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Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics

Sergei K. Godunov, I. Bohachevsky

The method of characteristics used for nume_ rical computation of solutions of fluid dynamical equations is characterized by a _ large degree of nonetandard nesa and therefore il not suitable for _automatic computation on electronic computing machines t especially for problems with a large number of shock waves and contact discontinuities.

In 1950 v. Neumann and Richtmyer (1) prOp<!ted to use, for the solution of fluid dynamics equations, difference equationa into which viscosity was introduced artificially; this has the effect of smearing out the shock wave over aeveral mesh points. Then it was proposed to proceed with the co�putations across the shock waves in the ordinary manner.

In 1954 Lax (Z) published the "triangle'' acheme suitable for computation across the shock" waves. A deficiencfof this scheme is that it doea not allow computation with arbitrarily fine time steps (as compared with the space steps divided by the sound speed) because it then'tranaforma any initial data into linear functions. In addition this scheme smears out contact discontinuities.

The purpose of this paper is to choose a scheme which is in some sense best and which still allows computation across the shock waves. This choice is made for linear equations and then by analogy the scheme is applied to the general equations of fluid dynamics.

Following this scheme we carried out a large number of computations on Soviet electronic computers. For a check, some of these computations were compared with the computations carried out by the method of chara cter• istics .

The agreement of results was fully satisfactory.

I have found out through the courtesy of N. N. Y anenko that he has also inves tigated a scheme for the so lution of equations of fluid dynamics which is cl os ely related to the scheme proposed in this paper .

Chapter I

Finite Difference Schemes for Linear Equations § 1.

A new requirement on difference schemes

To s olve the differential equations of mathematical physic s one often use s the method of finite differences. It is natural to require of the solution obtained by an approxima te method that its qualita tive behavior sh_ould be similar to the behavior of the exact solution of the differential equation. Such a require ment , however, is not always satisfied.

For example, consider the heat equation

�!.t. i1za ---- �t � "/.�
If initially the te mpera tur e li.. is a monotonic funct ion of � then, clearly, it will remain such for all later times. When solving this equation by a finite difference scheme, even though it be stable and sufficiently accurate, �t may happen that the tempe rature u.. which is monotonic initially will develop a maximum or a minimwn at some late r time.

where u,,� are :1'-.rmh,

As an 'example c on s ider the scheme:

is the value of temperature u. at the point whose coordinates t = rt l" • This scheme is stable for all po siti ve I' •tjh2 • Prescribe the following initial conditions:

a,� • 0 for m > 0, (/ " .. ! lor m r 0.

1/l "'

After the firs t time step we obtain for the quanti ty

•of equations which when solved yields:

t./ m an infinite sys tem For m ten ding to t-ooJ u.;, tends to 0 , and f or m tending to -oo, tl.� tend s to l. It is not difficult to show by an analysis of �e above solution that its monotonicity will be always violated f or f' > 3/2 .

It is na tural that f or r > 3/2 this s cheme should not be cons idered as a sati sfactory one. However it must be noted that the effects connected with nonmonotonicity will appear only in the solution of problems with sharply varying initial condition s. Smoo th solutions will be computed by this scheme with s uffi cient accuracy with a suffici en tly fine mesh.

Analogous fac ts obtain also for difference scheme s devised to solve the equation .

au.

au.

----•

at b%

It is well known that the solution of this equa tion has the form of a stationary wave * ll.. = u.. (zrt), and if U.. was monotonic for t •0 it will remain so afterwards.

Le t us examine examples of difference schemes for thi s

equation an d verify whe ther they preserve monotonicity of solution.

1.

The "triangle" scheme of first-order accuracy:

A "stationary" waves is defined as one which is stationary in a coordinate system moving wi th th e wave velocity. Here and in the following we shall denote U0 • t.L{t0, X0), U.IJ=t.L{t0-tz:, �.J, "-t = u(t0• �0 rh), LL.1 �u(t0, X.-h) etc.; � and h =time a.nd space steps respe ctively, An arbitrary monotonic function on the mesh of size h can be represented as a sum of step functions each of which changes its value only in one mesh interval and such step functions are either increasing or decreasing . Using tqis fact we may conclude that the " triangle" scheme transforms an arbitrary monotonic function into another monotonic function.

IJ. o • _u .... .; , _ r-_ u_ . _ t + _"t"_ • { u. t -u -I) .

2.

The scheme " tripod " of second or der accuracy:

This scheme is stable for f' ' I . If again we take the step function tli. = 0 . fo,. � " 0 f u,� -t lor � � I for initial data at t = 0 then from this scheme we obtain at t = t:' , 1-.,..z u,O -

, 2 r-f'2 u,'-I+ ----, 2 
,.

Sl'nce

1' ) #!2 for 41 < I h "1 > I d th • • • • d r ' •
, t en "<-an e monotomc1ty 1s v1olate .

Note that the scheme of second order accuracy expressing the value u./' in terms of u,, u.0, IL-l is unique; i.e., among these scheme s there are none which wculd t rans form every monotonic function into other monotonic one s . § 2.

Criterion to verify the monotonicity condition

We begin by noting that difference s ch e me s can be either explicit or implicit.

An explicit scheme expresses the value of tL.

at the desired point only in term s of known values of U. at the prec edin g time interval.

For a l i near equa tion wi.th constant coefficients such a scheme has the form

Here the sum can be either finite or infinite. In the latter case the differe nce scheme will be def ined not for all mesh !unc � ions { ""'} but only for those which do not increase very rapidly with the increase of m ; the allowable rate of growth is determined by the rate at which the coefficients Cj decrease:

It is necessary that the sum L c,.rf:_ (1.. " should c onver ge .

.An implicit scheme is a system d. equa tions for the determination of the unknowns ll111 , i.e., it has the form

We assume that the left hand sum is finite.

An example of an implicit scheme is the dif!e renee scheme for the heat equation exami ned at the be g inning of Section 1 of this chapter.

Implicit schemes are of value to us only because they determine l.LJ, uniquely.

We shall seek { u.A-} in the cl as s of sequences bounded for I -tl-+ oo . In this class uniqueness holds obviously for all schemes for which the difference equations do not have a nontrivial bounded solution. As is well known the general solution of these difference equations has the form where A;. are the roots with multiplic ity -k• ' of the equation From the exam ination of the express ion for the general solution it is clear that in order to ensure uniqueness it is neces sary and sufficient that the equation not have roots of modulus one. In the following we shall assume that all difference schemes with which we will deal �atisfy this condition.

It is not diff icult to show that each su ch difference scheme can be solved for U.l., and written in the form 'd thus converted into an explicit scheme. Therefore, even though in thiS and the following paragraph we will consider only explicit schemes, the results o btained can be applied directly to implicit schemes.

We shall not consider schemee.-.whic h connec t more than two layers.

We shall now give a simple criterion allowing one to verify easily whether an arbitrary diffe rene e scheme transforms monotonic functions into monotonic ones or not.

In order that the diffe renee sch�m e U, � = 'l.,c,_, u,, should transform all monotonic functions into monotonic ones with the same sense of growth it is necessary and sufficient that all Cm be nonnega tive.

Proof: Suppose Cm > 0 and { Un} monotonic. For the sake of definiteness assume that {u,} inc reases, i.e., that all u., -u.n-f are nonne g ative. . In this way the sufficienc y of the condition is

We now prove the necessity. Suppose for example, a, < 0 0 Let u � """ 0 fol' � < m0 -/.

Then u�-u-1 = c, < 0 0 , which is not possible because of the hypothesis that the scheme transforms monotonic sequence s into monotonic one s with the same direction of g rowth. Thus the necessity is demonstrated.

It is not difficult to show that if all then the diffe rence scheme is necessarily stable. Indeed and ,Z c , -1,

But because of our assumptions maz lem l ( f ; there fore L:lu ml .( L',lu J and this means that the scheme is stable.

The condition L em ""'I appears to be quite natural for the schemes devised to solve, for example, the follow ing equations:

and means that the solution of these equations U. = const. is also a solution of the diffe rence equations.

As an application of the monotonicity criterion listed above we shall now give the derivation of a most accurate scheme of first order accuracy for the equation ou/Dt • Juj�-x ' which expresses the value (L0 in terms of u..,, u1, "'--! and satisfies the monotonicity condition (as we remarked at the end of Section 1, there are no such second order schemes).

It is easily verified that the general form of a first order scheme --connecting only the above listed points --is the following:

U4 • 11.0 -r f (u1-"-t} + k (u., -2u� + u_,) = • (-; f -k) lit -1-(f-Zit)�o +(A-;J. . �-t•
For -k • r;:f2. this scheme is of second order a<;=curacy and for an arbitrary

i its last term is { "Jf! -�.i:! ) h 2 U.r.�••
In this way the problez:p is reduced to the determination of � which differs least from f'2/2 and such that all coefficients of the scheme are nonnegative {this last requirement is necessary in order that th� scheme satisfy the monotonici ty condition). Clearly it is necessary to take ,t � r/2 .

Then the scheme becomes As we noted at the be ginning of Section loss of generality to consider only schem es of the form , :

2 it is sufficient without
We shall say that this scheme is of second order accuracy if it is exact for ..

initial data that are a polynorninal of second degree, i.e., if for such initial

.•.
conditions the result of computation accor d ing to the scheme agrees with the solution of the differential equation at the point c onside red . Prescribe

Then at inte ger points t.

I I u.1o z) = -----• � )2 (t , h 2 4- ( 1)2. f U '1 • f./.. ( 0, II h) -t) -Z -4-• The solution of equation f)u./&t -()u I a� wi th these initial conditions is / ("! T t ')� I tL It, 't) -h -2 -4-•
Suppose now we wish to compute the value u.P • tL (r:, ph) by the diffe renee scheme. Since we assume that the scheme has second order accuracy we should obtain the exact val�e of the differential equation because the initial function is a second degree polynomial; i.e., we obtain

1 t)� I a�' • l P t--r -2 -7 •
Using the difference scheme we arrive at the equation If this scheme satisfied the monotonicity condition then all a,_p would be nonnegative and since ( n -1/2.)2 -I /4-) 0 we would obtain that for all f'1 {p + f' -1/E)z-1/.f..? 0. Actually it is not so.

Indeed if .t > -I' > L -1,
where ./!, is an integer, then Construction of the best scheme for a system of two equations

We shall now inves tigate the system of equations /,( + ffv--Fr (1-+ liB t), ll.-ff 11"' • F_ ('j,-fAB t).

Obviously if lL + fA /B � or lL--{A/8 V"' were monotonic initially then they would remain so for all later times. It is natural therefore to impose on the diffe renee scheme for equations ( 1) the requirement that it preserve this monotonici ty.

It is not difficult to verify that any linear difference scheme for the system (1) expressing the values u" , t/"0 in terms of t.LrJ Vf, a.tJ, will have the form

We shall not consider schemes which use for the computation of tl.0 , 'rrD

•values of U and � at the initial time in more than three points because in solving problems with boundary values such schemes require considerable modification near the boundary; this is awkward when standard machine computations are used.

l 2

(2)

Multiplying the second of equations (Z) by ± (A/B and adding the result to the first we obtain L+M±N (f±K ff

+ 2 [{a±H7 -z(utlf�l + ( ff 1 J L -M ± N {f + K ff �(. {f ). +\ll ± -v + tJ.. f --v- . 8 -f 2 8 ( -2 tiL" rr v-J. :1-r� f If"" J_ J (3) 
In these formulae consider first the upper sign. Suppose initially U.. + fA/8 11" •0 everywhere and u-fA/B V'•l

eve rywhere except at one point where u. -/A/8 11" + I . Obvioully if L -M -r N fA/8 -lf.. 'fA/8 =f: 0 then the values of 1./., + tA/8 v--will be differ ent from zero at three points and therefore the monotonicity of t.J.. + /A/8 Zl" will be violated.

From this we conclude that necessarily

Choosing in (3) the lower sign and carrying out analogous considerations we obtain that, also necessarily, As we have shown at the beginning of this section the equation

L+M-N{f-K ff •0. Introducing the notation L r M T Alii r K ff-g, L -M -tN (f-X ff =rJ, equations (3 
U + /A/B 'V' satisfies (3a) 
In the same way in which we chose the most accurate scheme for the equation bu/8t-aujar-( see § 2), which transforms monotonic functions into monotonic ones, we can convince ourselves that for a. of -/A/8 11-' the most accurate scheme satisfying the monotonicity condition will be one with !] • •r j{B for u-tA/8 1.1'. one with B -• t"/{8 . By su bstituting these expressions for g and G in (3a) and adding the equations we obtain the expression for U.. 0 ; by subtracting one second from the first and multiplying the difference by {B/A we get the expression for 7/"0 : Physical interpretation of the constructed scheme

We shall now give a physical interpretation for the difference scheme (4). Conside r the equations of fluid dynamics in Lagrangian coordinates:

a' '-f 8 ofJ(v) • o �t DZ • 811' _ 8 au • o.
at a�

Here a =v elocity, p =pressure, '11-' = specific volume.

In the case when p (zr) is a linear function

(5) (This may be assumed for the case of acoustic waves. ) System (5) is identical with (1).

au _ A 071' , at 'I% ;I 'II' � u.. -•B -, » t a-r.
(

) 1 
for which the scheme (4) was constructed. Using the equation of state (6) this scheme can be rewritten as follows velocities and pressures, the so-called resolution of the discontinuity will take place at this point. Namely. sound waves will spread to the right and left of the point i with the velocity :1 .., ± fAS (this is the equation of characteristics !or the system (1 )). In front of these waves u. and p will Between the waves spreading from the point f the values of u. and p will be constants which can be computed using relations satisfied on a s ound wave.

u o �a. _ �8 [(-Pt; p, _ ({ "' ;"•) _ {-�'• :1'-L _ j � . u,; "-t )] , 1't -,b0 _) -("-o + U. -I _ Po -P-t) l l• 2{f) 2 zf[J
Consider the first of bur equa tiona • From which it follows that for an arbitrary contour

¢ udz -Bp(r)dt -=0.
It is not difficult to obtain as a consequence of thi s integral identity that the discontinuitie s in u.

a.nd p must satisfy the condition (u)dr-8 (p}dt =0. Denoting the values of U and p between the propagating waves by tl and P respectively we arrive at the system of equations

(v-a1) {-f-(P-;D t ) -o, ( u -u �) {f + ( P -P-i) • 0 • Solving it we find p = "Pt +I'D 2 u., + Uo IJ= --- z.
-/A. u.,-uD ' 18 the values lli and f1 are to remain constant it is necessary to have t" < h/fAB . Fortunately this ine qu ality agrees with the stability condition for the scheme (4).

Clearly, after the time interval 't' the values of t.i. and 7r' be tween the points � and -; will no longer be constant. Let us denote their mean values by u.<' and 71'" • For their computation we shall use the law of conservaticrp of momentwn which yields the first of equations ( 8)

and the conservation of volwne which gives the second on e.

The physical interpretation of the difference scheme (4} will serve as a basis for the construction of a computation scheme for the general system of equations of fluid mechanics.

Chapter ll

An A pp roximate Scheme for the Com p utation of Gene r alized Solutions of the Equations of Fluid Mechanics § 1.

Formulation of the problem

Our aim will be to construct the difference scheme for plane As is well known this system of equations does not always have a smooth solution even for smooth initial data. Therefore one also must consider generalized solutions with discontinuities --shock wa ves .

After S. L. Sobolev, we shall call the system of functions 

¢ rdz + Butft • o, ¢ (£+: )tiz-Bptdt -o, ( 2 
)
and this is the usual formulation of the conse rvation laws. From the conservation laws it is easy to e stabl is h , as is done in every course of gas dynamics, the relations ac ross the discontinuities (shock waves):

(w-u.-Bp J • 0, [ ttrV" -1-Bu] • o, (3) 
[ fU{E + �'1-epu] = o.
Here w-= :: is the velocity of the shock wave and [ ] means the jump of the quantity ( the difference of its values on the right and left of the wave).

We must note that in order to ensure uniqueness it is necessary to exclude rarefaction shock waves; for this it is sufficient to require that around any contour the following integral inequality is satisfied:

where J is the entropy determined by the known methods of thermodynamics as a certain function of p and 1/-' .

We propose to cons true t for system (1) an approximate scheme with the proper ty that as the size of steps diminis he s the solution obtained by this scheme will c onv erge to the generalized solution of the system.

We shall construct the difference scheme in such a way that for the linear case of t sound waves it will coincide with the scheme considered in the previous chapter which transforms monotonic waves into other monotonic ones. The application of schemes wh ich do not possess this property doea not appear to be intelligent since the effect of non monotonicity appears precis ely in regions where the solution varies sharply which are the shock waves. In attempts to compute shock waves using schemes which do not satisf.y the monotonicity condition one obtains for them " humped11 profiles and the humps The reader will have no diff iculty in transferring all our con sidera tions to th is si � ple r case. Let us state only that as the uniquene s s c � ndition, the law of increase of entro p y c}Stiz, .)01 in this case should be replaced by the la w of dis sipation of energy § 2 .

The desc ription of the computational scl'-e_!!! ! We w ill now d e s cribe the propos ed sche m e .

Let us ima g ine that the gas whose behavior we wi sh to c omp ute is divi ded into a sequence of l a y e rs by p oints with integer labels 0, 1, 2, 3, 4, ... and the layers themselves are numbered by 'half integers" .! , �,!:.. .,.

2.

2.

2.

We shall assume that the quantities t&,VJE,p = p{v;£) are initially constant inside each la y er. At the boundary m between the two adjac ent The rules for computation of P and (/ a.re derived in any course of gas dyna mics (see e. g. ( 3)). We shall list the formulae for !', and (/117 in a. form convenient for u s in Section 4 below.

After the value s of fin are determined at all integer points we determine the values which a, z.) E will assume when the time interval t' has elapsed by formulae analogous to (8) of Chapter I:

Here � denotes the mesh size of the scheme, i.e •• the difference in Lagrangian coordinates for any two adjacent inte ger points.

As in Chapter I we must note that after the time interval 'Z'

t',

has elaps e d the values be twee n two successive integer points will no longer _f I I be constant and the computed values (J,/I?+J., v"�'+"S1 £"''�-r.

represent only avera ges over the la yer which replace the ir true distribution with a cer tain accuracy that is characteristic of the app roxima te method described above. § 3 .

If with the diminishing mesh size the difference solution con verges, then it converges to the generalized solution of the dilfe rential equation Now as suming that as the mesh size decreases , u., v; E computed by the difference sc heme (4) converge to certain piecemeal smooth 21

limit functions, we shall show that for these limit functions the conservation laws (2) are satisf ied, i . e ., these limit functions are generalized solutions * of (1 ) or ( 1 a ) .

Let us t consider simple rectlinear contours of the form represented in F igure 1. On this figure, crosses denote the half-integer points located inside the layers and circles, integer points.

From (4) it follows that Az � Az A, h L (.(, -h l u. -8 [ p� + 8 [ P�. A1 143 � A�
If as the mesh size decreases the mesh functions u, Z1 E, P, (/ converge to some limit £unctions defined in the plane (these limit £unctions we shall denote by the same letters as the corresponding mesh functions), then from the difference conservation law (Sa) it follows that for the limit functions around an arbitrary rectlinear contour, �adz+ BPdt -o.

From the fact that (5) is satisfied for an arbitrary rectlinear contour it follows that (5) is satisfied for any contour.

From the formulae f�r P and IJ de rived in the fo l lowing section it follows that if in the re gions where the solu tion of the differential (Sa)

(5) equation is smooth the mesh functions, u, v; E c on verge to these solutions, then in these regions the limit functions for P and /' coincide. Using this and the fact that the discontinuity lines cannot influence the values of the integrals , we arrive from (5) at the equation We shall prove in S 4 that for the limit functions the law of inc rease of entropy (if the syst em considered is ( 1)) or of dissipation of energy (if the system considered is ( la)) hold.

Analogously one can demonstrate that the remaining two equations (2) are satisfied.

0 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 o---x---o---x---o -1( 1 I A_, I I I I 0 X 0 X 0 I I ' I ' 0 X 0 X 0 I I I I A b---X---0 ---X--. -0 3 A+ 0 X 0 X 0 Figure 1 X X X X X X
In this way we have proved the statement formulated in the title of this section. § 4.

Formulae for com p utatin g the resolution of a discontinui ty

We shall now describe the derivation of formulae for P and U ; !or simplicity we limit ourselves to the case _ of a gas with the equation of state ! £-( ) pv.

�-!

Suppose that to the right of the point 0 the gas has specific volume internal energy (per unit mass)

Ef and velocity Uf .

� z

The pressure in this gas is given by

(1-1) E1. iii p_, = --- � Vf, 'i
Suppo se the state of the gas to the left of 0 is defined by the values

We assume to be gin with that the pre s su r e

Po which obtains afte r the resolution of the di scontinuity is greater than .P--Jand 1'-J:

shock waves will p ropaga te to the right and left o£ point 0 .

. In thi s case

As we have already noted (see fo rmulae (3) of § 1 of this chapte r).

on the shock wave th e following conditions are satisfied: As is well known , in the regi on be tween the two wa ve s U. and p will be 

[ m-u -Bp J -0, ( fU' V' t-BU. J -0, [ tu-(E r ;• �-BJ>ll ] = 0.

2J'

In this way we arrive at the result tha t in orde r to de te rmine Po we mu st solve by iterations the following system: ao -(/t-t) {J(l-t) + (P -t)p_ !.. Po (l) :c (I (� (i -f � show.s tha t this process conve rge s if in the resolution of the d iscontinuity the resulting ra refaction wa ve is not of exce ssive s trength.

1-f �- 2J' f z. � A d-1) !-0 P -i_ t' ( i -' )l::J t-0 2)' P-.1...
In orde r to make it conve rgent in all ca ses, it is ne cessary to carry it out wi th somewhat modified formulae, e. g. We omit the inves ti gation of this conv ergence because it follows standard methods for investi gating the convergence of ite ration proce sses of the type Z i • f (l i-') which reduce to computation and inve s tigation of the complicate d exp ressions for the d'rivatives.

From formulae (8) it is seen that if " and p conve rge with diminishing mesh size to bounded continuous . Then t/ and P c onve r ge to the same limits. We have already used this fac t to prove that the limit functions are generalized solutions of the equations of fluid dynamics .

In Chapte r I we derived formulae only approximately equals the time necessary for the wave s obtained from th e resolution at one intege r point to r eac h the adjace nt one and change the values of (/ and P obtained there after the resolution of the disc ontinuity. Howeve r, a large numbe r of different com putations using th is condition shows convincingly tha t with such a bound on 1: the c ompu ta tion is stable . In addition, thi s condi tion coincides with the one given above for the linear scheme whe n weak ( s ound ) waves are being computed.

Le t us add tha t i£ we wished to know the true di s tribution of quantities tt, t1-; E at the end of time inte rval 7: afte r the resolution of the discontinuity we could obtain it by solving the elementary problem of gas dynamics inside each la ye r . (It is only necessary that r should not exceed the time necessary for the wave f r om one inte ge r point to reach the adjacent one . )

An especially simple case and the one which always admits closed-form s olu tion is the case when t' is smaller than the time necessary for the waves emitted from the two adjacent points to collide .

As is known from elementary gas dynamics the entropy S which obtains inside the laye r afte r the time interval 1:' will be for all la rge r than the initial value: S (-,:) > � 11 (if we examine the laye r numbe red i ).

Recalling that 2 and using the following simple inequalitie s:

{'.tn. z (;c. }dz ['z (r.) dz

"t �,
' A_, ------follow s from convexity of the curve 1--z:. '%2 --x.-1 -;:: M., Zz -"X-1

.r,n, Zzz., follows from cone a vi ty of the curve "'2

we conclude tha t

Now we note that : [(£ + �' ).r: z -; [: tudJ: r : [v-(z)dz are the mean value s E, liJ which in c omputi ng by our scheme we assign to I £"""'

,_,.f

the "point" 2 dur� g the time inte rval 7: and denote by i ' �

In thi s way we arrive at the ine quality Applying the r ea soning analogous to that used in 3 in . the proof of the inte gral conservation laws we can show , ueing the fact that at each me sh point the inequality of the type (9) holds, that as the mesh size tends to ze ro the limit aolution aatiafi es for eve ry closed contour the inte gral inequality (condition guarante eing uniqueness).

Using simila r arguments we can show that for the system (la)

alao, the corresponding uniquene s s condition is satisfied.

S 5 .

Com p utation of Euler coordinates

Usually afte r solvin g the system (1) then this e quati o n will be satisfied for all late r times. It means tha t the (10)

volume of the ga s laye r can be de termined from the knowledge of its bounda rie s.

Equation (1 0) can be u sed to dete rmin e 'V' in pla ce of the second of.formulae (4). When computations are carried out on an electronic computer it is mo re c onvenien t to use formula (1 0) beca us e it decrease s the number of quantities to be stored at each step.

g 6 .

Some results of numerical compu tations

In Application U we list the results of computation of a s teady state tra velling shock wa ve carried out using formulae ( 4) and (8 ) . Analogou s entropy traces remain also afte r the compu tation of othe r uns teady pr oc e sses, for example the process of formation of a shock wave dur ing the impact of a moving gas onto a rigid wa ll (see A pplic a tion III ).

These entropy tra c e s usually cove r two or three me sh points and the refore do not influe nce th e results of computation for a sufficiently small me sh si ze. § 7.

A certain effect obtained in the com p utation of contact di acontinuitie s All conside ra tiona which we adduced in arriving at our scheme � we re obtained by conside ring the case of constant x-steps and with the assumption that the entire computational process occurs in an infinite gas ; howeve r, the numerical scheme obtained ha s such a clear physical meaning that it is difficult to resist the de sire to apply it also at the bounda ries between two media --contact discontinuitie s. For this it is sufficient to include the contact discontinuity am ong the number of inte ge r points and in computing a.. and h at this point use for a. , constants characteri zing the gaS' located to the left of the separation line and for b , constants refe r ring to the gas located to the right.

The results of our computations show that the application of the scheme so constructed on the contact di scontinuity is allowable, but, as is not diffi cult to verify, it leads to a decrease in accuracy.

In this pa ragraph we wish to de scribe one effect which is a consequence of the decrease in accuracy and which wa s ob served during an analysis of computations near contact di scontinuitie s. This effe ct appeared in the computation of smooth solutions , it bears no relation to the shock wave s and therefore it is natural to attempt to explain it starting wi th the assumption tha t our system of equations can be-approximated by a linear system. Com putations ba sed on such a linearized sys tem of equations yielded the magnitude of the effect, whic h agreed with the one ob served in computation of gas dynamical problem s.

Suppo se processes in a certain ga s are de scribed by the sys tem The equation of state of a. gas i n case of small va riations in preuure admits the following lineari zed representation:

Using thi s e q uation of sta te the system (11) can be rewritten

f}p t)U -+ .:1 -.o. i! { () �
Le t the contact discontinuity be at y..aQ

• i. e. , let the coefficients be different for X > 0 than for -:t < 0 .

Set

The system of equations 

.;(),. :t > o, fort -x < 0.

The refo re the behavior of the difference solution near z. -o will characterize the behavior near the contact discontinuity of the quantities obtained as the result of numerican computa tion of any smooth solution of our system .

We begin by giving the explic it expressions for the diffe rence scheme for the present case (we have explained at the beginning of thi s paragraph how to obtain these formulae ). We will as surne that the step h equal to the difference of X coordinates of the two ne ighboring integer points , may be diffe rent in re gions to the right and left of We leave to the reader the completely elementary verification of this fact.

(

) ( f 15 
To compute by the se formulae tL 111 r i"

and '/m.,.l fo r an a r bitra ry, e. g. nth, time step it i s necessary to let t-hz:, ;r., = (m "f i)h

lf we be gin the computation by our scheme from the initial conditions (13) then experimental com p utations show that near the contact di scontinuity the solution of the diffe rence equations (15 ) tends to a steady state with ce rtain 0 and e obtaine d in the proces s .

1i we compute the valu� s of u. and I' by fo rmulae (15 ) at 'X = 0

we will see tha t the se quantitie s assume at thi s point diffe rent value s to the left and right; diffe rences between them are: d whe n solving the diffe rence equations the values of u.. and � are , . I �te d only a t ha lf •inte ge r po ints ( -! h. , -� h-, f h+ , f h+ th er e fore on e c ontact 11contmu1ty we o no 1n any r ea ucon mu1h e e � e u ure and velocity. IC, howeve r, the pressure and ve locity are line arly From what we have s a id so fa r it follow s that the va lues of r ess ure s and velocities extrapolated from the right and left will in general d if fe r ,

. on the con tact dis continuity and the diffe rences be twe e n them will be dete rmin ed from the fo rmulae (16)

This disagreement of velocities and pressure s on the contact disc ontinuity is e s pe c ially noticeable on the graphs of "and fJ and obviously characte rize s the ina ccuracy of our scheme. Indeed , if our scheme were exact fo r the linear functions it would compute solution {12.) exactly and we would not obs erve any discrepancies in ct. and p .

. . � •

In o r d e r to co unteract thi s effe ct we should as one can s ee from (16) choose the steps h s uc h that as closely as pos s ible

We have already explained that h /i A /3 represents the la r ge s t allowable time step which doe s not viola te the stability of the difference s c he m e . Thus we should a tte m p t to choose the space steps in suc h a wa y tha t th e large s t time steps consis tent with the stabili ty requirement are if po ssible equal or approximately equal for the gases on both sides of the contact discontinuity .

It is not po ssi ble to satisfy thi s condi tion exactly for nonlinear problems of ga s dynamics because the speed of sound whic h dete rmines the time' * step is diffe rent at different stage s of the problem .

If in computations we succeeded in c hoos ing the steps in different regions in suc h a way that the above condition was not strongly violated , the effect be t ng studied on the interior boundaries was almost absent which s ignifi ed an inc rea s e in ac curacy . The gre ate r accuracy in those cases was also noted by c ompari s on with the method of characteristics.

� 8 .

The stability of our difference scheme on the contact discontinuities

In the preceeding paragraph we have given formulae �y which one can compute solutions to our equa tion s near a contact di s c ontinuity. Now we shall investigate the stability of these formulae. This inves tigation will be carried out on the difference scheme for the linea r system. After A. F. Filippov (see (4)) by stability we will mean uniformly continuous dependence (with decreasing mesh size) of solutions to the diffe rence equations on their right hand side s and on the initial da ta .

In o rder to prove stability it suffices to define for the s olution s of difference equations a norm which in the limit as the mesh size tends to zero goe s ove r into a certain norm fo r the solutions of diffe rential equation s such tha t

We have dete r mined in § 4 of Chapter II that the ad missible time step in the soluti on of gasdynamical problems is t: oc J, / 8/f1d.J:. (fl ,.,., 1 b,) . For the smooth soluti ons conside red in thi s section and sufficiently small h , a111 , and bm equal the conve cted ve loc ity of sound . 
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 2 It cleaily ca n be rewritte n as follows:U•• l' -• 2where r =t:/A (the stability condition for this scheme: r '1) . Consider the initial conditions for t = 0 in the form of a step function:u.k. -1 toT' l > I,and compute � for t • t: . We obtain ali = 0 for i � -Since for f' .( f, I r 11 ( I , we conclude that the monotonici ty in thi s case z is not viola te d.

  Then tL�-u.�-1-Lc,_Itu, -Lcn-rf.t-t"IJ • Lc,_A:u., -•Lcn-l!l.l.n-1i.e., u.A.-u.A-t� 0 established.

  1.l,; +; (u1-u_1)+; (u1 -2ti.0+ tL1} =f'tt.1 +(t-r)u0• As one can easily check, the stability condition for this scheme is /1 (I . It is of interest to note another way of obtaining this formula. If from the point (tc + 7:, 0) at which we seek tL0 we draw a straight line which is the characteristic of the equation �u./1Jt= 8u/O.X, then it will intersect the initial layer t = to at the point (to J rh) which lies (for ,. < f between points (to} o) and (to J h) at whi ch the values of t.lo and (J 1 are given. The value of tl. at this point is obviously a" since u remains constant along the characteristic, Consequently we will obtain our scheme if we compute IJ.. at the point (t4, rh) by a linea r interpolation between the values U.o and "' at the points (to , o) and {to, h) and then transfer this value along the characteristic to the point (t0 f 7:, OJ. § 3. Among schemes of second order accuracy for the equation ou./at • 8u./1,: there is none which satisfied the monotonicity condition In Section 1 we rema rked that for the equation �u./at•au/ltthere a.re no difference schemes of second order accuracy expressing a.• in terms of 1.L f, (,(,OJ f.t_1 and transforming monC'tonic functions into monotonic ones. Now we shall generalize this stat emen t and prove that for this equation with f' •t:/h f 0, I. 2, •.. in general there are no explicit or implicit schemes of second order accuracy connecting an arbitrary number of points at two successive time steps and transforming monotonic functions into other monotonic ones .

I / 1 )

 1 ;: I . /(.I. = ( .{, / /' •• 7 -4 ( 0 • This contradiction pro. ve s the original statement.

(

  Coefficie nts A and B will be assumed constant.) Multiplying the second equation by A.and adding i t to the first we obtain t i (I ( -( • ;) ;: ) ijf = ,; {A-t�) 1_ A fJ da . Each of the above equations has a general solution in the form of a stationary wave.

  ) assume the form: {u + {-fv)o = {u +�v2 + ';:e[(�+ /4v� -(uff.-J, ]+g[(H ffvJ -z(U+{[ �). + +(a+/1v l,]. (�-!Jv/-f-/Jv-l-�:: [(�-�v), -(u,_ff �' J + G fu-/iv),-2 (u-{-! vl + +{u-ffvL].

)

  1Y .. vo + 2h "' -(.{_, + 14 (4 ) §' 5 .

  remain constant and equal to u.,1 , Pt before the right-travelling wave and to Uo, Po before the l e ft -t ravelling wave . (Obv iously such a state will be preserved only until the waves gen e rated by the resolution of discontinuity at the point J collide with those waves g enera ted at the points � and .-� ).

On

  the wave propagating to the right, ;; = fAB and we obtain (u.) fl-(p)-o, and on the wave propagating to the left, :: = -(AB and (u.) if+ (p) •0.

2 l

 2 't-Po z{f We observe that V and P agree with Vi and � determined from (7) and ente ring into our difference scheme (8). In this way we see that l1 and If are the valu�s of velocity and pressure obtained as a result of the resolu tion of the discontinuity in the region between propagating waves and consequently al so at the point i from which the waves emanated. It is of in terest to note that the obtained values {It and If will remain constant until the boundary considered is reached by the waves generated from the resolution of the discontinuities on the neighbo ring boundaries, i.e., at the points -; and ! . For the s ys tem considered the disturbances propagate with the sound velocity. iAB . Therefore if during the time inte rval 1:

(

  non-axisymm etric) one-dimensional unsteady equations of fluid mechanics (in Lagrangian form) ()«. f-B a p (?1; E) .., 0 at 8% ' �v---B -au _, 0 at � � ' a(£ +f) iJp� �t + B --;;--• o.

  , 'Zt'; E ) a generalized solution of the system (1) if for each i nfini tely differ ential function "1 (x, t.) which differs from zero only on a fin ite subdomain of the domain 6 on which the functions tt, � E are defined, the following equ alities are satisfied: if[ �< :: r Bp(v; E) :: ]d rdt• O, G Jj [v � -B �t ::J dz dt • O, u [(E r ;) :r + Bp(v,£) • u. ::] tirdt • 0 . ...) )� '� If functions a, "21; E are pie�e continuous then these requirements are equivalent to the fact that around an arbitrary contour ¢ u.d� -Bpdt -o,

(

  pulsate from one time step to the next (see, for example, the graph in Application 1 ).Sometimes instead of ( 1) on e has to consider the following system of equations of fluid dynamics: Such equations describe, for example, the flow of water in shallow channels.)

  2 a.nd m r 2 the discontinuity is resolved, in consequence of which at the point m the pressure and velocity become � and u, (unlike § 5 of Chapter I, points at which the discontinuity is resolved are now labeled by integer� and layers between them by hal! integers).

tUL

  Introducing the de fini tion s B = 0, B = -tL0 ( � = velocity of the wave propa gating to the right, -w:t = velocity of the wave propagating to the left) we can rewrite the se relations as a0 [u.] -r [p] = 0, ILo [v-) -[u.] = O. 1%. [u �']+ [;u] =0 b0 ( U ] -[p] -= 0, bo [v-] +(a. ]� 0, h0 [ E + �]-[P/4] = 0 on the left wa ve

2 .'�

 2 constant and equa l to U and P -the value s on the contact di scontinuity originating at the point 0 . The value s of th e s pe c ifi c volume will be c on s ta nts be tween the c o nta c t discontinuity and th e wave s but these constants will be diffe rent to the right a nd left of th is discontinuity. We s ha ll denote by v.t, the s p ecific volwne between th e c o ntact discontinuity.and the right shock wave and by � the specific volume be twe e n th e contact discontinuity and the left shock wave . The first of equa tions (6) and (7) can be rewritten in the following way: Assuming � and b� known, V:, and Po can be determined from the above system: Po= boP-f + a, pf + 1/.o ho {tt..f -u..; J IZo + ho (J,,. tJ I + b o tl I + . #'l f --i:J1 v -r i' r-"L r� �-------------�---------a, + b0 ' On the other hand , if we knew Po then for the dete rmination of a() we could use the equa tion obtained from the firs t two relations (6) afte r the velocity is eliminated betwee n them: a, = 0 The value VO.t can be eliminated '!rom thi s formula with the aid of the Hugoniot curve obtained from (6) by the method de scribed in any course on ga s dynamics (see e. g. (3)): (1 -I)Po +(/+ f) P.. f (;r + 1) Pa -f ( )' -t) p_ .! Afte r thi s expression fo r 2-0..t is subs titu ted into the fo rmula for t:Z0 we ob ta in ()' + !) Po +-(/ -I) P_ L tt,o = we obtain the relation comple tely analogous to the one obtaining across the shock wave . If in the formula for he • (J is expressed in te rms of p and V"" and UO..t. is eliminated with the aid of the Poisson adiabat (the second of our equalities holding across the rarefaction wave (. the following obtains: In the ca se when the rarefaction wave propagate s to the left we should have set )'-f tl () = -

  Afte r the ite rations have conve rged and we have dete rmined the final value s for Po , a0 , h0 we find Vo from the fo r�ula • Detailed investigation of the conve rgence of the ite rations

  (7) !or the resolution of a discontinuity usin g sound waves. They agree with the exp ression of this paragraph if we let In the computation with sound waves the time s teps had to be limited by the stability condition It seem s natural to us to use in the present nonlinear ca se the following bound on the time step It is true th e above de fined 1:'

  one still has to solve the equation for the Euler coo rdinates of the ga s pa rticle s (}r = u. at We propose to dete rmine ..t at intege r points by the formula It is of inte rest to note that from the p rec eding fo rmula and (4) it follows tha t if initially r , .. hB fm �t -1', )' "' � 1

  scheme is sufficiently a c c u ra te to show this conservation of entropy. After the steady state is r e ache d the pre ssure behind th e front of the wave equalizes and since ;nr¥ is not c o r r e c t th ere this leads to the appea ra n ce of the bump on the curve of � .

A 1 :

 1 { Af lot' % > 0 I A_ for z <0 , 8 = { B.,. fer � > o. B_ for "Z < o, 1JI.I. + 8 .!.E. J: with the continuity condition on U. and ;IJ at Z • 0 following solution ot!. (/.,--1; -fit + ¥, admits the A� ro f' X. > o, for -x, < 0, which at t • 0 satisfies the following initial conditions: lo f' -:t > o,for % < 0.We shall inve s tigate wha t the solution of the diffe rence equations i s for the same initial data . It is more inte resting because any smooth solution of our system near the point

1:: = 0

 0 N�mely, for Z > 0 h =h+ and for � < 0 h =11-. The computa tion formulae are: l�r1 -i 1 Pm +--J.pr; Pm = ----=--2----i B; . ____ __ . , ,. t L • 1 T: B _ I n P.. } m + .� ---;;:-( 'm fl -m ' fJ m + i • p j,� � -:�-(tJ m+l -t!, } 37 , fot m )J 0, lo,. m < o .. fof' m > 0, lof' m < 0, ( 14) For ou r difference e qua tions one can find a solution which, tiJce (1 Z), is a line ar func tion o f :t. and t in each of the region s %' > 0 d t < 0 and ha s in the se regions gradie nt s identical with (1 Z). Nam el y , Jl'l jt turn s out tha t such s,olution will be fX. I -Bht.L = -X -..8-t -;--• + d', A_ 2 fA _ 8_ .,.B t I o�,h_ . f n fJ = -� -a, + -• -;=::===-r7 B-Z fA -f3_ lo r � > 0, lo r z < 0 .

  the poin\ � = 0 we obtain exactly the value s comput e d at ,_ .. 0 by formulae ( 15).

  p rA �u •0 ot �� with coefficient s A and 8 which a r e constant in each of the regions ;t. > 0 or t ( 0 (in the preceding paragraph we studied the computational phenom enon de scribed there by cons idering just such a sys tem).

  Figure 5

C om pl e tely analogously we can de rive To de te rmine Po we can now use the following ite ration process: beginnin g with an arbi tra ry f'o we de te rmine a0 and 60 and then compute the new va lue for Po Substituting it into the formulae for •a0 and b0 we find Po again , and so on until the process conve rges . Afte r thi s we dete rmi ne t{, So fa r we have cons ide red only the case when simultaneously fJa ) p_t an d Po > P.; , i. e. , �hen no rarefaction wave occurs in the resolution of the discontinuity. It turns out that when such wa ves occur the proce s s of resolution can be c omputed in the same manner only changing the formulae for t/,0 and b0 • Ima gine , for e xa mple , that Po < p t , that a rarefac tion % wave propaga te s to the right. As is well known, across a rarefaction wave the following re la tions hold:

whe re c -f.J' ptr = sound speed , we unde rstand here an infinitely dimensional vector defined by the values of the so lution (�; +2 , P; .,.1)

to the difference equation s for the nth time step ..

We shall assume that the time step is chosen by the stability conditions ins ide of each re gion . As we noted earlier this implies that the following inequalitie s are satisfied

(. I'

We introduc e the notation 

All subsequent conside rations will be carried out with the assum p tion that { A'f/ B+ > fA-/ 8_ . We leave to the r e ader the entirely analogou s conside rations in the case when /A+/ B+ < fA-/ B- system ma y serve as some kind of a justification for its application in the case of a nonlinear system . In addition, let us state once more that in all the numerous computations . using our scheme , ca r ried out with consideration of our bound on the time step, the computa tions were always stable .

Appli cation I

Below {Figure 2) is the graph of pressure in the steady-state Fi gure 4

Application Ill

The im pact of an absolutely cold gas ( 1 • 5 /J ) moving into a wall. At the ini tial moment we presc ribed � =I, I' • 0 ro f' � > ()