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ABSTRACT

Kernel based feature extraction method overcomes the
curse of dimensionality and captures the non-linearities
present in the data. However, these methods are not scal-
able with large number of pixels found with hyperspec-
tral images. Thus, a small subset of pixels are randomly
selected to make the solution of kernel based methods
tractable. In this paper, we propose scalable nonlinear
component analysis for dimensionality reduction of hy-
perspectral images. The proposed method relies on the
randomized feature maps to capture the non-linearities
between the variables in the hyperspectral data. Ex-
periments conducted with three hyperspectral datasets
show that our proposed method has provided better qual-
ity components and outperformed the state-of-the-art in
terms of classification performance.

Index Terms— Hyperspectral image classification,
Kernel PCA, Kernel MNF, Nonlinear component analy-
sis, Random Fourier feature, Kernel approximation

1. INTRODUCTION

The automatic analysis of hyperspectral images is a
challenging task mainly due to the high dimensional-
ity of the data [1]. Dimensionality reduction methods
can overcome the Hughes phenomena by projecting
the high dimensional data into a lower dimensional
subspace without loosing significant amount of informa-
tion. Prinicpal component analysis (PCA) and minimum
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noise fraction (MNF) are widely used to reduce the di-
mension of the hyperspectral data due to its simplicity
and its demonstrated performance in real applications.
These methods capture only the linear relationship be-
tween the variables in the data and it is does not take
into the account of non-linearities present in the data.
In order to overcome these limitations their non-linear
extensions have been proposed using kernel methods.

For PCA, the non-linear extension is Kernel prin-
cipal component analysis (KPCA), in which mapping
function is used to map the data in reproducing ker-
nel Hilbert space (RKHS) space and PCA is applied in
RKHS space [2]. For MNF [3], the non-linear exten-
sion is kernel minimum noise fraction (KMNF) [4] and
it is also computed similar to KPCA. However these
extensions tend to have high computational complexity
and it is often cubic in the sample size. It is worth to
note that in remote sensing images the available num-
ber of pixels are very large, so often it is impossible
to directly apply the KPCA or KMNF for hyperspectral
data. Thus in order to make tractable, a small subset of
samples is selected to construct the kernel matrix [2, 4].
However obtained solutions by these techniques are sub-
optimal, since it only includes small amount of samples
and it might fail to incorporate information of the ob-
jects which have less-spatial extend, which are crucial
for target detection applications.

Recently, randomized feature maps have been intro-
duced to construct features that can help to reveal the
non-linear relationships in the data [5]. These methods
find an explicit low dimensional feature map to approx-
imate the exact kernel matrix with little or no loss in
approximation error. The advantage of these techniques
is it achieves drastic saving in the computational com-
plexity from cubic to linear in the sample size, which



is highly favored for high dimensional remote sensing
images. The approximation to the KPCA using ran-
domized feature maps is recently proposed in machine
learning [6]. However their potential on the hyperspec-
tral images is not studied yet. Thus, the first objective of
this paper is to investigate the potential of randomized
PCA for the hyperspectral data. The second objective is
to propose the randomized MNF for dimension reduc-
tion of hyperspectral data. We demonstrate the effec-
tiveness of the proposed method based on visual analysis
and classification experiments on the several real world
hyperspectral datasets.

2. KERNEL APPROXIMATION AND
NONLINEAR COMPONENT ANALYSIS

2.1. Random Fourier Features

The objective of the kernel approximation methods is
to find a low dimensional feature map to approximate
the exact kernel [5]. More specifically, given the kernel
K(., .) : Rd × Rd → R, kernel approximation seeks
to find a nonlinear transformation φ such that, for any
x,y ∈ Rd

K(x,y) ' φ(x)Tφ(y) (1)

Random Fourier Features (RFF) is used to approxi-
mate the shift invariant kernels. By Bochner’s theorem,
the Fourier transform of the shift invariant kernels is a
non-negative measure [5], then

K(x− y) =

∫
p(w)e−jwT(x−y)dw
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The number of random Fourier features used in the ex-
periment is 2d, where d is the number bands in the hy-
perspectral image. The Gaussian RBF kernel can be
approximated by sampling w from N (0 , σ−2 ) 1 and b
from uniform distribution. Thus z can be used as explicit

1The σ2 is estimated based on the mean of the pairwise distance
of between the samples.

lower dimensional feature map. This explicit feature
map is used to build scalable kernel component analy-
sis in this paper.

2.2. Scalable nonlinear component analysis

In this subsection, we propose the scalable nonlinear
component analysis using random Fourier features.

2.2.1. Randomized PCA

LetX ∈ Rd×N , be the input hyperspectral image, where
N is the number of pixels in the image and W ∈ Rd×2d

be the RFF coefficients, and the randomized Fourier fea-
ture maps Z(X) can be obtained by (2). The Random-
ized PCA (RPCA) can be computed in two steps: (1)
compute randomized non-linear mapping of the data by
Z(X), (2) perform the linear PCA on the step 1.

RPCA(X) = FTZ

= PCA(Z(X)) ' KPCA(X) (3)

where F is the principal component coefficients com-
puted on randomized feature maps. The RPCA can be
viewed as the low rank approximation of the KPCA.

2.2.2. Randomized MNF

Randomized MNF (RMNF) is also the low rank approx-
imation of the KMNF. The computation of RMNF is
similar to RPCA. Firstly, transform the data using RFF
and then perform linear MNF on the randomized fea-
tures. The computation of RMNF is given as

RMNF(X) = YTZ

= MNF(Z(X)) ' KMNF(X) (4)

where Y is the eigen vectors of the product of noise co-
variance matrix and inverse of co-variance matrix of Z.
For more details of MNF transform, please see [3]

3. EXPERIMENTAL RESULTS

3.1. Experimental Datasets

In order to evaluate our proposed method, we have con-
sidered three hyperspectral datasets namely, Pavia Uni-
versity, Pavia Centre and Houston datasets. The first two
datasets is captured by the ROSIS sensor over the Pavia
University and City centre, and it has 103 and 102 bands
respectively. The last dataset was acquired by the NSF-
funded Center for Airborne Laser Mapping (NCALM)



over the University of Houston campus and the neigh-
boring urban area. The Pavia University, Pavia Cen-
tre dataset consist of nine land cover classes and Hous-
ton consists of fifteen land cover classes, and the avail-
able labeled reference samples are 42776, 148152, and
13997 respectively.

3.2. Visual analysis

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1: First three components on Pavia University
dataset: (a-c) Linear PCA, (d-f) RPCA, (g-i) KPCA.

Figure 1 shows the first three components of linear
PCA, RPCA and KPCA 2 of Pavia University. From the

2For the KPCA and KMNF, the kernel matrix are constructed

visual inspection, the components produced by RPCA
has better quality than KPCA and PCA. The first three
components of PCA accounts for 98.4% of variance
where as KPCA and RPCA requires 20 and 30 compo-
nents to accounts for the same variance. This shows that
the lower order components from RPCA contains more
useful information. Furthermore, the first three compo-
nents 3, of the proposed RMNF and KMNF are shown
in Figure 2. As observed with Figure 1 our proposed
RMNF has more informative content and better quality
components. In the next subsection, we evaluate the
randomized non-linear components in the classification
framework.

(a) (b) (c)

(d) (e) (f)

Fig. 2: First three components on Pavia University
dataset: (a-c) RMNF, (d-f) KMNF.

3.3. Classification experiments

3.3.1. Randomized PCA and Kernel PCA

Table 1 shows the classification results of randomized
PCA and kernel PCA over different number of compo-

using 1000 randomly selected samples, The bandwidth of the RBF
kernel is estimated similar to RFF

3Due to the space restrictions,the first three components of linear
MNF is not shown here



nents with three hyperspectral datasets. The classifica-
tion experiments are performed using SVM classifier us-
ing RBF kernel with 100 training samples per class. The
hyperparameters of the SVM classifier are automatically
tuned using grid search method with five-fold cross val-
idation. From the table 1, it is obvious that accuracies of
randomized PCA is better than or comparable to the con-
ventional kernel PCA. The significance of performance
depends on the datasets and also on the number of com-
ponents used.

Table 1: Classification accuracies (OA in %) of RPCA
and KPCA with different number of components for
three hyperspectral datasets. The reported accuracies are
averaged over five runs.

Dataset Method
No of components

3 5 10 15 20 25 30 35

Pavia RPCA 64.9 68.8 75.0 78.6 78.7 82.2 81.9 83.7

University KPCA 64.9 68.4 75.5 77.3 77.2 79.1 80.2 81.0

Pavia RPCA 91.8 96.0 96.6 96.9 97.0 97.2 97.2 97.5

Centre KPCA 90.3 96.1 96.7 96.9 96.8 97.1 97.2 97.3

Houstan RPCA 80.0 86.7 88.4 91.0 92.0 92.6 92.9 93.4

KPCA 79.8 84.1 87.8 89.3 91.2 92.6 93.3 93.1

3.3.2. Randomized MNF and Kernel MNF

Table 2 shows the classification results of the proposed
randomized MNF and kernel MNF with three hyper-
spectral datasets and the values shows the proposed
RMNF has outperformed the conventional KMNF. More
specifically, the RMNF has much better performance
than the KMNF when upto 10 components are consid-
ered, and the improvement is about 5% on average with
all the datasets.

Table 2: Classification accuracies (OA in %) of RMNF
and KMNF for three hyperspectral datasets. The re-
ported accuracies are averaged over five runs.

Dataset Method
No of components

3 5 10 15 20 25 30 35

Pavia RMNF 61.0 70.1 77.1 78.5 81.6 82.9 82.7 83.0

University KMNF 58.0 70.4 74.7 78.1 79.7 80.8 81.9 82.8

Pavia RMNF 84.3 95.0 96.6 96.8 96.9 97.0 97.1 97.0

Centre KMNF 82.6 86.7 92.9 94.2 96.5 96.6 96.7 97.0

Houstan RMNF 71.6 83.3 88.8 90.2 91.4 91.8 92.2 92.3

KMNF 57.8 71.9 85.6 90.6 92.6 93.2 94.0 94.4

4. CONCLUSION

In this paper, we proposed scalable nonlinear component
analysis for dimensionality reduction of hyperspectral
data using randomized feature maps. More specifically,
we have investigated randomized PCA and proposed
randomized MNF to capture the non-linear dependence
between the variables in the data and to overcome the
limitations of the conventional kernel component analy-
sis for hyperspectral image classification. Experiments
conducted with three hyperspectral datasets show that
the proposed method provided informative components
and outperformed the classification results of the con-
ventional methods. In the future work, we would like
to study the impact of the number of randomized fea-
ture maps and the Gaussian bandwidth parameter on the
proposed methods.
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