matrix) equation. Equation (1) in

weak form, using the notation of (2) becomes

Z
X

Nði;jÞsij dX�
Z
X

N;ip dX ¼
Z
X

Nifi dX ð23Þ

where X is the problem domain, and the trial functions, N , are the shape

functions defined by the mesh; we have assumed that no nonzero traction

boundary conditions are present. For the discretized problem these integrals occur

over subdomains (elements) and are calculated by summation over a finite

number of sample points within each element. For example, in order to integrate

a quantity, / over the element domain Xe we replace the continuous integral by a

summation

Z
Xe

/ dX
X
p

wp/ðxpÞ ð24Þ

In standard finite elements the positions of the sample points, xp, andthe weighting,

wp are optimized in advance. In our scheme the xp’s correspond precisely to the

Lagrangian points embedded in the fluid, and wp must be recalculated at the end of a

timestep for the new configuration of particles.

Constraints on the values of wp originate from the need to integrate polynomials

of a minimum degree related to the degree of the shape function interpolation, and
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the order of the underlying differential equation (e.g., HUGHES, 1987). These

Lagrangian points carry the history variables which are therefore directly available

for the element integrals without the need to interpolate from nodal points to fixed

integration points. In our case, the distribution of particles is usually not ideal, and a

unique solution for wp cannot be found, or we may find we have negative weights

which are not suitable for integrating physical history variables. We therefore store

an initial set of wp’s based on a measure of local volume and adjust the weights

slightly to improve the integration scheme.

There are additional complications involved in allowing integration points to

move through the mesh. These include: the need to divide a particle in two when

local strain becomes comparable to the size of the element in which it resides; and

the need to develop an inverse mapping scheme to compute particle coordinates in

the master element domain. For more details and benchmarks, see MORESI et al.

(2001).

Elastic Timestep

Note that the timestep used in advecting particles, Dtp, may differ from the

timestep used to calculate elastic stress rates, Dte. This is a reflection of the fact that

the elastic timestep is chosen from a physical perspective whereas the advection

timestep comes from the numerical representation. In general we choose Dtp to

ensure that particles do not travel further than the typical dimensions of their local

elements – a mesh based measure which it would be undesirable to see reflected in the

elastic timestep. We may wish to impose an arbitrarily small timestep to resolve

particle advection within a very fine mesh, or to account for a different physical

process such as thermal diffusion or chemical reactions. To make Dte correspond-

ingly small would produce a very low effective viscosity, increase the role of the

explicit elastic terms making up the internal forces, and potentially destabilize the

solution. For problems in which elasticity does not dominate the physical response of

the system, this approach is not appropriate. In order to keep the two timesteps

independent, however, an averaging scheme is necessary to ensure that the stress rate

is computed over the appropriate interval. In the update of internal stress we now

write:

st  / 2geffD
t þ geff

lDte
st�Dtp

� �
þ ð1� /Þst�Dtp ; ð25Þ

where

/ ¼ Dtp

Dte
: ð26Þ

This amounts to a running average of the stress tensor at a material point over a

time Dte, and accounts correctly for rotation.

9



BENCHMARKS

1-D Compression

Choosing a simple, first-order differencing scheme for the stress rate poses risks if

we want to obtain a robust formulation. In particular, as elasticity comes to

dominate a system (e.g., examining a shorter and shorter timescale) one might expect

the first-order scheme to experience difficulties. Two questions arise. What is a

suitable value of Dte to model a problem with a given relaxation time, and can we

reliably approach sufficiently small values of Dte withoutloss of stability?

A simple system which can address these questions is the compression at constant

velocity of a viscoelastic (relaxation time, a ¼ 1), compressibleunit square block. The

velocity boundary condition, v ¼ 0:1, was applied until the sample had undergone

90% shortening, then it was switchedoff and the stresses were allowed to relax

without further deformation. We solved

1

Ke

Dp
Dt
þ p

n
¼ V

hðtÞ ; ð27Þ

where the height of the sample, hðtÞ is computed from the applied compression

velocity, V . The solution for p under loading (V 6¼ 0) is

pðtÞ ¼ kðtÞ exp �Ke

n
t

� �
; ð28Þ

where k is determined by numerical integration using

k ¼
Z t

0

KeV
hðtÞ exp

Ke

n
t

� �
dt : ð29Þ

During relaxation in response to past loading (V ¼ 0)

p ¼ pðt0Þ exp �
Ke

n
t � t0

� �
: ð30Þ

The pressure was benchmarked (Fig. 2) against the analytical solution for a given

material (a ¼ 1:0), a given advection timestep (Dtp ¼ 0:001) and different values of

the elastic observation time(Dte). It is not surprising that taking values of Dte

comparable to or longer than the relaxation time produces inaccurate results. With

Dte ¼ a=10 or smaller, very accurate results are obtained. There is no loss of accuracy

associated with the fact that we take a running average of the stress-rate in order to

decouple the elastic and particle-advection timesteps. The only limitation from

elasticity on the choice of particle-advection timestep is to limit the maximum value

such that Dtp � Dte. We also observed no difference in the accuracy of the numerical

solution for Dte ¼ 0:01 for a range of 0:001 � Dtp < 0:01.
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Cantilever Beam

We next benchmark a case with material interfaces moving across mesh

boundaries, and where loading and relaxation are accompanied by rotation(eval-

uating the importance of corotational terms in the stress transport computation).

A simple example is the gravitational loading of a thick, heavy beam of

viscoelastic material. The beam dimensions were 0.1 wide by 0.75 thick, with

viscosity of 107, elastic shear modulus of 106, density 2500 and perfectly rigid

support at one end. Loading was conducted in a very low viscosity (g ¼ 0:01)

compressible, background medium. The beam was loaded by applying a

gravitational body force at time t ¼ 0, which was subsequently switched off when

the deflection of the beam reached 0.35 at the unsupported end. We varied the

intensity of the gravitational acceleration from g ¼ 5 to g ¼ 500 to produce

responses with different characteristic times(owing to the viscous resistance of the

embedding medium).

Figure 3 shows superimposed snapshots of the loading (a) and unloading (b) of

the beam for g ¼ 500. Under such strong loading, the beam reached the maximum

allowed deflection very rapidly (relative to the viscous relaxation time) and the load

was then released. Once unloaded, unrelaxed elastic stress in the beam caused it to

0 5 10 15 20
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Pr
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Analytical solution
∆te = 0.01
∆te = 0.1
∆te = 1.0
∆te = 10.0

Pressure
∆t = 0.001; V on top = 0.1

Figure 2

Numerical solution for pressure in a sample compressed in one direction for different elastic timesteps (Dte)
with fixed relaxation time (a ¼ 1) and particle advection timestep (Dtp ¼ 0:001). Compression starts at

t ¼ 0 and continues until t ¼ 9:0 (90% shortening) when the sample is allowed to relax without further

deformation in either direction. For comparison, the analytic solution is shown by circles.
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straighten out. The loading time was sufficiently short that negligible viscous

deformation occurred, allowing the beam to return to within 0.001 of its original

location.

The deflection of the mid-point at the unsupported end of the beam is shown in

Figure 4 for the range of loading intensities. Under light loading (g ¼ 5; 9) the

initial deflection of the beam is rapid, dominated by elastic deformation of the beam

and the viscous resistance of the embedding medium. In the absence of viscous

terms, the elastic stresses in the beam would come to an equilibrium with

gravitational loading. However, After t ¼ 0:0005, there was a small but observable

rate of end deflection still occurring through gradual viscous relaxation of the

elastic stresses. When the gravitational load was released, this relatively long period

of viscous relaxation resulted in a permanent deflection of 0.1.In the case g ¼ 5, we

observed the initial rapid deflection due to elastic deformation of the beam, and the

gradual deflection after t ¼ 0:0005. However, the rate of viscous deformation was so

low that the end deflection of 0.35 was not reached within the time limit imposed

for the experiment.

The fast-loading cases, g ¼ 20; g ¼ 500, suffered very little viscous relaxation

before unloading occurred. The stress state at the time of unloading was therefore

similar for the two cases. Although the loading rates were very different, the

unloading displacement curves remained almost parallel until most the elastic stresses

had been released.

To demonstrate the importance of computing the stress update correctly, we ran

the simulations omitting the corotational terms in the stress rate (dashed lines in

Fig. 4). The results were qualitatively similar, however the cumulative result of not

allowing for stress rotation was greater viscous deformation. This resulted in larger

permanent deformation at the end of the simulation, particularly noticeable in the

Figure 3

A heavy viscoelastic beam of length 0.75 is subjected to a gravitational load at time t ¼ 0 which is released

when the end deflection reaches 0.35. The superimposed configurations correspond to approximately equal

time intervals.
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g ¼ 500 case where there is virtually no final deformation if the corotational stress

rate is computed correctly.

Extension of Test Sample

The yielding algorithm is benchmarked by measuring the second invariant of the

stress and displacement at points within a viscoelastic beam which was extended or

compressed at a fixed rate, v ¼ 5, by an imposed velocity boundary condition at one

end. Figure 5 indicates the geometry of the numerical experiment: the mesh was

initially 3 units long by 1 unit high. The sample was 0.5 units thick, occupying the

central half of the mesh, and was surrounded by a low viscosity, compressible
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9 Small deformation
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20 Small deformation
500
500 Small deformation

Elastic response
to load
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Figure 4

Deflection as a function of time for the heavy viscoelastic beam for numerous different load intensities.

Dashed lines correspond to simulations where the corotational terms were omitted from the computation

of the stress rate.

Test material

F
ix

ed Compressible background

VFree-slip surface

Vertically fixed node

Figure 5

Geometry for simulation of the extension of a viscoelastic bar with yield stress.
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material. Three sampling points (a,b,c) for recording the stress invariant and

displacement were chosen within the sample initially placed along the mid-line at

x ¼ 0:2; 0:5; 0:8.

The material parameters of the sample (g ¼ 108, l ¼ 106) were chosen such that

the relaxation time was long ða ¼ g=l ¼ 100Þ compared to the duration of the

experiment ( 0.25) so that the material behaved nearly as an elastic solid.

Figure 6

Simulation of the extension of a viscoelastic bar with yield stress. Black shading indicates regions

deforming at yield. Embedded marker points which follow the material deformation are indicated by a,b,c.
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Figure 6 shows the progress of the experiment. Initially, deformation was

uniform, resulting in gradual stretching of the sample (t � 0:180). The entire sample

reached the yield point at the same time (t ¼ 0:212) and initially deformed uniformly

with all points yielding. However, the deformation soon localized to a number of

shear bands (t ¼ 0:220), then to two places along the sample (t ¼ 0:227), and finally

to a single location (t ¼ 0:2359)which focussed all subsequent deformation until the

sample failed entirely (t � 0:2404). The frames are not uniformly spaced in time since

the post-failure behavior occurred on a considerably shorter timescale than the

gradual loading. Note, for example, that the necking and separation of the two parts

of the sample occurred with barely any movement of the end boundary.

Even with a material which has no strain softening, there is a tendency for

deformation to localize in a particle-in-cell representation of the sample. This occurs

because the sample boundary is never perfectly flat (as in real life) due to numerical

fluctuations in the particle locations, and to a mild interference (Moiré) effect

between the array of particles and the underlying grid. These effects produce small

fluctuations in the stress field which can result in early failure at certain points. Once

nucleated, shear bands can propagate from these points – ultimately resulting in

necking and complete separation of the two halves of the sample.

In Figure 7a, we plot the stress at each of the sample points in the material as a

function of time for a fixed end velocity. The evolution of stress within the beam was

close to linear – apart from the influence of the changing of the beam thickness during

deformation. The yield stress of the material was 3� 105. The stress increased within

the sample at the same rate for all the sample points until the yield stress was reached.

At this stage, the stress was not able to increase any further, and the material

deformed uniformly at the yield stress. Once localization had occurred, however,
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Figure 6.
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points outside the necking area begin to unload, and the stress dropped dramatically.

The rate at which stress drops from yield back to zero is governed by the viscous part

of the rheology, and the presence of a low viscosity background material.

The unloading is more clearly seen in the plots of the displacement of the sample

points through time in Figure 7b. Before yielding, the displacement of each sample

point increases monotonically. Once yielding occurs, and the deformation localizes,

the sample points on the left of the break (a,b), under the action of stored elastic

stresses, rapidly retreat towards their original locations. The sample point on the

right of the break (c) moves rapidly to the right as the elastic deformation relaxes.

It is worth discussing at this point a consequence of the fact that the yield

criterion only applies to the deviatoric stress. During the separation of the layer, the

pressure becomes enormous at the constriction, which obviously could not occur in a

real material. To model this situation in a more realistic manner we would need to

complement the yield criterion on the deviatoric stress with a suitable tension cutoff

condition.

Application to Plate Dynamics

Physical Model Description

We treat the earth on a large scale as an incompressible, viscoelastic Maxwellfluid

with infinite Prandtl number in which motions are driven by internal temperature

variations. The force term from equation (1) is a gravitational body force due to

density changes. We assume that these arise, for any given material, through

temperature effects:

r � s�rp ¼ gq0ð1� aT T Þẑz ; ð31Þ

where g is the acceleration due to gravity, q0 is material density at a reference

temperature, aT is the coefficient of thermal expansivity, and T is temperature. ẑz is a

unit vector in the vertical direction. We have also assumed that the variation in

density only needs to be considered in the driving term (the Boussinesq approxi-

mation: BOUSSINESQ, 1903).

The equation of motion is then

rðgeffD
tþDteÞ � rp ¼ gq0ð1� aT T Þẑz�r geff

st

lDte
þWtst

l
� stWt

l

� �� �
: ð32Þ

The velocity field u and pressure at t þ Dte can be solved for a given temperature

distribution and the stress history from the previous step.

Motion is driven by the heat escaping from the interior. The energy equation

governs the evolution of the temperature in response to diffusion of heat through the

fluid. For a given element of fluid,
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DT
Dt
¼ �jr2T ; ð33Þ

where j is the thermal diffusivity of the material.

Rheology

The viscosity of the mantle at long timescale is known to be a complicated

function of temperature, pressure, stress, grain-size,composition (particularly water

content) etc. KARATO and WU (1993) give the following expression for mantle

deformation

g ¼ 1

2A
l
s


 �n�1 h
b�

� �m

exp
E� þ PV �

RT
; ð34Þ

where A is a constant, l is shear modulus, b� is the Burgers vector, T is

temperature, s is the second invariant of the deviatoric stress tensor, E� is an

activation energy, V � and activation volume, R is the gas constant, h is the grain

size, n is a stress exponent, and m a grain-size exponent. Despite this complexity,

the dominant effect on the viscosity from the point of view of the large-scale

dynamics of the system is the effect of temperature (e.g., SOLOMATOV, 1995). To

minimize the dimensionality of the parameter space we need to study, it is common

to use the single-parameter Frank-Kamenetskii (MCKENZIE, 1977; MORESI and

SOLOMATOV, 1995) approximation to the viscosity law to obtain the following

simplification,

g ¼ A0 exp �CTð Þ : ð35Þ

In making these assumptions, we have implicitly required that the shear modulus, l
does not vary with temperature. This is an assumption justified by seismological

observations which ascribe no more than a few percent variation in seismic velocity

to thermal perturbations (e.g., WOODHOUSE and DZIEWONSKI, 1984). In comparison

to its influence on viscosity, the influence of temperature on shear modulus can be

neglected. Consequently, we assume that the relaxation time of the mantle and

lithosphere is entirely controlled by the viscosity. We expect to see high relaxation

times only in the slowly-deforming lithosphere, and negligible relaxation times in the

fast moving interior. It is this fact which makes it whatever possible to solve this

problem: without relaxation of stresses in the rapidly evolving interior, we would

expect unresolvably small-scale structures dominated by elastic stresses to control

convection in the mantle.

Mantle Convection Simulation

The benchmarking demonstrated how complex behavior is present even in

systems with the most elementary boundary conditions. We cannot hope to present a
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comprehensive examination of the influence of viscoelastic effects in the lithosphere

when driven by mantle convection, and where yielding may take place at high

stresses. Instead we present three convection models with different relaxation times as

an indication of the styles of interaction we expect to see.

The reference simulation is for viscous convection with highly temperature

dependent viscosity given by

g ¼ 105 exp �11:5129T 0ð Þ ð36Þ

where T 0 is dimensionless temperature varying from 0 at the surface to 1 at the

base. This produces a viscosity contrast of 105 across the entire layer. The

Rayleigh number based on the interior viscosity is 3� 106. The yield stress is given

by

sy ¼ 104 þ 0:4p0 ; ð37Þ

where p0 is the dimensionless hydrostatic pressure. There is also a strain-softening

effect: the yield stress is reduced by a factor of two linearly with strain accumulated at

the yield point up to a strain of 0.5. Above this strain, the yield stress remains

constant. If a material point is heated above a dimensionless temperature of T 0 ¼ 0:5,

the accumulated strain is reset.

Simulations of this kind are capable of generating considerable realism in certain

respects. For example, LENARDIC et al. (2000), examine the interaction between

subducting slabs and mobile belts using this approach with a viscous formula-

tion.The first-order behavior of such systems is similar to that of the earth’s tectonic

plates: surface velocity are comparable to interior ones, large regions of the surface

deform at very low strain rates compared to narrow boundary regions, and so on.

However, in more detail the simulations fail to predict the dynamic behavior of

subducting slabs. For example, slabs rarely roll-back (retrograde subduction) in the

virtual mantle, whereas this is a near ubiquitous behaviour in the real Earth

(ELSÄSSER, 1971). Can elastic effects, which tend to unbend the slab, play a role in

producing roll-back?

In the absence of elasticity the convection simulation evolved to a steady state

condition with a single downwelling, a nearby surface divergence and a characteristic

‘‘rolling-forward’’ of the downwelling. The upper thermal boundary layer was

inverted onto the lower boundary (Fig. 8a). When we introduced elastic stresses the

downwelling was immediately seen to be considerably straighter (Fig. 8b) in the

upper part of the mantle due to the strong elastic stresses (Fig. 8c). The evolution was

also backward-rolling, i.e., with the upper thermal boundary layer landing the right

way up on the lower boundary after ‘subduction’.

This status was temporary, however, as the system failed to reach a thermal

steady state. Strong oscillations in the surface heat transport were observed (Fig. 9a

compared to 9b). The system soon evolved from rolling-back to a state with a more
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symmetrical, stationary downwelling, and subsequently to a highly time-dependent

state with rolling-forward of the downwelling.

When the relaxation time was increased from 0.002 to 0.005, the system evolution

became unexpectedly like the viscous case. The downwelling continued to roll

forwards, with slight fluctuations emerging from short spells where the downwelling

began to unbend. These fluctuations in the geometry of the downwelling were minor,

however, with a mild influence on surface velocity, and, consequently, observed heat

flow (Fig. 9c).

The influence of elasticity is to produce a pronounced tendency for the

downwellings to roll backwards. In purely viscous models the tendency is to roll

forwards. However, the effect of increasing the elastic stresses in the end is to modify

the manner in which the lithosphere yields. This highlights the unpredictability of

complex nonlinear systems and serves as a warning that application of these

simulations to modeling of plate tectonics requires considerable care and a thorough

attention to data which constrain the evolution of specific plate boundaries.

Obviously, this model is substantially simplified compared to the earth – the lack

of a third dimension, curvature, and continents are clearly deficiencies which must be

addressed. Fortunately, however, the introduction of these complicating details does

not require any new algorithm development, only considerably greater computa-

tional resources.

(a)

(b)

(c)

Figure 8

Example: Snapshot from two convection simulations showing (a,b) the thermal field (and regions of

yielding), and (c) the magnitude of the stored stresses. The simulation in (a) has no elasticity, the simulation

in (b,c) has a maximum relaxation time at the surface of 0.002 compared to a surface velocity of 100.

Regions with high strain rate due to yielding are shown in yellow.
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Discussion

We have demonstrated a model consisting of a set of rheological relations and a

computational scheme for viscoelastic-plastic materials. The algorithm is designed to

introduce elastic effects into convection simulations where temperature-dependent

viscosity and yielding dominate the mechanical behavior. The viscosity of the mantle

and the mantle lithosphere is very strongly dependent on temperature(several orders

of magnitude variation over 1000�C) whereas the shear modulus is not strongly

affected (there is only a modest change in seismic wavespeed due to temperature).

Therefore, elastic effects become unimportant outside the cold thermal boundary

layer where viscosity is extremely large. The influence of elastic stresses is likely to be

felt at the subduction zones where the lithosphere is bent into the interior of the

earth. In these regions stresses are typically close to the yield stress – a fact which

allows the plates to move in the first place.

Our methodology is limited to a coarse continuum description of the subduction

zone system at a resolution of a few km. This may give us valuable information into

the nature of plate tectonics, the thermal conditions in and around subducting

lithosphere, and the stress state of the system. However, the resolution is too coarse

to provide any information about the detailed mechanics of the failure of lithospheric

fault zones and the conditions for a major failure to occur. For this we require a

coupling of the large-scale code with an engineering-scale code (e.g., DEM or small-

deformation Lagrangian FEM) using the large-scale to provide boundary conditions
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Plot of Nusselt number (a measure of hear transport efficiency) against time for three simulations with (a)

purely viscous rheology, (b) relaxation time 0.002, (c) relaxation time 0.005. Relaxation times are based on

the viscosity at the surface.
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for the small scale. The issue of scale-bridging is important in many areas of

numerical simulation. Essentially the same difficulties arise in material science where

the atomic scale is best treated by molecular dynamics codes however the large scale

must be treated as a continuum (e.g., BERNHOLC, 1999).
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