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ABSTRACT

The fusion of hyperspectral and multispectral images is a cru-
cial task nowadays for it allows the extraction of relevant in-
formation from the fused image. Fusion consists of the com-
bination of the spectral information of the hypespectral im-
age (h) and the spatial information of the multispectral image
(m). The fused image (f) has both good spatial and spectral
information. In this paper we suggest a new hyperspectral and
multispectral image (h-m) fusion approach based on Optimal
Transport (OT) which highlights the idea of energy transfer
from the starting images m and h to the resulting image f.
The simulations show that the suggested method is effective
and compares competitively with other state-of-the-art meth-
ods.

Index Terms— Image Fusion, Optimal Transport, Wasser-
stein Barycenter

1. INTRODUCTION

The fusion of satellite images from different sensors has long
been studied and the most famous type of fusion in the liter-
ature is the pansharpening. The latter consists of the fusion
of a panchromatic image (pan) with a multispectral image
(m), comparative studies about pansharpening methods are
available in [14]. Another type of fusion is the hyperspectral
pansharpening wich aims at fusing pan with a hypespectral
image (h) [8]. The first method of hyperspectral and multi-
spectral (h-m) fusion is a wavelet-based technique [7], how-
ever, this method depends on the spectral resampling method
in case data are missing from m, which introduces discrepan-
cies in the reconstructed image.

In this work we present an Optimal-Transport-based hy-
perspectral and multispectral image fusion. The h-m fu-
sion has been widely explored throughout methods such as
CNMF [16] which is based on unsupervised alternate un-
mixing. In this method, the fused image f is found by the
combination of h’s endmember matrix and the high spatial
resolution abundance matrix obtained from m. However,
CNMF method is limited by the fact that each pixel is as-
sumed to be a linear combination of several endmember

spectra, and by the fact that both spatial and spectral sensor
responses and properties are required. Another approach for
h-m fusion is the HySure [12] where the fusion is formulated
as a convex optimization problem by using a form of vector
Total Variation-based regularization. Similarly to CNMF,
HySure needs both spatial and spectral sensor responses.

Optimal Transport (OT) has been widely used and has ap-
plications in many fields such as economy [4], texture syn-
thesis [15], etc. The paper [5] has recently been presented
as an interesting tool for data fusion in remote sensing but
it does not deal with image fusion. Our paper is the first to
present an application of OT in h-m fusion. After acquisi-
tion of two images m and h, two inverse operators M̃ and H̃
are applied on m and h respectively in order to extend these
latter to the same domain as f. At this stage, classic fusion
techniques such as arithmetic and geometric means could be
used. However, in our method, which we term HMWB for
Hyperspectral and Multispectral Wasserstein Barycenter, we
apply the Wasserstein Barycenter (WB) [2] to compute, in a
smart and effective way the mean and therefore carry out the
fusion task. Empirically, WB has proven to be a powerful tool
to compute the barycenter (or the mean) of a set of empirical
probability measures. Then we decided to apply it in the case
of h-m fusion where, once again, it proved effective.

The rest of the paper is organized as follows. Section 2
introduces Optimal Transport as a new theory to deal with
h-m fusion. In Section 3 we present the proposed model for
h-m fusion based on an image observation model. Finally, we
present the experiments and results of our method (Section 4)
followed by a conclusion in section 5.

2. A QUICK OVERVIEW OF OPTIMAL TRANSPORT

Optimal Transport is a mathematical theory which associates
a metric between probability distributions. This metric quan-
tifies the main geometric differences between two distribu-
tions by measuring the minimal cost of work needed to trans-
port all the mass contained in one distribution onto the other.
In the discrete setting, let us consider two discrete probability



measures µ and ν such that (s.t)

µ =

n∑
i=1

aiδxi
and ν =

m∑
j=1

bjδyj ,

where (a1, . . . , an) and (b1, . . . , bm) are probability masses
of Dirac located at X = (x1, . . . , xn) and Y = (y1, . . . , ym)
respectively. The Wasserstein distance between µ and ν is

W (µ, ν) = min
φ∈Π(µ,ν)

< φ,DXY >, (1)

where

Π(µ, ν) = {φ ∈ Rn×m+ |φ1m = µ, φT1n = ν}, (2)

DXY = [d(xi, yj)]ij ∈ Rn×m, (3)

and d is a distance.
Regularized Wasserstein distance. The numerical im-

plementation of OT algorithms has a high computational cost
especially in image processing. For an image of size n, the
time complexity is of order O(n3log(n)) [11]. A way of
speeding up the OT computation is the regularization of equa-
tion (1) [6].

The regularization has the advantage of making the min-
imization problem strictly convex, which guaranties the
uniqueness of the minimum and the fast computation of
the latter throughout the application of Sinkhorn’s algorithm.
This regularization is carried out by penalizing the entropy of
the joint coupling φ. The regularized Wasserstein distance is
then defined as follows

Wγ(µ, ν) = min
φ∈Π(µ,ν)

< φ,DXY > −γE(φ), (4)

where γ is the regularization coefficient and E(φ) is the en-
tropy defined as

E(φ) = −
n∑
i=1

m∑
j=1

φi,j(log φi,j − 1)− ιR+(φi,j), (5)

where ι is the indicator of R+ s.t

∀x, ιR+(x) =

{
0 if x ∈ R+,

+∞ otherwise.
(6)

3. THE PROPOSED FUSION MODEL

3.1. Observation model

In the image generation model, the observed m and h images
are respectively supposed to be a spectral and spatial degra-
dation of an ideal image I. We suppose that m (resp. h ) has a
spatial resolution nm × nm (resp. nh × nh) and the number

of spectral bands are bm (resp. bh). Then I has a spatial reso-
lution nm×nm and bh spectral bands. In fact, we denote that
m ∈ Rbm×n2

m , h ∈ Rbh×n2
h and I ∈ Rbh×n2

m .
Thus, starting from m and h we would like to have a fused

image I ∈ Rbh×n2
m . The observation model can be written as

follows [10]

h = IBS + Nh,

m = MI + Nm,
(7)

where

• M∈ Rbm×bh is the spectral degradation operator which
represents the response of the spectral sensor;

• B ∈ Rn2
m×n

2
m is a low-pass filter and S ∈ Rn2

m×n
2
h is a

downsampling operator;

• Nh and Nm are h and m additive white Gaussian noises,
respectively. We suppose that both noise are zeros-
mean and they are band-dependent. That means, for
instance, Nh can be written as Nh=[nh,1,nh,2,...,nh,bh ]
where nh,i ∼ N (0, σh,i).

3.2. Fusion scheme based on Wasserstein Barycenter

As mentioned in the introduction, the fused image f is a
computed mean between M̃(m) and H̃(h) according to the
Wasserstein metric. This leads us to considering the following
formulation of the fusion problem

min
f∈Σf

G(f) = λWγM (f, M̃(m)) + (1− λ)WγH (f, H̃(h)), (8)

f is then the solution of the minimization of the sum of two
regularized Wasserstein distances weighted by λ where

• Σf = {f ∈ R
bh×n2

m
+ ,

bhn
2
m∑

i=1

fi = 1} is the simplex in

Rbh×n2
m ;

• λ is a weight coefficient that favors the spectral or spa-
tial information.

The regularized Wasserstein distance (4) can be recast as
a Kullback-Leibler (KL) projection [3]

Wγ(µ, ν) = min
φ∈Π(µ,ν)

KL(φ|ξ), (9)

thus the minimization problem (8) can be rewritten as

min{λ KL(φM |ξM ) + (1 + λ) KL(φH |ξH), (φM , φH) ∈ C}, (10)

where C is the intersection of the following four constraints
C1,M = {φM ∈ R

(bh×n2
m)2

+ , φᵀM1Rbh×n2
m

= M̃(m)},
C2,M = {φM ∈ R

(bh×n2
m)2

+ , φM1Rbh×n2
m

= f},
C1,H = {φH ∈ R

(bh×n2
m)2

+ , φᵀH1Rbh×n2
m

= H̃(h)},



C2,H = {φH ∈ R
(bh×n2

m)2

+ , φH1Rbh×n2
m

= f}
and (φM ,φH ) is a set of couplings that minimize (10).
Furthermore, for two probability measures p and q, ξ is

defined as follows

ξ = exp

(
− 1

γ

(
(xp − xq)2 + (yp − yq)2

))
︸ ︷︷ ︸

2D spatial distances

exp

(
− α

γ
(zp − zq)2

)
︸ ︷︷ ︸

1D spectral distances

,

where (xp, yp, zp) and (xq, yq, zq) are two distinct coordi-
nates in a data cube. The parameter α gives the proportion
of the spectral Euclidean distance (zp − zq)2 with respect to
the spatial Euclidean distance ((xp − xq)2 + (yp − yq)2).

The minimization of (10) is resolved by applying Breg-
man projections [3] on the four constraints defined above.

Algorithm 1: HMWB

Input : M̃(m), H̃(h), ξm, ξh
1 Initialization: v(0)

M = v(0)
H = u(0)

M = u(0)
H = 1

Rbh×n2
m

;
2 for i← 1 to niter do
3 % Updating the scaling vectors with data

(Sinkhorn’s iteration)
4 v(n)

M ← M̃(m)

ξm∗u
(n)
M

, v(n)
H ← H̃(h)

ξh∗u
(n)
H

;

5 % Computing the barycenter

6 f← exp(λ log(u(n)
M � ((ξm ∗ v(n)

M )) + (1−
λ) log(u(n)

H � (ξh ∗ v(n)
H )));

7 % Updating the scaling vectors with f (Sinkhorn’s
iteration)

8 u(n)
M ← f

(ξm∗v
(n)
M )

, u(n)
H ← f

(ξh∗v
(n)
H )

;

9 end
Output: f (the fused image)

The operation� is an elementwise multiplication and “∗”
is a convolution used to speed up the computations [13].

4. EXPERIMENTATION AND RESULTS

4.1. Images generation

In this section we discuss the performance of the HMWB al-
gorithm on two different data sets. For each data set, two
images m and h were generated, according to (7), from two
reference hyperspectral images which sizes are 128×128×
93 taken over the University of Pavia in Italy and over the
Japanese city of Chikusei. The images m and h are both cor-
rupted with Gaussian noises and their sizes are 128×128×4
and 32×32×93 respectively.

4.2. Inverse operators and normalization step

After being generated, m is denoised with Wiener filter and
h is denoised with a Total-Variation based method [1]. In
order to apply the fusion algorithm, both images must be on
the same domain as f. To do this, we introduce two inverse
operators M̃ and H̃ s.t.

M̃ : Rbm×n2
m −→ Rbh×n2

m

m 7−→ M̃(m)

H̃ : Rbh×n2
h −→ Rbh×n2

m

h 7−→ H̃(h)

where H̃ is an interpolation operator and M̃ is the solution of

the following least square problem

min
M̃∈Rbh×bm

||(M ◦ M̃)(m)−m||2.

Afterwards, the pixel values of M̃(m) and H̃(h) are normal-
ized by the total sum of pixel values of the corresponding im-
age. As a consequence, we can consider both images M̃(m)

and H̃(h) as probability measures and apply the HMWB al-
gorithm.

4.3. Choice of parameters

The values of the parameters γM = 10−6, γH = 10−4,
αM = 10−3, αH = 501 and λ = 0.1 were fixed for all
the experiments. These latter were chosen as the parameters
that yielded the best results throughout tests on different data
sets. Our method is compared with two state-of-the-art meth-
ods: CNMF and HySure and, with the geometric and the
arithmetic mean. In CNMF and HySure we work with the
parameters fixed by their authors.

4.4. Results of the simulations

All experiments are run with MATLAB 2015A. On figures 1
and 2 we notice that, for both data sets, the fused image f is vi-
sually very close to the reference image I. To assess the fusion
quality with quantitative results we measure the performance
of our algorithm with three quality indices [9]

1. The RMSE is the well known Root Mean Square Error
between image X and it’s estimate X̂. The closer RMSE
to 0 the better the fusion.

2. The Spectral Angle Mapper (SAM) measures the abso-
lute angle between the spectral vector Xi and its esti-
mate X̂i. The closer SAM to 0 the better the fusion.

3. The Cross Correlation (CC) measures the geometric
distortion between an image X and it’s estimate X̂. The
closer CC to 1 the better the fusion performance.

In terms of quality indices, tables 1 and 2 show that for
RMSE, SAM and CC our method compares favorably to the
other two state of the art methods.



Fig. 1: Pavia data set (false colors). First image (left): ground
truth (I), second image: h, third image: m, last image (right):
fused image f

Fig. 2: Chikusei data set (false colors). First image (left):
ground truth (I), second image: h, third image: m, last image
(right): fused image f

Methods RMSE SAM CC
HMWB 3, 1899.10−8 2, 0748 0, 98594

CNMF [16] 8,6506.10−8 3,4652 0,89547
HySure [12] 5,6386.10−8 3,7441 0,95803

G. mean 1,8019.10−7 14,399 0,94746
A. mean 1,6203.10−7 12,6038 0,94947

Table 1: Pavia data set. Quality indices of HMWB, CNMF,
HySure, Geometric mean and Arithmetic mean

Methods RMSE SAM CC
HMWB 2, 8686.10−8 1, 7956 0, 98694

CNMF [16] 3,5396.10−8 1,9274 0,9725
HySure [12] 4,7174.10−8 2,7484 0,95924

G. mean 2,0564.10−7 15,9596 0,96315
A. mean 1,8148.10−7 13,8919 0,96022

Table 2: Chikusei data set. Quality indices of HMWB,
CNMF, HySure, Geometric mean and Arithmetic mean

5. CONCLUSION

Throughout this paper, we presented a new approach of hy-
perspectral and multispectral image fusion based on the appli-
cation of Optimal Transport. The experimental tests indicate
that the results are promising and compares favorably to other
state-of-the-art methods.
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