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Abstract

In this work, we consider the development of implicit-explicit total variation diminishing (TVD) methods (also termed
SSP: strong stability preserving) for the compressible isentropic Euler system in the low Mach number regime. The
proposed scheme is asymptotically stable with a CFL condition independent of the Mach number. In addition, it
degenerates, in the low Mach number regime, to a consistent discretization of the incompressible system. Since it has
been proved that implicit schemes of order higher than one cannot be TVD (SSP) [30], we construct a new paradigm
of implicit time integrators by coupling first-order in time schemes with second-order ones in the same spirit as highly
accurate shock-capturing TVD methods in space. For this particular class of schemes, the TVD property is first proved
on a linear model advection equation and then extended to the isentropic Euler case. The result is a method which
interpolates from the first- to the second-order both in space and time. It preserves the monotonicity of the solution,
and is highly accurate for all choices of the Mach number. Moreover, the time step is only restricted by the non-stiff
part of the system. We finally show, thanks to one- and two-dimensional test cases, that the method indeed possesses
the claimed properties.

Keywords: Asymptotic Preserving, High-order, IMEX schemes, SSP-TVD, Low Mach, Hyperbolic.

1. Introduction

The analysis [44, 45, 66, 2, 48, 1] and the development of numerical methods [38, 34, 60, 72, 46, 13, 32, 56,
52, 35, 31, 55, 53, 17, 20, 18, 16, 33, 10, 29, 43, 21, 11, 22] for the passage from compressible to incompressible
gas dynamics has been and still is a very active field of research. The compressible Euler equations, which describe
conservation of density, momentum and energy in a fluid flow, become stiff when the Mach number tends to zero.

In this case, the velocity of the pressure waves is much greater than that of the gas. Thus, a standard model
approximation consists in replacing the density conservation equation by a constraint on the velocity divergence, set
consequently equal to zero. In addition, using this constraint into the momentum equation gives an elliptic equation
for the pressure. We refer to that situation as the incompressible Euler model, which is used to describe many different
flow conditions. However, there are situations in which the Mach number may be small in some parts of the domain
and large in others, or may strongly change in time. In these cases, one should deal with the coupling of incompressible
and compressible regions whose shapes change in time. From the numerical point of view, this causes many difficulties
since standard domain decomposition techniques, which couple the solution of the compressible equations with the
solution of the incompressible system, may be difficult to use (see [5]). Thus, one solution consists in solving the more
complete compressible Euler system in the stiff regime. As a consequence, this introduces strong drawbacks when the
Mach number becomes small. The first one is related to the fact that classical explicit schemes for the compressible
Euler system are not uniformly stable. Their CFL condition is inversely proportional to the Mach number. This causes
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severe time step limitations in low Mach number regimes. The second drawback is a consistency problem. Indeed,
it is well known (see for instance [31, 56, 20, 21]) that explicit Roe type solvers are not consistent in the low Mach
number limit. In particular, they fail to describe the limit pressure.

From the physical point of view, it is important to understand that two different situations are possible. In the first
situation, sound waves play an important role in the physical problem. Then, even if their velocity is much greater
than the one of the fluid, it is crucial to accurately capture these sound waves in this situation. Consequently, the time
step of the discretization must be of the order of the Mach number. However, even in these situations, the consistency
problems of low Mach regimes should be solved. This problem can be treated by preconditioning and/or pressure
correction methods (see above [40, 13, 32, 34, 35, 38, 43, 55, 53, 62, 72, 73]) or AUSM schemes (see [49, 57]).

In this work, we are more interested in the second situation, in which sound waves play a weak role in the physical
solution. Consequently, their precise description can be avoided. From the numerical point of view, this means that
one would like to use large time steps compared to the small values of the Mach number. However, in order to do that,
the scheme should be uniformly stable as well as consistent to the low Mach regimes.
One possible answer to this problem consists in adopting a fully implicit algorithm for the original compressible
system. Such approach has been developed in [39] within the framework of multigrid methods. It allows large CFL
numbers but it needs a preconditioning procedure to avoid the large number iterations needed for the resolution of the
non linear system which originates from the implicit time discretization of the compressible equations [41, 61, 64]
Recently, it has been shown that a fully implicit discretization is not the only strategy which permits to get all Mach
number schemes. One alternative is represented by asymptotic preserving (AP) schemes [19, 17, 18, 16, 33, 71,
10, 54, 11, 22]. They deal with different models which share the common characteristic of describing a multi-scale
dynamic: i.e. a dynamic in which fast and slow scales coexist. These techniques allow computing the solution of
such stiff problems while avoiding time step limitations directly related to the fast scale dynamic. This fast scale, in
the context of this work, appears in the low Mach number regime when the pressure waves become fast compared
to the rest of the dynamic. In addition, these AP methods lead to consistent approximations of the limit model
(here the incompressible model) when the parameter which describes the fast scale dynamics goes to zero (here the
Mach number). We stress that, even if the proposed methods in this work are specifically designed to avoid the fast
scale resolution (remaining uniformly stable), if they are used with small time steps like those necessary for an explicit
method, they are able to describe this fast dynamic with high accuracy. Thus, this approach also competitive compared
to other methods designed to describe the fast pressure waves.

For the sake of completeness, let us briefly recall the general principle of such schemes. We start from one model
of partial differential equations,Mε, depending on an arbitrarily small parameter ε and we assume that there exists a
limit model,M0, which describes the dynamic when ε tends to 0. Their respective exact solutions are called Wε(x, t)
and W0(x, t) for all space and time position (x, t), see Figure 1 on the left.
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Figure 1: Left: Asymptotic Preserving diagram. The schemes Wε,∆x,∆t and W0,∆x,∆t are consistent discretizations of the models Wε(x, t) and
W0(x, t). An Asymptotic Preserving method is such that when ε → 0, the scheme Wε,∆x,∆t automatically becomes the scheme W0,∆x,∆t . Right: An
example in which different regimes coexist. While a standard scheme for theMε model or theM0 model may only work for large values of ε or
when ε = 0, the Asymptotic Preserving scheme works in all regimes and in intermediate regions it is the only one that should be employed.

Classical pairs of such related models are the inviscid Euler equations or the viscous Navier-Stokes model and
their low Mach number limits. However, many other examples can be found in the literature, such as the Boltzmann
equation and its hydrodynamic limit [23, 24], the shallow-water model and its limit for low Froude numbers, the
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Vlasov-Maxwell model in the quasi-neutral limit, hyperbolic systems with stiff source terms, kinetic-fluid models in
plasma physics or biology and many others. Here, the square of the Mach number plays the role of the small parameter
ε, and when ε tends to zero, compressible flow equations converge to incompressible ones.

From a numerical point of view, on the one hand, if ε is large, standard (or classical) numerical methods can be
employed. Such methods are often explicit in time. On the other hand, if ε = 0, then standard (or classical) methods
for the limit model can also be employed, see Figure 1 on the right. However, when one has to deal with situations
in which the parameter ε which defines the multi-scale nature of the problem varies in time and space, standard
numerical methods fail. In these situations, an Asymptotic Preserving method is able to solve the physical problem.
With reference to the Figure 1 on the left, it transforms automatically a scheme Wε,∆x,∆t for the perturbed model into
a scheme W0,∆x,∆t for the limit model while maintaining the same order of accuracy. However, even if these schemes
are designed to deal with multi-scale dynamics, we stress that, in general, their use it is not limited to the intermediate
regimes but instead they work in all regimes producing highly accurate results also in the two limits.

It is important to note that the nature of the modelMε for ε > 0 may be different form the one of the modelM0.
For instance, one can be hyperbolic and the other parabolic or elliptic. As a consequence, their respective numerical
approximations can be substantially different, causing the derivation of such a method hard to be realized. In fact, one
scheme can be well suited to solve an hyperbolic model but not necessarily a parabolic or elliptic one. This problem
is called the problem of asymptotic consistency. In a same way, even if small amplitude waves (in our case sound
waves) are negligible and have a minor impact on the numerical solution, they may lead to very stiff constraints on the
time and space steps. This problem is known as asymptotic stability. The stability region of a standard scheme can be
reduced to an empty set when ε tends to 0.

Moreover, in realistic configurations, the parameter ε may depend on space and time. It could be large in some
parts of the computational domain, and, simultaneously, extremely small in other parts. These regions in which
different regimes interact may also vary with time. If one does not want to manage a complicated interface between
models, the resolution of the modelMε seems to be the only possible strategy sinceMε is the only model valid for
all values of ε.

Finally, we want to stress that all these remarks remain true for models closer to the physical reality such as
complete Euler model or Navier-Stokes model. In addition, while the complete Euler model introduces additional
difficulties in the development of such numerical methods, this appears not to be the case with Navier-Stokes. In
fact, we believe that the diffusive term of the Navier-Stokes model will probably simplify the derivation of a scheme
based on the same characteristics. In these situations, it is known that that the diffusive term helps in regularizing the
solution and thus we expect that the problem of numerical oscillations to be much less pronounced than in the case of
Euler equations or to be completely absent.

Note that, as already mentioned, if one is not interested in the resolution of small amplitude waves, it is possible to
drop them using an AP scheme and large time steps. In this case, the scheme will only capture the limit solution of the
modelM0 and not the small details of the solution ofMε for ε ' 0. As an illustration, we report in Figure 2 the one
dimensional numerical solutions of the isentropic Euler equation provided by a first-order classical explicit scheme
(CL in red) versus our first-order Asymptotic Preserving scheme (AP in blue) for different values of the Mach number,
see [22] for the description of these first-order schemes. The test case consists in four Riemann problems with a time
varying Mach number M =

√
ε showed on the embedded panels. It is important to note that the explicit scheme

works only for time steps smaller than the inverse of the Mach number (otherwise, its solution explodes), while the
AP method works for larger time steps. Although the classical explicit scheme can capture the small scale features, it
demands large computational resources when the Mach number becomes small; 1135 time steps are needed to reach
the final time, while the AP scheme requires only 135 time steps. Moreover, when the time steps are comparable, the
AP scheme describes the numerical solution as well as the explicit method (see the right panel of Figure 2). Finally,
for small ε, when the time step is much larger than the inverse of the Mach number, the AP method projects the
solution over the solution of the limit model (see the middle panel). It neglects the small features and saves a large
amount of resources.

The work in this paper participates to the effort to develop accurate and robust Asymptotic Preserving numerical
schemes. It is based on a first-order asymptotic preserving method developed in a recent work [22], which dealt with
an analysis of the stability properties, which led to a stability restriction on the numerical method independent of the
Mach number. The L2- and L∞ properties of the method have been analyzed in detail.

In the present work, we extend the previous study to the second-order accuracy in time and space. We first
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Figure 2: Illustration of the behavior of a classical explicit scheme (red) and an Asymptotic Preserving scheme (blue) solving a Riemann like
problem with 600 cells for time varying Mach number M, the squared value of which is represented on the embedded top panels as a function
of time. Density is shown as a function of space for two intermediate times. — Left panel: when M is large enough, the same global solution
is captured with almost the same computational effort. The AP scheme is more diffusive than the classical explicit one. Middle panel: when M
becomes small, the AP scheme captures the limit solution and spares some computational resources. Right panel: same time and Mach number as
the middle panel, the AP scheme uses the explicit time steps: both schemes give similar results.

present an L2-stable second-order extension of our previous method. Then, since it has been proved in [30] that the
L∞-stability and Total Variation Diminishing (TVD, also named Strong Stability Preserving, SSP) properties cannot
be ensured for an unconstrained implicit in time scheme of order greater than one, we construct a new paradigm of
highly accurate implicit in time schemes. Several studies on IMEX-SSP methods or Implicit-SSP methods have been
proposed in recent years [28, 37, 42, 15, 36, 68, 9]. In all these articles, authors look for the largest possible time
step allowing the SSP property to be preserved. We stress that, in the present work, we do not pursue in this direction
since the stiffness of the equations typically requires numerical methods whose time steps are disconnected from the
stiff scales, and, possibly, several orders of magnitude larger. As shown in [30], this will not be possible with standard
IMEX-SSP methods. For this reason, the direction chosen in this work consists in constructing a TVD Asymptotic
Preserving (AP) scheme using a convex combination of first- and second-order implicit-explicit (IMEX) methods in
the same spirit as high-resolution shock-capturing TVD methods in space [47, 69]. The resulting TVD-AP scheme
possesses both the L∞- stability and the TVD properties. Moreover, this technique opens the way to the construction
of arbitrarily high-order accurate methods with the same properties. Details of this approach and development of high
resolution schemes by combining schemes of order higher than two with first-order implicit methods in the case of
the linear and nonlinear transport equations are currently under study [51].

In a second part of the work, we discuss limiters. They must detect the problematic situations in which the TVD
property no longer holds. In such cases, the scheme must switch from the second-order accurate scheme to the
TVD-AP scheme without losing accuracy. The proposed approach is based on the so-called MOOD (Multidimen-
sional Optimal Order Detection) method [12, 25, 26]. It has been originally developed to detect the loss of physical
properties when dealing with high-resolution in space methods, and to reduce the order of the space discretization to
restore the physical properties of the problem. Here, we extend the previous method to the case of the implicit time
discretizations. To summarize, the proposed method ensures a non oscillatory approximation of our original problem,
which is more accurate than the one given by a first-order AP scheme, stable independently of the Mach number, and
which degenerates to an high-order time-space discretization of the incompressible Euler equations in the limit when
the Mach number goes to zero.

The article is organized as follows. In Section 2, we briefly recall the isentropic/isothermal system of Euler
equations and its low Mach number limit, as well as the first-order accurate Asymptotic Preserving scheme presented
in [22] which is the basis of the second-order extension considered here. Then, in Section 3, we present a second-order
in time AP scheme for the isentropic Euler system and we show that, even though it is L2-stable, it presents some non-
physical oscillations when the explicit CFL condition is violated. Thus, in Section 4, we introduce a model problem
which will be used to construct a TVD AP scheme for the Euler system, and we study its L2-stability, L∞-stability
and TVD properties. In Section 5, we extend the previous scheme to the low Mach number case and we introduce
the MOOD procedure to detect a loss of L∞-stability. Finally, in Section 6, we show the good behavior of our AP
schemes with different numerical results for three different one-dimensional test cases and two two-dimensional ones.
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A concluding section ends the paper.
Let us finally remark that, in this work, we only focus on the isentropic Euler system and its low Mach number

limit. However, we stress that most of the difficulties of the all Mach number flows are already present in this
simplified model. In fact, the main problem related to the simulation of all Mach flows is due to the presence of
two waves which may have completely different speeds. This type of dynamic can be described by the isentropic
Euler equations. Thanks to this simplified model, we are able to perform an analysis of the numerical scheme, which
can then be extended to the case of the full Euler equations or to the Navier-Stokes model. However, the extension
to the full Euler equations is more involved (see [22]), and an in-depth analysis is necessary to construct a scheme
which guarantees uniform in time stability and high-order accuracy. For the Navier-Stokes model, we expect a simpler
situation. In fact, the implicit treatment of the diffusion term increases the stability of the scheme. This means that we
expect the SSP property to be more easily satisfied.

2. The first-order asymptotic preserving scheme for the Euler system in the low Mach number limit

We consider a bounded polygonal domain Ω ∈ Rd, where d ∈ {1, 2, 3}. The space and time variables are respec-
tively denoted by x ∈ Ω and t ∈ R+. We study the isentropic/isothermal rescaled Euler model with ε > 0 the squared
Mach number (see [44, 50] for instance). It is governed by:

∂tρ + ∇ · (ρU) = 0,

∂t(ρU) + ∇ · (ρU ⊗ U) +
1
ε
∇p(ρ) = 0,

(1)

where ρ(t, x) > 0 is the density of the fluid, U(t, x) ∈ Rd its velocity, and p(ρ) = ργ its pressure. The parameter γ ≥ 1
is the ratio of specific heats, γ = 1 corresponds to isothermal fluids while γ > 1 corresponds to isentropic ones.

Equipped with suitable initial and boundary conditions (consistent with the limit model), system (1) tends to the
incompressible isentropic/isothermal Euler system when ε → 0 (see [44, 45, 66, 2, 48, 50, 1] for rigorous results). A
formal derivation of this limit is presented for instance in [22]. In the work cited above, the authors introduce well-
preparedness and incompressibility assumptions on the initial and boundary conditions and then show that equations
(1) tend to the following incompressible Euler equations in the low Mach number limit ε→ 0:

ρ = ρ0,
∇ · U = 0,
ρ0∂tU + ρ0∇ · (U ⊗ U) + ∇π1 = 0,

(2)

where the first-order correction of the pressure, denoted by π1, is implicitly defined by the incompressibility con-
straint ∇ · U = 0.

We now briefly recall the numerical method [22] which serves as a basis for the new method introduced in the next
section. The discretization of the space and time domains follows the usual finite volume framework. The solution
W(t, x) = (ρ, ρU)(t, x) of the Euler equations is approximated at time tn = n∆t, where ∆t is the time step, by Wn. The
scheme relies on an IMEX (IMplicit-EXplicit) decomposition of system (1) (see [17, 18, 71, 22]): for all n ≥ 0, the
semi-discrete in time form of the scheme reads

Wn+1 −Wn

∆t
+ ∇ · Fe(Wn) + ∇ · Fi(Wn+1) = 0. (3)

where Fe(Wn) = (0, ρnUn ⊗ Un) and Fi(Wn+1) = (ρn+1Un+1, p(ρn+1)/ε I2), and where Fe is taken explicitly while Fi

is taken implicitly. As it is shown in [18, 22], this splitting separates the transport from the sonic part. Both parts are
hyperbolic, but the transport part is no longer strictly hyperbolic. All explicit Roe type schemes are constructed with
a centered flux and the numerical viscosity gives the upwinding necessary for the stability. In the case of the Rusanov
scheme used here ([65, 27]), this numerical viscosity is proportional to the maximum eigenvalue of the Jacobian
matrix DFe relative to the explicit flux Fe, which can vanish. However, it has been shown in [22] that the implicit
part of the scheme is sufficient to recover some stability properties. We also recall, see [18, 22], that an interesting
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property of such approach is that the resolution of the two equations composing the system can be decoupled. Indeed,
in (3), taking the divergence of the momentum equation and inserting it into the mass equation yields:

ρn+1 − ρn

∆t
+ (∇ · (ρU))n − ∆t

(
∇2 : (ρU ⊗ U)

)n − ∆t
ε

(∆p(ρ))n+1 = 0, (4a)

(ρU)n+1 − (ρU)n

∆t
+ (∇ · (ρU ⊗ U))n +

1
ε

(∇p(ρ))n+1 = 0, (4b)

where ∇2 and : are respectively the tensor of second-order derivatives and the contracted product of two tensors.
Then, one can solve first the nonlinear equation (4a) which gives the updated density ρn+1, and then get the updated
momentum (ρU)n+1 from (4b). The implicit treatments of the pressure gradient and the mass flux respectively provide
the asymptotic consistency and the uniform stability of the scheme [22].

We now present the space discretization, in one space dimension for the sake of clarity. The space domain is
assumed to be partitioned in cells of center x j and size ∆x. Then, on [tn, tn+1), the fully discrete version of (4) reads
as follows:

Wn+1
j −Wn

j

∆t
+

(Fe)n
j+ 1

2
− (Fe)n

j− 1
2

∆x
+

(Fi)n,n+1
j+ 1

2
− (Fi)n,n+1

j− 1
2

∆x
− ∆t


(
∆(ρu2)

)n

j
+

1
ε

(∆p(ρ))n+1
j

0

 = 0, (5)

with u the velocity of the fluid in the x-direction. The explicit numerical flux is given by

(Fe)n
j+ 1

2
:=

Fe(Wn
j ) + Fe(Wn

j+1)

2
+ (De)n

j+ 1
2
(Wn

j+1 −Wn
j ), (6)

with (De)n
j+ 1

2
the explicit viscosity coefficient, taken as half of the maximum explicit eigenvalue and given by (De)n

j+ 1
2

:=

max
(
|un

j |, |un
j+1|

)
. The implicit numerical flux is given by

(Fi)n,n+1
j+ 1

2
:=

Fi(Wn,n+1
j ) + Fi(Wn,n+1

j+1 )

2
+ (Di)n

j+ 1
2
(Wn+1

j+1 −Wn+1
j ), (7)

where Wn,n+1
j = (ρn+1

j , (ρu)n
j ) and (Di)n

j+ 1
2

is the implicit viscosity coefficient, taken as half of the maximum implicit

eigenvalue (Di)n
j+ 1

2
:= 1

2 max
(√

p′(ρn
j )/ε,

√
p′(ρn

j+1)/ε
)
. This choice for the implicit viscosity is enough to get an

L∞-stable scheme. However, by relaxing this constraint and by fixing the implicit viscosity to zero, one can show
that an L2-stable scheme is obtained. Finally, the second-order derivatives are approximated by classical second-order
centered differences while the time step is constrained by the following uniform CFL condition:

∆t ≤ ∆x

max j

(
2|un

j |
) . (8)

Note that 2u corresponds to the first eigenvalue of the explicit flux and, as expected, this CFL condition does not
depend on the squared Mach number ε. When ε tends to 0, this scheme yields a consistent discretization of the
incompressible system (2). In the following sections, we discuss an extension of this method to the case of high-order
time and space discretizations.

3. A second-order asymptotically accurate scheme for the isentropic Euler equations

The second-order in time extension of the method described in the previous section is based on an Implicit-Explicit
(IMEX) Runge-Kutta approach [3, 58, 59, 23, 6, 24, 7, 4]. In particular, we make use of the second-order Ascher,
Ruuth and Spiteri [3] time discretization denoted from now on by ARS(2,2,2). Let us observe that this discretization
has been originally constructed to obtain an AP scheme for convection-diffusion equations and, in particular, to deal
with cases where the diffusion (the fast scale) is taken implicit while the convection is explicit. In our case, the
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problem is different, since the fast and the slow scales are both of hyperbolic type. This causes a real challenge from
the numerical point of view. In fact, as already mentioned, implicit methods of order higher than one for hyperbolic
problems cannot be TVD [30]. The situation does not change when implicit-explicit methods are employed, as shown
later. It is certainly possible to adapt the SSP methods (see [9, 14, 30, 36, 42, 68]) or in general higher order implicit-
explicit time discretizations to our AP-TVD framework in order to further increase the accuracy of the methods for
intermediate values of the Mach number. However, the main purpose of this work is to verify the possibility to obtain a
scheme which is uniformly stable in time, that preserves the AP properties and that is essentially TVD. The extension
of such approach to the general case of high-order IMEX methods is the subject of a future work. Therefore, we
use one of the simplest IMEX second-order time discretization for this proof of principle. t is important to note
that for IMEX-SSP methods the time steps allowing the TVD property are of the order of explicit time integrators.
Unfortunately, these methods are not uniformly stable in the low Mach regime. Indeed, we recall that we are dealing
with a limit problem, we look for a method which preserves the TVD property independently of the Mach number,
which could possibly be zero. Thus, in order to bypass this problematic situation, the idea, explored in this work,
consists in blending together first- and second-order implicit time-space discretizations. This gives rise to a new class
of high-resolution in time methods guaranteeing the preservation of the L∞-stability and TVD properties. Here, we
refer to [51] for the construction of general TVD high resolution implicit-explicit time discretizations.

The Butcher tableau of the considered ARS(2,2,2) discretization is detailed in Table 1, with β = 1 − √2/2 and
α = 1 − 1/(2β). Note that the explicit tableau applied to the flux Fe is reported on the left, while the implicit tableau
applied to the flux Fi is on the right.

0 0 0 0
β β 0 0
1 α 1 - α 0

α 1 - α 0

0 0 0 0
β 0 β 0
1 0 1 - β β

0 1 - β β

Table 1: Butcher tableaux for the ARS(2,2,2) time discretization. Left panel: explicit tableau. Right panel: implicit tableau. β = 1−
√

2
2 , α = β− 1.

Remarking that α = β − 1 (and so 1 − α = 2 − β), the corresponding semi-discretization of the Euler system is
given by

W? −Wn

∆t
+ β∇ · Fe(Wn) + β∇ · Fi(W?) = 0, (9a)

Wn+1 −Wn

∆t
+ (β − 1)∇ · Fe(Wn) + (2 − β)∇ · Fe(W?) + (1 − β)∇ · Fi(W?) + β∇ · Fi(Wn+1) = 0. (9b)

Likewise, for the first-order accurate scheme, the previous second-order accurate discretization has an uncoupled
formulation. Let us first establish the first step (9a). Taking the divergence of the momentum equation of (9a) and
inserting the value of ∇ · (ρU)? into the mass equation of (9a) yields the following uncoupled formulation:

W? −Wn

∆t
+ β∇ · Fe(Wn) + β∇ · Fi(Wn,?) − β2 ∆t

∇2 : (ρU ⊗ U)n +
1
ε

∆p(ρ?)

0

 = 0,

where Wn,? = (ρ?, (ρU)n). Using now the same notation as in the previous section for the first-order accurate scheme,
the fully discrete uncoupled first step in one dimension is given by

W?
j −Wn

j

∆t
+ β

(Fe)n
j+ 1

2
− (Fe)n

j− 1
2

∆x
+ β

(Fi)n,?
j+ 1

2
− (Fi)n,?

j− 1
2

∆x
− β2 ∆t

(∆(ρu2)
)n

j
+

1
ε

(∆p(ρ))?j
0

 = 0. (10a)

We turn to the uncoupled formulation of the second step (9b). We insert the divergence of (ρUn+1), obtained with the
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momentum equation of (9b), into the mass equation of (9b). This yields

Wn+1 −Wn

∆t
+ (β − 1)∇ · Fe(Wn) + (2 − β)∇ · Fe(W?) + (1 − β)∇ · Fi(W?) + β∇ · Fi(Wn,n+1)

− β∆t

(β − 1)∇2 : (ρU ⊗ U)n + (2 − β)∇2 : (ρU ⊗ U)? +
(1 − β)
ε

∆p(ρ?) +
β

ε
∆p(ρn+1)

0

 = 0.

Using the same notation as before, the fully discretized second step in one dimension is given by

Wn+1
j −Wn

j

∆t
+ (β − 1)

(Fe)n
j+ 1

2
− (Fe)n

j− 1
2

∆x
+ (2 − β)

(Fe)?
j+ 1

2
− (Fe)?

j− 1
2

∆x

+(1 − β)
(Fi)?,?j+ 1

2
− (Fi)?,?j− 1

2

∆x
+ β

(Fi)n,n+1
j+ 1

2
− (Fi)n,n+1

j− 1
2

∆x

−β∆t

 (β − 1)
(
∆(ρu2)

)n

j
+ (2 − β)

(
∆(ρu2)

)?
j

+
(1 − β)
ε

(∆p(ρ))?j +
β

ε
(∆p(ρ))n+1

j

0

 = 0.

(10b)

Lemma 1. The scheme (9) is asymptotically consistent with system (2) in the limit ε→ 0.

Proof. We do not assume well-prepared initial conditions but general initial conditions ρ(0, x) = ρ0(x) and U(0, x) =

U0(x). Well-prepared initial conditions will also converge to a constant density and a divergence free velocity when
ε tends to 0. We consider the boundary condition U(x, t) · ν(x) = 0 for all t ≥ 0 and all x ∈ ∂Ω, where ∂Ω is the
boundary of Ω and where ν is the outward unit normal.

We assume that all discrete quantities (densities and momenta) have a limit when ε → 0. At the first time-step
n = 0, multiplying the momentum equation of (9a) and letting ε tend to 0 gives ∇p(ρ?) = 0, and so ∇ρ? = 0. Then,
integrating the mass equation of (9a) on the domain and using the boundary condition U? · ν = 0 on ∂Ω, one gets
ρ? =< ρ0 >= 1/|Ω|

∫
Ω
ρ0(x) dx. Similarly, the second stage (9b) gives ∇ρ1 = 0, and integrating the mass equation as

well as using the boundary conditions U? · ν = U1 · ν = 0 yields ρ1 = ρ? =< ρ0 >.
Note that inserting this result into the mass equation of the first stage (9a) does not recover the incompressibility

constraint for the first time-step. Indeed, ∇ · U?(x) = (< ρ0 > −ρ0(x))/(∆t < ρ0 >), which vanishes if and only if
the initial density ρ0 is well-prepared and tends to a constant value when ε tends to 0. But, for all n ≥ 1, we recover
the incompressibility constraint for the first stage ∇ · U? = 0. Finally, thanks to ∇ · U? = 0, the density equation
gives ∇ · Un+1 = 0 for all n ≥ 1. Consequently, the scheme projects the solution over the asymptotic incompressible
limit even if the initial data are not well-prepared to this limit: we obtain ρn+1 =< ρ0 >:= ρ0 and ∇ · Un+1 = 0 for all
n ≥ 1. Concerning the pressure, for n ≥ 1, the limit scheme becomes

ρ0
U? − Un

∆t
+ β ρ0∇ · (U ⊗ U)n + β∇π?1 = 0, (11a)

ρ0
Un+1 − Un

∆t
+ (β − 1) ρ0∇ · (U ⊗ U)n + (2 − β) ρ0∇ · (U ⊗ U)? + (1 − β)∇π?1 + β∇πn+1

1 = 0, (11b)

where π?1 = limε→0
1
ε

(
p(ρ?) − p(ρ0)

)
and πn+1

1 = limε→0
1
ε

(
p(ρn+1) − p(ρ0)

)
.

Remark 1. Let us note that it is also possible to prove the consistency of the fully discretized scheme in one dimension
and for periodic boundary conditions. The proof is similar to that done in [18] for a similar scheme. To be more
precise, in the fully discrete case, one can prove that, if the approximate solution has a limit when ε tends to 0, then
the limit density and momentum are constant in space and time, and they are given by the mean values (on the mesh)
of the initial conditions.

Now, we test this second-order accurate uncoupled AP scheme (10) on a 1D shock tube test case. The space
domain is [0, 1] and we set γ = 1.4. The initial data is given by (29) and the CFL condition is uniform and given
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by (8), and the space discretization is first-order accurate. The exact solution is made of a left rarefaction wave and a
right shock wave. Figure 3 reports the numerical density ρ given by the first- and second-order AP schemes described
above, with homogeneous Neumann boundary conditions. Note that we test these schemes for several values of the
squared Mach number ε. For each value of ε, we take different final physical times tend to make sure that the waves
do not exit the computational domain. In addition, the number L of cells increases when ε decreases. This choice was
made to highlight the differences between the schemes: too many cells for larger ε would make the numerical results
look alike, while too few cells for smaller ε would result in too smeared an approximation.

0 0.2 0.4 0.6 0.8 1

1

1.005

1.01

Density, ε = 10−2

Exact
1st-order AP
2nd-order AP

0 0.2 0.4 0.6 0.8 1

1

1.0005

1.001

Density, ε = 10−3

Exact
1st-order AP
2nd-order AP

0 0.2 0.4 0.6 0.8 1
1

1.00005

1.0001

Density, ε = 10−4

Exact
1st-order AP
2nd-order AP

Figure 3: Density ρ as a function of space for a rarefaction-shock Riemann problem for the 1D isentropic Euler system (1) with initial data given
by (29). For different values of ε, we compare the exact solution (solid line) to the first-order AP scheme (5) (dotted line) and the second-order
AP scheme (10) (dashed line). The final physical time tend and the number L of discretization cells are given by tend = 2 × 10−2s and L = 125
for ε = 10−2; tend = 6 × 10−3s and L = 250 for ε = 10−3; and tend = 2.5 × 10−3s and L = 500 for ε = 10−4.

As we can see, the second-order AP scheme gives more accurate results but it presents some oscillations when
the Mach number decreases for a fixed value of the time step given by the CFL condition (8). These oscillations
disappear when the time step is reduced and, in particular, when the non uniform explicit CFL condition is satisfied

(∆t ≤ ∆x/(max j

(
|un

j ±
√

p′(ρn
j )/ε|

)
). Thus, as expected, a second-order implicit-explicit time discretization for this

kind of problem suffers from the same limitations as standard implicit time discretizations for hyperbolic problems of
order higher than one: the TVD property is lost. In the forthcoming developments, we first study and find a solution to
the above problematic situations in the simplified setting of a linear transport equation. Then, we extend the proposed
technique to the case of the Euler equations.

4. Study of the stability on a model problem

We consider the linear advection equation:

∂tw + ce∂xw +
ci√
ε
∂xw = 0, (12)

with ce > 0 and ci > 0 fixed real numbers. Note that the dependency in
√
ε of the fast velocity is similar to that of the

velocity of the pressure waves in the Euler system. The formal limit ε → 0 of the above equation is a constant and
uniform solution. The first-order AP scheme detailed in the previous section becomes

wn+1
j = wn

j −
∆t
∆x

ce

(
wn

j − wn
j−1

)
− ∆t

∆x
ci√
ε

(
wn+1

j − wn+1
j−1

)
. (13)

We recall that, in this particular one dimensional constant linear case, all schemes (upwind, Godunov, Lax-
Friedrichs, Rusanov) give the same discretization. This is no longer true for linear systems or for nonlinear (even
one dimensional) equations. The following result holds:

Lemma 2. Prescribe periodic boundary conditions wn
0 = wn

L and wn
L+1 = wn

1 for all n ≥ 0 and assume that the
following uniform CFL condition holds true

∆t ≤ ∆x
ce
. (14)

9



Then, the scheme (13) is asymptotic preserving and asymptotically L2- and L∞-stable, that is

∥∥∥wn+1
∥∥∥

2 =

 L∑
j=1

|wn+1
j |2


1/2

≤ ‖wn‖2 and
∥∥∥wn+1

∥∥∥∞ =
L

max
j=1
|wn+1

j | ≤ ‖wn‖∞ .

In addition, it is TVD, since

TV(wn+1) ≤ TV(wn) =

L∑
j=1

∣∣∣wn
j+1 − wn

j

∣∣∣ .
Proof. The proofs of the asymptotic consistency and of the L2- and L∞-stabilities can be easily established following
the results proved in [22] and we omit them. It remains to prove the TVD property. Using (13) and the periodic
boundary conditions, we have, for all j ∈ {1, · · · , L},

(
wn+1

j+1 − wn+1
j

) (
1 +

ci ∆t√
ε∆x

)
− ci ∆t√

ε∆x

(
wn+1

j − wn+1
j−1

)
=

(
wn

j+1 − wn
j

) (
1 − ce ∆t

∆x

)
+

ce ∆t
∆x

(
wn

j − wn
j−1

)
.

Recall that, for all real numbers a and b, we have |a| − |b| ≤ |a − b|. Then, taking the absolute value of the above
expression, summing for all j ∈ {1, · · · , L} and using the periodic boundary conditions and the CFL condition (14),
we obtain

L∑
j=1

∣∣∣wn+1
j+1 − wn+1

j

∣∣∣ =

(
1 +

ci ∆t√
ε∆x

) L∑
j=1

∣∣∣wn+1
j+1 − wn+1

j

∣∣∣ − ci ∆t√
ε∆x

L∑
j=1

∣∣∣wn+1
j − wn+1

j−1

∣∣∣
≤

L∑
j=1

(
1 +

ci ∆t√
ε∆x

) ∣∣∣∣∣∣(wn+1
j+1 − wn+1

j

)
− ci ∆t√

ε∆x

(
wn+1

j − wn+1
j−1

)∣∣∣∣∣∣
≤

(
1 − ce ∆t

∆x

) L∑
j=1

∣∣∣wn
j+1 − wn

j

∣∣∣ +
ce ∆t
∆x

L∑
j=1

∣∣∣wn
j − wn

j−1

∣∣∣ =

L∑
j=1

∣∣∣wn
j+1 − wn

j

∣∣∣ .
The proof is thus achieved.

We turn now our attention to the two-step ARS(2,2,2) second-order time discretization; we refer to it to as second-
order AP scheme. This reads

w?
j = wn

j − βce
∆t
∆x

(
wn

j − wn
j−1

)
− β ci√

ε

∆t
∆x

(
w?

j − w?
j−1

)
, (15a)

wn+1
j = wn

j − (β − 1)ce
∆t
∆x

(
wn

j − wn
j−1

)
− (1 − β)

ci√
ε

∆t
∆x

(
w?

j − w?
j−1

)
− (2 − β)ce

∆t
∆x

(
w?

j − w?
j−1

)
− β ci√

ε

∆t
∆x

(
wn+1

j − wn+1
j−1

)
.

(15b)

Proposition 1. For periodic boundary conditions, the two-step scheme (15) is asymptotically consistent: if w0
j = w

for all j ∈ {1, · · · , L}, then for all n ≥ 0, wn
j = w, for all j ∈ {1, · · · , L}.

Proof. Multiplying both equations of (15) by
√
ε and passing to the limit ε→ 0 yields w?

j = w?
1 and wn+1

j = wn+1
1 for

all j ∈ {1, · · · , L}. Now summing (15b) for j ∈ {1, · · · , L}, we obtain by induction wn+1
j = wn+1

1 = wn
1 = · · · = w.

Concerning the L2-stability of the scheme (15), we can prove the following result:

Proposition 2. For periodic boundary conditions, the scheme (15) is L2-stable under the CFL condition (14).
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Proof. Using Fourier analysis and setting wn+1,?,n
j =

∑
k ŵn+1,?,n

k ei k j ∆x, we obtain that w?
k = fk wn

k and wn+1
k = gk wn

k ,
where fk = (1 − βσe (1 − c + i s))/(1 + βσεi (1 − c + i s)) with σe = ce ∆t

∆x , σεi = ci ∆t
ε∆x , c = cos(k ∆x), s = sin(k ∆x), and

where

gk =
1 − (β − 1)σe (1 − c + i s)

1 + βσεi (1 − c + i s)
−

(
(1 − β)σεi + (2 − β)σe

)
(1 − c + i s) (1 − βσe (1 − c + i s))

(1 + βσεi (1 − c + i s))2 .

Remarking that x (1 − x) ∈ [0, 1/4] for all x ∈ [0, 1], we easily obtain that, under the condition βσe = β ce ∆t
∆x ≤ 1,

we have | fk |2 ≤ 1 − 2 (βσe) (1 − c) (1 − 2 βσe) ≤ 1, for all σεi ≥ 0 and c ∈ [−1, 1]. Furthermore, an easy calculation
shows that |gk |2 depends only on s2 and has a finite limit when σεi → +∞. Then, setting σe = 1 to plot the function
(c, σεi ) 7→ |gk |2 for c ∈ [−1, 1] and σεi ∈ [0, 1], and setting σe = 1, µεi = 1/σεi to plot the function(c, µεi ) 7→ |gk |2 for
c ∈ [−1, 1] and µεi ∈ [0, 1], we prove that, for all σεi ≥ 0 and c ∈ [−1, 1],

σe =
ce ∆t
∆x
≤ 1 ⇒ |gk |2 ≤ 1.

The scheme (15) is therefore L2-stable under the uniform CFL condition (14), and the proof is concluded.

However, the above scheme is neither uniformly L∞-stable nor uniformly TVD under the non-restrictive CFL
condition (14). Let us show it with a counterexample. We take ce = ci = 1, and we consider the following initial data
on the space domain [0, 1]:

w(0, x) =

{ √
ε if 0 ≤ x < 0.5,
−√ε otherwise. (16)

and on Figure 4, we display the results of the first-order AP scheme (13) and the second-order AP scheme (15)
for two different values of the Mach number using the non-restrictive CFL condition (14) and periodic boundary
conditions. The final physical time is chosen with respect to ε, and we take tend = 0.4 (ce + ci/

√
ε). The results are

the following: the first-order AP scheme is in-bounds but diffusive, the second-order AP scheme produces bounded
spurious oscillations when the time step violates the explicit CFL condition ∆x/(ce + ci/

√
ε), thus preventing it from

being L∞-stable or TVD independently of ε.

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

Advection, ε = 10−2

Exact
1st-order AP
2nd-order AP

0 0.2 0.4 0.6 0.8 1

−0.01

0

0.01

Advection, ε = 10−4

Exact
1st-order AP
2d-order AP

Figure 4: Advection with equation (12) of the rectangular pulse (16). Comparison of the first-order AP scheme (13) (dotted line) and the second-
order AP scheme (15) (dashed line) against the exact solution (solid line). We set ce = ci = 1 and tend = 0.4 (ce + ci/

√
ε). In the left panel, we take

ε = 10−2 and 50 discretization cells; in the right panel, we take ε = 10−4 and 500 discretization cells.

This loss of stability for the case of an implicit-explicit second-order scheme shares many similarities with a
negative result [30] proved in the case of sole implicit high-order Runge-Kutta time discretizations that we recall here:

Theorem 1. ([30]) There do not exist TVD implicit Runge-Kutta discretizations of order higher than one with uncon-
strained time steps.
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We wish to tackle this problem and to obtain a TVD numerical scheme that is more accurate than a first-order
discretization. To that end, we propose to introduce a convex combination between a first-order implicit-explicit
scheme and the IMEX ARS discretization, as follows:

wn+1
j = θwn+1,O1

j + (1 − θ) wn+1,O2
j ,

where wn+1,O1
j is given by the first-order AP scheme (13), wn+1,O2

j by the second-order AP one (15), and where θ ∈
[0, 1]. The spirit is the same as high-resolution methods employing the so-called flux limiter approach [47] for
constructing high-order TVD schemes. Since, as in the case of high-order space discretizations, it is not possible
to avoid spurious oscillations, we couple high-order discretizations with first-order ones. In cases where the TVD
property is violated, we come back to the first-order discretization which ensures monotonicity. This approach gives
the following limited scheme:

w?
j = wn

j − βce
∆t
∆x

(
wn

j − wn
j−1

)
− β ci√

ε

∆t
∆x

(
w?

j − w?
j−1

)
, (17a)

wn+1
j = wn

j − θ(β − 1)ce
∆t
∆x

(
wn

j − wn
j−1

)
− θ(1 − β)

ci√
ε

∆t
∆x

(
w?

j − w?
j−1

)
− θ(2 − β)ce

∆t
∆x

(
w?

j − w?
j−1

)
− θβ ci√

ε

∆t
∆x

(
wn+1

j − wn+1
j−1

)
− (1 − θ)ce

∆t
∆x

(
wn

j − wn
j−1

)
− (1 − θ) ci√

ε

∆t
∆x

(
wn+1

j − wn+1
j−1

)
.

(17b)

For this limited scheme (17), the following results hold true:

Theorem 2. With periodic boundary conditions, the scheme (17) is asymptotically consistent.

Proof. The scheme (17) results from a convex combination of the two asymptotically consistent schemes (13) and
(15). Therefore, it is also asymptotically consistent.

Theorem 3. The scheme (17) is asymptotically stable, i.e. uniformly TVD and L∞-stable:∥∥∥w?
∥∥∥∞ ≤ ‖wn‖∞ ,

∥∥∥wn+1
∥∥∥∞ ≤ ‖wn‖∞ , TV(w?) ≤ TV(wn), TV(wn+1) ≤ TV(wn),

if the following uniform CFL conditions

(1 − α)
ce ∆t
∆x
≤ 1 − α, α

ce ∆t
∆x
≤ α 1

β
1−β (2 − β)

= α
√

2, (18)

are verified for α ∈ [0, 1] and θ = α β
1−β = α (

√
2 − 1) ∈ (0, 1).

Proof. Let us first note that, like for the first-order AP scheme, the first step (17a) of the scheme is TVD and L∞-
stable under the non-restrictive explicit CFL condition ce ∆t/∆x ≤ 1/β. This restriction automatically holds since
1 ≤ √2 ≤ 1/β. Therefore,

∥∥∥w?
∥∥∥∞ ≤ ‖wn‖∞ and TV

(
w?) ≤ TV (wn).

Now, let us prove the L∞-stability of the second step. We denote by j0 the index in {1, · · · , L} such that wn+1
j0

=

maxL
j=1 wn+1

j . Thanks to the periodic boundary conditions, we have wn+1
j0

= maxL+1
j=0 wn+1

j . Then, we rewrite the second
step (17b) as follows:

wn+1
j0 ≤ wn+1

j0 + (1 − θ + θ β)
ci ∆t√
ε∆x

(wn+1
j0 − wn+1

j0−1) =

(
1 − θ(β − 1)

ce ∆t
∆x
− (1 − θ)ce ∆t

∆x

)
wn

j0

+

(
θ(β − 1)

ce ∆t
∆x

+ (1 − θ)ce ∆t
∆x

)
wn

j0−1

− θ(1 − β)
ci ∆t√
ε∆x

(w?
j0 − w?

j0−1) − θ(2 − β)
ce ∆t
∆x

(w?
j0 − w?

j0−1).
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From the first step (17a), we deduce − ci ∆t√
ε

(w?
j0
− w?

j0−1) = 1
β
(w?

j0
− wn

j0
) + ce ∆t

∆x (wn
j0
− wn

j0−1). Plugging this expression
into the previous equality leads to:

L+1
max

j=0
wn+1

j = wn+1
j0 ≤

(
1 − θ 1 − β

β
− ce ∆t

∆x

(
1 − θ

=(1−β)/β︷   ︸︸   ︷
(3 − 2 β)

))
wn

j0 +
ce ∆t
∆x

(
1 − θ 1 − β

β

)
wn

j0−1

+

(
θ

1 − β
β
− θ(2 − β)

ce ∆t
∆x

)
w?

j0 + θ(2 − β)
ce ∆t
∆x

w?
j0−1.

Note that, if all the coefficients are positive, we will have two convex combinations, one at time index n and one at
time index ?, and

L+1
max

j=0
wn+1

j = wn+1
j0 ≤

(
1 − θ 1 − β

β

)
L+1

max
j=0

wn
j + θ

1 − β
β

L+1
max

j=0
w?

j ≤
L+1

max
j=0

wn
j .

From the above expression, we deduce that necessary conditions for positive coefficients are 1− θ 1−β
β
≥ 0 and θ 1−β

β
≥

0. This gives the condition θ ∈ [0, β/(1 − β)]. By setting θ = α β
1−β , with α ∈ [0, 1], then all coefficients are positive

under the CFL conditions (18) and consequently the L∞-stability property is verified.
We can now prove the TVD property. Using (17b), the periodic boundary conditions and the first step, we have

for all j ∈ {1, · · · , L}:(
wn+1

j+1 − wn+1
j

) (
1 + (1 − θ + θ β)

ci ∆t√
ε∆x

)
− (1 − θ + θ β)

ci ∆t√
ε∆x

(
wn

j − wn
j−1

)
=

(
wn

j+1 − wn
j

) (
1 − θ 1 − β

β
− ce ∆t

∆x

(
1 + θ (1 − 2 β)

))
+

(
wn

j − wn
j−1

) ce ∆t
∆x

(
1 + θ (1 − 2 β)

)
+

(
w?

j+1 − w?
j

) (
θ

1 − β
β
− θ(2 − β)

ce ∆t
∆x

)
+

(
w?

j − w?
j−1

)
θ(2 − β)

ce ∆t
∆x

.

Taking the absolute value, remarking that for all real numbers a and b, |a| − |b| ≤ |a−b|, summing for all j ∈ {1, · · · , L}
and using the CFL conditions (18) and the periodic boundary conditions, we conclude the proof:

L∑
j=1

|wn+1
j+1 − wn+1

j | ≤
L∑

j=1

|wn
j+1 − wn

j |
(
1 − θ 1 − β

β
− ce ∆t

∆x

(
1 + θ (1 − 2 β)

))
+

L∑
j=1

|wn
j − wn

j−1|
ce ∆t
∆x

(
1 + θ (1 − 2 β)

)
+

L∑
j=1

|w?
j+1 − w?

j |
(
θ

1 − β
β
− θ(2 − β)

ce ∆t
∆x

)
+

L∑
j=1

|w?
j − w?

j−1|θ(2 − β)
ce ∆t
∆x
≤

L∑
j=1

|wn
j+1 − wn

j |.

The scheme (17) is therefore asymptotically stable under the uniform CFL conditions (18).

Remark 2. 1. Theorem 3 shows that the largest possible value for θ is θM = β/(1 − β) =
√

2 − 1 ≈ 0.4142 to
make sure that the TVD property and the L∞-stability hold. The scheme (17) with θ = θM will be referred to
as the TVD-AP scheme. This value θM depends on the chosen second-order time discretization . Other time
discretizations may allow larger values which may possibly improve the accuracy of the method. This situation
will be discussed in detail in [51].

2. In order to further increase the accuracy of the method, one could introduce local values of θ, to get a different θ
for each spatial cell in equation (17). However, in this case, the proofs of the TVD property and the L∞ stability
remain an open problem. In addition, numerical experiments performed suggest that such a local parameter
must be chosen related to a stencil of neighbors proportional to the velocity ci/

√
ε. These aspects will be studied

in detail in [51].

Now, we discuss limiters to detect the situations in which the TVD or the L∞ stability property is violated. In
such situations, it is relevant to switch from the second-order accurate scheme to the TVD-AP scheme without losing
excessive accuracy by diminishing the parameter θ. The proposed approach is based on a detection technique borrowed
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from the MOOD (Multidimensional Optimal Order Detection) [12, 25, 26] framework. The idea behind this specific
MOOD approach is to use the second-order oscillatory discretization (15) whenever possible, i.e. when no oscillations
appear. Instead, if at time n the numerical solution presents oscillations, we discard it and we replace it by the limited
TVD-AP scheme, i.e. the scheme (17) with θ = θM = β/(1 − β), which ensures the preservation of the demanded
properties. Since, for this specific situation, the L∞ norm of the solution is preserved in time, spurious oscillations are
checked with respect to the initial condition instead of that of the previous time iteration of the scheme. Indeed, the
relevant bounds are those of the initial condition rather than the ones of the diffusive numerical approximation. The
procedure is summarized by the following algorithm:

Algorithm 1. 1. Compute a candidate solution wn+1,O2 using the second-order AP scheme (15).
2. Detect if this candidate solution satisfies the L∞-stability and the TVD properties.
3. If these two criteria are satisfied by wn+1,O2, set wn+1 = wn+1,O2; otherwise, compute wn+1 using the TVD-AP

scheme (17) with θ = θM = β/(1 − β).

When this Algorithm is used, the resulting scheme will be referred to as the AP-MOOD scheme. In Figure 5,
we report the results of the advection of the rectangular pulse given by (16), for different values of the parameter ε,
and with periodic boundary conditions. Once again, we take ce = ci = 1, and the final physical time is tend =

0.4 (ce + ci/
√
ε). The solution is computed by the first-order AP scheme, the second-order AP scheme, the TVD-

AP scheme and the AP-MOOD scheme. The exact solution is also reported. One can clearly see the differences in
terms of accuracy for the different methods proposed and the absence of spurious oscillations for the TVD-AP and
the AP-MOOD methods. In the next section, we extend this approach to the case of the Euler equations.
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Figure 5: Advection with equation (12) of the rectangular pulse (16). Comparison of the first-order AP scheme (13) (dotted line), the second-order
AP scheme (15) (dashed line) the TVD-AP scheme (17) (blue dash-dotted line) and of AP-MOOD scheme given by Algorithm 1 (red line) against
the exact solution (solid line). We set ce = ci = 1 and tend = 0.4 (ce + ci/

√
ε). In the left panel, we take ε = 10−2 and 50 discretization cells; in the

right panel, we take ε = 10−4 and 500 discretization cells.

5. Application to the isentropic Euler system

We now extend the idea developed in the previous section to the isentropic Euler system. The TVD-AP scheme
reads as follows:

Wn+1
j = θWn+1,O1

j + (1 − θ) Wn+1,O2
j , (19)

where Wn+1,O1
j is given by the first-order AP scheme (5) while Wn+1,O2

j is given by the second-order AP scheme (10).
The value of θ comes from the analysis of the model problem carried out in the previous section: we set θ equal
to the fixed value θM = β/(1 − β). This is enough to ensure the TVD and the L∞-stability properties. However,
we observed that in many situations the full second-order AP scheme (10) can be employed without formation of
spurious oscillations like in the linear advection case described before. Our goal is therefore to construct a MOOD-
like technique which allows an interpolation from the full second-order to the TVD-AP scheme if needed. This will
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produce de facto an highly accurate method which is referred to as the AP-MOOD method. Unfortunately, in this
case, one cannot directly transpose to the Euler case the MOOD approach seen for the advection equation. In fact, in
the Euler system, the variables ρ and ρu no longer satisfy either the TVD property or the L∞ bound in the continuous
case. As a consequence, we cannot apply the detection criteria seen before on the conservative variables ρ and ρu
to get a non oscillating scheme. It turns out that characteristic or Riemann invariants variables constitute a better
choice for detecting spurious oscillations since it can be shown that they verify some decoupled non linear advection
equations [69]. We denote the Riemann invariants by φ+ and φ−. For the isentropic Euler system case, they are given
by

φ+(W) := u − h(ρ), and φ−(W) := u + h(ρ), (20)

where h(ρ) is the enthalpy given by h(ρ) = 2
γ−1

√
γ ργ−1

ε
if γ > 1 and h(ρ) = ln(ρ) if γ = 1 (see [69]). Note that, after

[67], it is known that at continuous level and for a Riemann problem at least one of the two Riemann invariants φ+

or φ− satisfy the maximum principle. Therefore, one can think to introduce a MOOD-like detection criterion which
relies on testing whether both Riemann invariants break the maximum principle at the same time. In practice, the
following stability detector is used: M0

± = ‖φ0
±‖∞,

Mn
± = max

(
Mn−1
± , ‖φn

±‖∞
)
, for all n > 0.

Equipped with this detector, the AP-MOOD algorithm for the Euler equations reads as follows:

Algorithm 2. 1. Compute a candidate solution Wn+1,O2 using the second-order AP scheme (10).
2. Detect if this candidate solution satisfies the maximum principle of the Riemann invariants: ‖φn+1,O2

− ‖∞ ≤ Mn
−

and ‖φn+1,02
+ ‖∞ ≤ Mn

+.
3. If these two criteria are satisfied, set Wn+1 = Wn+1,O2. Otherwise, compute Wn+1 using the TVD-AP scheme (19).

With this approach, at most one extra computation of the semi-implicit scheme is required to ensure the TVD
property and the L∞-stability.

We now turn to a second-order discretization in space. We present it in the case of one space dimension for the
sake of simplicity. To this end, we use classical MUSCL techniques [70]; other high-order space reconstructions
could also be employed without changing the core of the method. The discretization under consideration works by
introducing a linear reconstruction of the conserved variables Wn

j :

Ŵn
j (x) = Wn

j + σn
j (x − x j), (21)

where σn
j can be a limited (if the TVD property should be ensured) or unlimited slope. On the one hand, the case of

an unlimited slope is used in combination with the second-order in time AP scheme (10) and it is given by

σn
j =

1
2

Wn
j −Wn

j−1

∆x
+

Wn
j+1 −Wn

j

∆x

 . (22)

This gives rise to a genuine second-order in time and space asymptotic preserving method which, however, does not
enjoy either the TVD property or the L∞-stability. On the other hand, the slope limited by the minmod limiter is
employed together with AP-TVD scheme in time (19). In this case, we have

σn
j = minmod

Wn
j −Wn

j−1

∆x
,

Wn
j+1 −Wn

j

∆x

 , (23)

where the minmod function is given by:

minmod(a, b) =


min(a, b) if a > 0 and b > 0,
max(a, b) if a < 0 and b < 0,
0 otherwise.
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The above combination of space and time discretization gives rise to a TVD-A highly accurate space and time dis-
cretization of the Euler equation.

The reconstruction (21) of the conserved variables W is evaluated at the inner interfaces as follows:

Wn
j,± := Ŵn

j

(
x j ± ∆x

2

)
= Wn

j ±
∆x
2
σn

j . (24)

Thus, the explicit numerical flux function Fe becomes

(Fe)n
j+ 1

2
:=

Fe(Wn
j,+) + Fe(Wn

j+1,−)

2
+ (De)n

j+ 1
2
(Wn

j+1,− −Wn
j,+), (25)

with (De)n
j+ 1

2
:= max

(
|un

j,+|, |un
j+1,−|

)
the explicit viscosity coefficient. Moreover, the implicit numerical flux function

Fi becomes

(Fi)n,n+1
j+ 1

2
:=

Fi(Wn,n+1
j,+ ) + Fi(Wn,n+1

j+1,−)

2
+ (Di)n

j+ 1
2
(W̃n+1

j+1,− − W̃n+1
j,+ ), (26)

where Wn,n+1
j,+ = (ρn+1

j,+ , (ρu)n
j,+), where (Di)n

j+ 1
2

is the implicit viscosity coefficient, taken as half of the maximum
implicit eigenvalue and given by

(Di)n
j+ 1

2
:=

1
2

max


√

p′(ρn
j,+)

ε
,

√
p′(ρn

j+1,−)

ε

 , (27)

and where we have set
W̃n+1

j,± = Wn+1
j ± ∆x

2
σn

j . (28)

The second-order MUSCL extension in space is thus completely defined.

6. Numerical experiments

The schemes described in the previous parts are resumed and labeled below.

• The first-order AP scheme is given by (5), (6) and (7).

• The second-order AP scheme is given by (10), (22), (24)-(28). It corresponds to the unlimited ARS(2,2,2) time
discretization, supplemented with the unlimited linear MUSCL space reconstruction.

• The second-order limited AP scheme is given by (10), (23), (24)-(28). It corresponds to the unlimited ARS(2,2,2)
time discretization, supplemented with the minmod limited linear MUSCL space reconstruction.

• The TVD-AP scheme is given by (19) with θ = β/(1 − β). It corresponds to the convex combination of the
first-order AP scheme and of the second-order limited AP scheme.

• The AP-MOOD scheme corresponds to the procedure detailed in Algorithm 2 with (25), (26) and limiter (23)
for the space discretization.

In addition, for all the schemes, the time step is constrained by the uniform CFL condition

∆t ≤ C
∆x
Λ
, where Λ = max

j

(
2 |un

j |
)
,

with C = 0.9 for the first-order scheme and C = 0.45 for the other three schemes. Note that this slightly more restric-
tive CFL condition (for the second-order AP, TVD-AP and AP-MOOD schemes) is uniform and is only due to the
second-order discretization in space. In the following, we first consider a one dimensional Riemann problem. Then,
we perform an assessment of the order of accuracy of the scheme using a smooth solution in one space dimension.
Afterwards, we validate the scheme on a more complex test case and we verify its asymptotic stability, again in one
space dimension. Finally, we propose two two-dimensional numerical experiments to once again test the order of
accuracy of the four schemes and to compare their results with a reference solution.
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6.1. One-dimensional shock tube
On the space domain [0, 1], we consider γ = 1.4 and a Riemann problem for the 1D isentropic Euler equations (1)

with the following initial data:

ρ(0, x) =

{
1 + ε if x < 0.5,
1 otherwise; (ρu)(0, x) = 1. (29)

Homogeneous Neumann boundary conditions are prescribed on each boundary. The exact solution of this Riemann
problem is made of a left rarefaction wave and a right shock wave. We compare the results from the three schemes in
several regimes corresponding to different values of the squared Mach number: ε = 1, ε = 10−2 and ε = 10−4. For
each value of ε, we take a different number L of discretization cells. This is due to the fact that, for ε close to 1, a
large number of spatial cells would render the four different approximations very close and almost indistinguishable.
On the other hand, a low number of cells for ε close to 0 would make every scheme too diffusive and any relevant
conclusion would be impossible to draw. The results are displayed in Figure 6 for ε = 1 and L = 50, in Figure 7
for ε = 10−2 and L = 125 and in Figure 8 for ε = 10−4 and L = 500; the density is displayed on the left while the
momentum is displayed on the right.
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Figure 6: Comparison of the schemes for a one-dimensional shock tube for the 1D isentropic Euler system (1) with the initial conditions (29). We
take ε = 1 and 50 discretization cells; the results are displayed as functions of space at time tend = 0.125s. The left panel shows the density ρ while
the right panel displays the momentum ρu.
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Figure 7: Comparison of the schemes for a one-dimensional shock tube for the 1D isentropic Euler system (1) with the initial conditions (29). We
take ε = 10−2 and 125 discretization cells; the results are displayed as functions of space at time tend = 2 × 10−2s. The left panel shows the density
ρ while the right panel displays the momentum ρu.

As expected, the first-order AP scheme (dotted line) is very diffusive, while the second-order scheme (dashed
line) yields a better approximation of the intermediate states. However, overshoots and undershoots appear at the head
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Figure 8: Comparison of the schemes for a one-dimensional shock tube for the 1D isentropic Euler system (1) with the initial conditions (29). We
take ε = 10−4 and 500 discretization cells; the results are displayed as functions of space at time tend = 2.5 × 10−3s. The left panel shows the
density ρ while the right panel displays the momentum ρu.

and tail of the rarefaction wave and near the shock wave. The TVD-AP scheme (blue line) corrects both of these
shortcomings. Finally, thanks to the MOOD procedure, the AP-MOOD scheme (blue dashed line) yields better results
than the TVD-AP scheme.

In addition, it is worth noting that the time limiter (i.e. the convex combination procedure) has little impact for ε
close to one: in fact the TVD-AP scheme (blue line) and the second-order limited scheme (solid line with diamond
marks) are very close on Figure 6. This is expected since, in this situation, the time step is the one of the explicit
method, which means that the SSP property is guaranteed by the high-order time discretization. Conversely, for ε
close to zero, the second-order limited scheme in space (solid line with diamond marks) is very close to the one
produced by the unlimited version (dashed line) on Figures 7 and 8. This means that the space limiter of the standard
TVD method is not able to remove the oscillations. The numerical oscillations are produced by the time discretization
and a limiter for this part of the scheme is indeed necessary.

In conclusion, the oscillatory nature of the second-order AP scheme is removed by the TVD-AP and AP-MOOD
schemes at the cost of an expected slightly increased diffusion. Moreover, regarding the quality of the numerical
approximation, we conclude that second-order space accuracy is important for ε close to one, while second-order
time accuracy is important for ε close to zero.

6.2. Order of accuracy assessment in one dimension

We consider a smooth solution from [74] with the following initial data

ρ(0, x) = 1 − ε
2
ω

(
2

0.25

(
x − 1

2

))
and u(0, x) = 1 +

ε

2
ω

(
2

0.25

(
x − 1

2

))
,

on the space domain [0, 1] and where the function ω is given by ω(z) =
(

2−|z|
2

)4
(1 + 2|z|) if |z| ≤ 2, and 0 otherwise. If

γ = 3, see [74], both Riemann invariants are solution to the following Burgers equations:∂tφ+ + φ+∂xφ+ = 0,
∂tφ− + φ−∂xφ− = 0.

Solving the above system requires a nonlinear equation solver, such as Newton’s method.
For small enough time, the exact solution (ρ, ρu) is as smooth as the initial data. We use it to determine the

Dirichlet boundary conditions for the four schemes and to compute the errors between the approximate solutions and
the exact solution. We measure the L∞ errors for the density and the momentum as follows:

en
∞(ρ) = max

j

∣∣∣ρn
j − (ρex)n

j

∣∣∣ , en
∞(ρu) = max

j

∣∣∣(ρu)n
j − ((ρu)ex)n

j

∣∣∣ , (30)
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where t((ρex)n
j , ((ρu)ex)n

j ) is the exact solution at time tn in the cell of center x j. The time at which the errors are
computed are tend = 0.007s for ε = 1, tend = 0.005s for ε = 10−2 and tend = 0.0005s for ε = 10−4. For the four
schemes, the density and momentum L∞ errors are displayed in Figure 9 in logarithmic scale with respect to the
number of discretization cells.
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Figure 9: L∞ error curves for the numerical approximations of the smooth solution (Section 6.2) obtained with the initial data (30). The horizontal
axis records the number of cells, while the vertical axis corresponds to the errors produced by the four schemes under consideration. The slopes
correspond to the orders of accuracy of the schemes. From top to bottom, we take ε = 1 with tend = 7 × 10−3s, ε = 10−2 with tend = 5 × 10−3s and
ε = 10−4 with tend = 5 × 10−4s. The left panels record the density errors and the right panels display the momentum errors.

For all values of ε, the first-order AP scheme and the second-order AP scheme are respectively of order 1 and 2,
as expected. In addition, we note that the TVD-AP scheme is also numerically first-order accurate or barely larger but
with an L∞ error which is always lower than the one of the first-order method. For ε ∈ {10−2, 10−4}, the AP-MOOD
scheme is numerically of order two in spite of the slope limiter. For ε = 1, the AP-MOOD scheme is of order more
than one but less than two, with an L∞ error always smaller than the one of the first-order method.

Next, we plot in Figure 10 the errors produced by the four schemes as a function of ε. Three fixed grid resolutions
are considered: L = 300, 7500 and 20000 cells for the left, middle and right panels respectively. Here, we observe
that the errors of the four schemes decrease monotonically when ε decreases, unless machine precision is reached.
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Generally, the AP-MOOD scheme errors are smaller than the ones from the TVD-AP scheme unless the mesh is
too coarse for small ε. As expected, the AP-MOOD errors are larger than the ones from the second-order scheme.
Note that the non-monotonic behavior of the AP-MOOD results is probably due to the fact that, for large ε, the error
is due to the explicit treatment, while for small ε the implicit treatment of the scheme is to be blamed for this loss
of accuracy. Those two errors are of different natures and magnitudes, and, as observed, they may not necessarily
reconnect monotonically.
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Figure 10: L∞ error curves for the numerical approximation of the smooth solution (Section 6.2) obtained for the initial data (30). The horizontal
axis records the values of ε, while the vertical axis corresponds to the errors produced by the four schemes under consideration. From left to right,
we take 300, 7500 and 20000 discretization cells. The time discretization is tied to the number of cells by the CFL condition.

6.3. Validation and asymptotic stability in one dimension

We now consider the problem introduced by Degond and Tang in [18]. It consists in several interacting Riemann
problems. The initial data are given on the space domain [0, 1] by

ρ(0, x) =



2 if x ∈ [0, 0.2],
2 + ε if x ∈ (0.2, 0.3],
2 if x ∈ (0.3, 0.7],
2 − ε if x ∈ (0.7, 0.8),
2 if x ∈ [0.8, 1],

and (ρu)(0, x) =



1 − ε/2 if x ∈ [0, 0.2],
1 if x ∈ (0.2, 0.3],
1 + ε/2 if x ∈ (0.3, 0.7],
1 if x ∈ (0.7, 0.8),
1 − ε/2 if x ∈ [0.8, 1],

(31)

supplemented by periodic boundary conditions. We choose γ = 1.4. Here, the goal is to validate the proposed schemes
in both the compressible and the incompressible regimes. The reference solution is computed with the first-order AP
scheme on a refined mesh in space and time. Figure 11 reports the results for the density on the left and the momentum
on the right for ε = 1 and L = 100 discretization cells with final time tend = 0.075. In the top panels of Figure 12, we
display the solution for ε = 10−4 and tend = 0.0015 obtained with 1500 cells. In the bottom panels, we have refined
the space-time mesh to study the convergence of the numerical approximations.

As in the previous case, the first-order AP scheme is very diffusive and it smears out all shock waves. The second-
order AP scheme yields a less diffusive approximation, but it is not TVD because of overshoots and oscillations,
while the TVD-AP and AP-MOOD schemes decrease the diffusion, and therefore greatly improve the numerical
approximation compared to the first-order AP scheme.

In Figure 12, we observe that the first-order AP scheme projects the approximate solution onto the incompressible
limit and avoids computing the small structures and the fast waves present in the reference solution. However, the
second-order and the AP-MOOD schemes appropriately capture the micro-structure of the solution, still allowing for
much larger time steps. Therefore, if one is interested in the small structures close to the incompressible limit, then
high-order numerical schemes seem to be highly relevant.
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Figure 11: Degond-Tang experiment (Section 6.3) with the initial conditions (31). We take ε = 1 and 100 discretization cells; the results are
displayed as functions of space at time tend = 7.5 × 10−2s. The left panel shows the density ρ while the right panel displays the velocity u.
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Figure 12: Degond-Tang experiment (Section 6.3) with the initial conditions (31). In the four panels, we set ε = 10−4 and we display the numerical
results of the four schemes as functions of space at time tend = 1.5× 10−3s. We take 1500 discretization cells in the top panels and 3600 cells in the
bottom panels. The left panels show the density ρ while the right panels display the velocity u.

6.4. Order of accuracy in two dimensions
Now, we measure the order of accuracy of the scheme in two space dimensions. We consider γ = 1 and the

following smooth exact solution of the isentropic Euler system (1):

ρex(x, y, t) = ρ∞ − a2ε

8d
e2d(b−r̄(x,y,t)2),

uex(x, y, t) = u∞ + aȳ(t)
√
γ

2
ed(b−r̄(x,y,t)2) (ρex(x, y, t))

γ
2−1 ,

vex(x, y, t) = v∞ − ax̄(t)
√
γ

2
ed(b−r̄(x,y,t)2) (ρex(x, y, t))

γ
2−1 ,

(32)
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where we have set r̄(x, y, t)2 = x̄(t)2 + ȳ(t)2, with x̄(t) = x− x0−u∞t, ȳ(t) = y−y0−v∞t. This exact solution corresponds
to a vortex initially centered at t(x0, y0) and moving with the phase velocity t(u∞, v∞). For the numerical simulation,
we take ρ∞ = 1, a = 1, b = 0, d = 2, x0 = 0, y0 = 0 and t(u∞, v∞) = t(1, 0). The space domain is [−1.5, 2.5] × [−2, 2].
The simulations are carried out for three different values of the squared Mach number ε (ε = 1, ε = 10−2, ε = 10−4)
until the final physical time tend = 1s. To assess the numerical order of accuracy, we compute the following L∞ errors
for several uniform meshes :

en
∞(ρ) = max

j,k

∣∣∣ρn
j,k − (ρex)n

j,k

∣∣∣ and en
∞(ρU) = max

j,k

∣∣∣∣(ρ√u2 + v2
)n

j,k
−

(
ρex

√
u2

ex + v2
ex

)n

j,k

∣∣∣∣∣ .
For the four schemes, the errors are collected in Table 2 for ε = 1, Table 3 for ε = 10−2 and Table 4 for ε = 10−4.

In addition, we display error lines in Figure 13.

1st-order AP TVD-AP 2nd-order AP AP-MOOD

N en
∞(ρ) order en

∞(ρ) order en
∞(ρ) order en

∞(ρ) order

625 4.30e-02 — 1.93e-02 — 8.84e-03 — 1.04e-02 —
2500 3.36e-02 0.35 6.05e-03 1.67 1.66e-03 2.41 2.14e-03 2.28
10000 2.20e-02 0.61 2.08e-03 1.54 2.87e-04 2.53 6.31e-04 1.76
40000 1.30e-02 0.76 7.63e-04 1.45 5.63e-05 2.35 1.80e-04 1.81

N en
∞(ρU) order en

∞(ρU) order en
∞(ρU) order en

∞(ρU) order

625 1.07e-01 — 4.61e-02 — 1.62e-02 — 2.26e-02 —
2500 7.59e-02 0.50 1.25e-02 1.88 3.02e-03 2.42 4.40e-03 2.36
10000 4.73e-02 0.68 5.19e-03 1.27 5.33e-04 2.50 1.47e-03 1.59
40000 2.69e-02 0.81 2.54e-03 1.03 1.09e-04 2.29 4.84e-04 1.60

Table 2: Smooth unsteady vortex experiment (Section 6.4): comparisons of the density and momentum L∞ errors between the exact solution (32)
and the four numerical approximations, for several space discretizations, with ε = 1, and at time tend = 1s.

1st-order AP TVD-AP 2nd-order AP AP-MOOD

N en
∞(ρ) order en

∞(ρ) order en
∞(ρ) order en

∞(ρ) order

625 5.58e-04 — 3.57e-04 — 1.57e-04 — 2.46e-04 —
2500 5.16e-04 0.11 1.41e-04 1.34 3.31e-05 2.25 4.49e-05 2.46
10000 4.20e-04 0.30 4.94e-05 1.52 4.68e-06 2.82 1.68e-05 1.42
40000 3.02e-04 0.48 1.55e-05 1.67 6.33e-07 2.89 4.37e-06 1.94

N en
∞(ρU) order en

∞(ρU) order en
∞(ρU) order en

∞(ρU) order

625 1.51e-01 — 7.79e-02 — 3.19e-02 — 3.88e-02 —
2500 1.28e-01 0.24 2.84e-02 1.46 6.04e-03 2.40 6.81e-03 2.51
10000 9.52e-02 0.43 9.35e-03 1.60 8.50e-04 2.83 1.38e-03 2.30
40000 6.31e-02 0.59 2.81e-03 1.74 1.15e-04 2.89 4.57e-04 1.59

Table 3: Smooth unsteady vortex experiment (Section 6.4): comparisons of the density and momentum L∞ errors between the exact solution (32)
and the four numerical approximations, for several space discretizations, with ε = 10−2, and at time tend = 1s.

From these results, we draw similar conclusions as in the 1D case. The slopes and errors of the TVD-AP and
AP-MOOD schemes lie in between the first- and the second-order slopes and errors.

6.5. Asymptotic consistency of the schemes in two dimensions
Finally, we perform a 2D validation experiment, initially described in [75] and used more recently in [8]. It is

particularly relevant since, for small values of ε, we can compare the compressible numerical approximations to an
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1st-order AP TVD-AP 2nd-order AP AP-MOOD

N en
∞(ρ) order en

∞(ρ) order en
∞(ρ) order en

∞(ρ) order

625 2.42e-05 — 1.12e-05 — 5.32e-06 — 6.33e-06 —
2500 2.21e-05 0.13 1.27e-05 -0.18 1.75e-06 1.60 1.79e-06 1.82
10000 1.17e-05 0.91 2.97e-06 2.10 8.31e-07 1.08 7.88e-07 1.19
40000 9.33e-06 0.33 2.06e-06 0.53 1.19e-07 2.80 1.18e-07 2.74

N en
∞(ρU) order en

∞(ρU) order en
∞(ρU) order en

∞(ρU) order

625 1.61e-01 — 8.81e-02 — 3.74e-02 — 4.43e-02 —
2500 1.43e-01 0.16 4.40e-02 1.00 8.76e-03 2.09 9.17e-03 2.27
10000 1.17e-01 0.29 1.72e-02 1.36 1.65e-03 2.41 1.75e-03 2.39
40000 8.59e-02 0.45 5.69e-03 1.59 3.06e-04 2.43 3.05e-04 2.52

Table 4: Smooth unsteady vortex 2D experiment (Section 6.4): comparisons of the density and momentum L∞ errors between the exact solution
(32) and the four numerical approximations, for several space discretizations, with ε = 10−4, and at time tend = 1s.

approximate solution of the incompressible Euler equations. That way, we can measure the asymptotic consistency of
our approximations in the low Mach number limit.

The initial data are well-prepared. Indeed, on the space domain [0, 2π]2, we take a constant density ρ = π/15, and
the initial incompressible velocity field U = (u, v) is given by:

u(x, y, 0) =

tanh((y − π/2)/ρ), if y ≤ π,
tanh((3π/2 − y)/ρ), otherwise,

v(x, y, 0) = 0.05 sin(x).

In addition, we take γ = 1 and we prescribe periodic boundary conditions for the compressible Euler system.
To determine the incompressible approximate solution, we consider the vorticity formulation of the incompressible

Euler system, given by:
∂tω + U · ∇ω = 0, (33)

and we recall that the vorticity ω is given by ω = ∂xv − ∂yu. Since ∇ · U = 0, there exists a stream function ψ such
that U = t(∂yψ,−∂xψ) and −∆ψ = ω. From these observations, we can obtain a reference solution. We compute the
time evolution of the vorticity by repeating the following three steps: we first compute the stream function ψ, then the
associated velocity field, and finally the time update of the vorticity with (33). To solve the Poisson equation −∆ψ = ω,
we use a classical discretization of the Laplace operator, and we prescribe periodic boundary conditions. Since this
leads to a singular system, we also impose that the stream function has a null average. This does not alter the rest of
the procedure since we are only interested in the derivatives of ψ. The velocity is then obtained by an application of
a centered gradient discretization, and an upwind finite difference scheme provides an approximate solution for (33).
Periodic boundary conditions are prescribed in both of these steps.

We stress that the reference solution is obtained from the incompressible Euler equations while the schemes under
consideration approximately solve the compressible Euler system with a very small Mach number. The results are
displayed in Figure 14. We take ε = 10−5 and tend = 6s to compare the numerical solutions provided by the four
schemes for the compressible Euler system with the reference incompressible solution. The mesh is constituted of
200 × 200 cells.

We can see that the first-order scheme loses the main structure of the solution (it is worth noting that, on a much
finer space-time grid, the structure is captured by the first-order scheme). The limited TVD-AP scheme provides a
smeared numerical approximation, while the AP-MOOD and second-order schemes yield similar numerical solutions.
We note that, for these schemes, the main structure of the solution is captured. However, the small central structures are
smeared because the grid is too coarse. Overall, the proposed compressible schemes offer a convincing approximation
of the incompressible solution when ε is small enough.

Now, we carry out this experiment for ε = 1. First, we compute a reference solution with the first-order AP
scheme on a fine 400 × 400 grid at the final time tend = 10s. In Figure 15, we compare the vorticity computed by the
four schemes on a coarse 40 × 40 grid to this reference solution.
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Figure 13: L∞ error curves for the 2D smooth unsteady vortex (Section 6.4), drawn at time tend = 1s. The horizontal axis records the number of
cells, while the vertical axis corresponds to the errors produced by the four schemes under consideration, tested against the exact solution (32). The
slopes correspond to the orders of accuracy of the schemes. From top to bottom, we take ε = 1, ε = 10−2 and ε = 10−4. The left panels record the
density errors and the right panels display the momentum errors.

We note that the main structures of the reference solution are captured by the second-order and the AP-MOOD
scheme, with the TVD-AP scheme being slightly more diffusive. However, the first-order scheme is so diffusive that
it destroys most of the structures. In the bottom left corner of Figure 15, we have added a zoom on the domain
[2.35, 3.85] × [4.4, 5] of the reference and the second-order solutions. We note that the very fine structure present in
this domain is smeared by the second-order scheme due to the use of too coarse a mesh.

7. Conclusion

In this work, we have developed a new numerical method for describing physical problems in which incompress-
ible and compressible regimes coexist. Since non-physical oscillations cannot be avoided for non-restrictive CFL
conditions larger than the ones imposed by explicit methods, we have constructed a new method based on the cou-
pling of first-order with second-order in time and space schemes. This approach has allowed us to develop a highly
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Figure 14: Numerical approximations of the vorticity ∂xv − ∂yu for the double shear layer experiment (Section 6.5) at time tend = 6s. All five
simulations are carried out on a Cartesian mesh with 200 × 200 = 40000 cells. The reference solution is obtained by solving the incompressible
Euler system (33). To get a relevant approximation of the incompressible solution, the four compressible schemes under consideration are used in
an almost incompressible regime, i.e. with a very small value of the Mach number. We take ε = 10−5, which corresponds to a Mach number equal
to
√
ε ≈ 3.2 × 10−3.

accurate and asymptotic-preserving scheme, which additionally enjoys the TVD and the L∞-stability properties in-
dependently of the Mach number. Then, the introduction of limiters enabled a passage from the second-order to the
TVD method only when strictly necessary, further improving the overall accuracy. For the scheme presented, the
stability constraints do not depend on the value of the Mach number. In addition, it degenerates into a consistent
highly accurate discretization of the incompressible system in the low Mach number limit. Numerical experiments
supported the proposed analysis. In particular, we showed that the method developed is able to deal with situations
in which the fast sound waves of the low Mach regions play only a weak role in the description of the problem. In
these cases, in which the accurate resolution of the fast waves is not requested, the numerical scheme permits the use
of large time steps, independently of the small Mach number values, and to avoid their detailed resolution. Since, it
is well known that implicit discretizations together with large time steps introduce large numerical dissipation, high-
order extensions of the present scheme are very important especially for the high Mach regions. For this reason, in
the future, we aim at focusing on the generalization of such techniques to the case of TVD schemes which couple AP
schemes of order higher than two with first-order in time AP methods. Moreover, we aim at exploring more in depth
the use of limiters since, in some cases, some small oscillations remain present for the limited method. Local coupling
techniques between the schemes of different orders could also largely improve the results obtained; they are now the
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Figure 15: Numerical approximations of the vorticity ∂xv−∂yu for the double shear layer experiment (Section 6.5), with ε = 1 and at time tend = 6s.
The reference solution is obtained by using the first-order AP scheme with 400 × 400 cells, while the other approximate solutions are made with
40 × 40 = 1600 cells. The bottom left of this figure contains a zoom on a very small structure smeared by the coarse mesh but present in the
reference solution. The color legend in the bottom left corner is only applied to this zoom.

subject of investigations. An extension to the full Euler equations is under study based on the first-order AP scheme
presented in [22].
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[4] G. Bispen, M. Lukáčová-Medvid’ová, L. Yelash, Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations

with gravitation, J. Comput. Phys. 335, 222–248, 2017.

26



[5] M. Boger, F. Jaegle, R. Klein, C.-D. Munz, Coupling of compressible and incompressible flow regions using the multiple pressure variables
approach. Math. Methods Appl. Sci. 38 (2015), no. 3, 458-477.

[6] S. Boscarino, G. Russo, On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation,
SIAM J. Sci. Comput. 31(3), 1926–1945, 2009.

[7] S. Boscarino, G. Russo, Flux-explicit IMEX Runge-Kutta schemes for hyperbolic to parabolic relaxation problems, SIAM J. Numer. Anal.
51(1), 163–190, 2013.

[8] S. Boscarino, G. Russo, L. Scandurra, All Mach Number Second Order Semi-Implicit Scheme for the Euler Equations of Gasdynamics,
preprint.

[9] C. Bresten, S. Gottlieb, Z. Grant, D. Higgs, D. I. Ketcheson, A. Németh, Explicit strong stability preserving multistep Runge–Kutta methods.
Math. Comp. 86, 747–769, 2017.

[10] C. Chalons, M. Girardin, S. Kokh, Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source
terms, SIAM J. Sci. Comput. 35,2874–2902, 2013.

[11] C. Chalons, M. Girardin, S. Kokh, An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes,
Communications in Computational Physics (CICP), 20(1), 188–233, 2016.

[12] S. Clain, S. Diot, R. Loubère, A high-order finite volume method for systems of conservation laws—Multi-dimensional Optimal Order
Detection (MOOD), J. Comput. Phys. 230(10), 4028–4050, 2011.

[13] Ph. Colella, K. Pao, A projection method for low speed flows, J. Comp. Phys. 149, 245–269, 1999.
[14] S. Conde, S. Gottlieb, Z. J. Grant, J. N. Shadid, Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods with High

Linear Order, J. Sci. Comput., 73, 667–690, 2017.
[15] E. M. Constantinescu, A. Sandu, Optimal explicit strong-stability-preserving general linear methods, SIAM J. Sci. Comput. 32, 3130–3150,

2010.
[16] F. Cordier, P. Degond, A. Kumbaro, An Asymptotic-Preserving all-speed scheme for the Euler and Navier Stokes equations, J. Comp. Phys.

231, 5685–5704, 2012.
[17] P. Degond, F. Deluzet, A. Sangam, M.-H. Vignal, An Asymptotic Preserving Scheme for the Euler equations in a strong magnetic field,

Comp. Phys. 228, 3540–3558, 2009.
[18] P. Degond, M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equations. Commun. Comput. Phys. 10(1),

1–31, 2011.
[19] P. Degond, S. Jin, J.-G. Liu, Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull. Inst. Math. Acad.

Sin. (N.S.) 2 (2007), no. 4, 851-892.
[20] S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, J. Comp. Phys. 229,

978-1016, 2010.
[21] S. Dellacherie, J. Jung, P. Omnes, Preliminary results for the study of the Godunov Scheme Applied to the Linear Wave Equation with

Porosity at Low Mach Number, ESAIM ProcS. 52, 105-126, 2015.
[22] G. Dimarco, R. Loubère, M.-H. Vignal, Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit,

SIAM J. Sci. Comput., 39(5), A2099–A2128, 2017.
[23] G. Dimarco, L. Pareschi, Asymptotic-preserving IMEX Runge-Kutta methods for nonlinear kinetic equations, SIAM J. Num. Anal. 1064–

1087, 2013.
[24] G. Dimarco, L. Pareschi, High order asymptotic preserving schemes for the Boltzmann equation, Comptes Rendus Mathematique 350, 9,

481–486, 2012.
[25] S. Diot, S. Clain, R. Loubère, Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes

with very high-order polynomials, Comput. & Fluids, 64, 43–63, 2012.
[26] S. Diot, R. Loubère, and S. Clain, The multidimensional optimal order detection method in the three-dimensional case: very high-order finite

volume method for hyperbolic systems, Internat. J. Numer. Methods Fluids, 73(4), 362–392, 2013.
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