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Abstract

This paper deals with the unsupervised domain adaptation problem, where one
wants to estimate a prediction function f in a given target domain without any
labeled sample by exploiting the knowledge available from a source domain where
labels are known. Our work makes the following assumption: there exists a non-
linear transformation between the joint feature/label space distributions of the two
domain Ps and Pt that can be estimated with optimal transport. We propose a
solution of this problem that allows to recover an estimated target Pft = (X, f(X))
by optimizing simultaneously the optimal coupling and f . We show that our method
corresponds to the minimization of a bound on the target error, and provide an
efficient algorithmic solution, for which convergence is proved. The versatility of
our approach, both in terms of class of hypothesis or loss functions is demonstrated
with real world classification and regression problems, for which we reach or
surpass state-of-the-art results.

1 Introduction

In the context of supervised learning, one generally assumes that the test data is a realization of the
same process that generated the learning set. Yet, in many practical applications it is often not the
case, since several factors can slightly alter this process. The particular case of visual adaptation [1]
in computer vision is a good example: given a new dataset of images without any label, one may want
to exploit a different annotated dataset, provided that they share sufficient common information and
labels. However, the generating process can be different in several aspects, such as the conditions and
devices used for acquisition, different pre-processing, different compressions, etc. Domain adaptation
techniques aim at alleviating this issue by transferring knowledge between domains [2]. We propose
in this paper a principled and theoretically founded way of tackling this problem.

The domain adaptation (DA) problem is not new and has received a lot of attention during the past ten
years. State-of-the-art methods are mainly differing by the assumptions made over the change in data
distributions. In the covariate shift assumption, the differences between the domains are characterized
by a change in the feature distributions P(X), while the conditional distributions P(Y |X) remain
unchanged (X and Y being respectively the instance and label spaces). Importance re-weighting can
be used to learn a new classifier (e.g. [3]), provided that the overlapping of the distributions is large
∗Both authors contributed equally.
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enough. Kernel alignment [4] has also been considered for the same purpose. Other types of method,
denoted as Invariant Components by Gong and co-authors [5], are looking for a transformation
T such that the new representations of input data are matching, i.e. Ps(T (X)) = Pt(T (X)).
Methods are then differing by: i) The considered class of transformation, that are generally defined
as projections (e.g. [6, 7, 8, 9, 5]), affine transform [4] or non-linear transformation as expressed by
neural networks [10, 11] ii) The types of divergences used to compare Ps(T (X)) and Pt(T (X)),
such as Kullback Leibler [12] or Maximum Mean Discrepancy [9, 5]. Those divergences usually
require that the distributions share a common support to be defined. A particular case is found in
the use of optimal transport, introduced for domain adaptation by [13, 14]. T is then defined to be
a push-forward operator such that Ps(X) = Pt(T (X)) and that minimizes a global transportation
effort or cost between distributions. The associated divergence is the so-called Wasserstein metric,
that has a natural Lagrangian formulation and avoids the estimation of continuous distribution by
means of kernel. As such, it also alleviates the need for a shared support.

The methods discussed above implicitly assume that the conditional distributions are unchanged by
T , i.e. Ps(Y |T (X)) ≈ Pt(Y |T (X)) but there is no clear reason for this assumption to hold. A
more general approach is to adapt both marginal feature and conditional distributions by minimizing
a global divergence between them. However, this task is usually hard since no label is available in
the target domain and therefore no empirical version Pt(Y |X) can be used. This was achieved by
restricting to specific class of transformation such as projection [9, 5].

Contributions and outline. In this work we propose a novel framework for unsupervised domain
adaptation between joint distributions. We propose to find a function f that predicts an output
value given an input x ∈ X , and that minimizes the optimal transport loss between the joint source
distribution Ps and an estimated target joint distribution Pft = (X, f(X)) depending on f (detailed
in Section 2). The method is denoted as JDOT for “Joint Distribution Optimal Transport" in the
remainder. We show that the resulting optimization problem stands for a minimization of a bound
on the target error of f (Section 3) and propose an efficient algorithm to solve it (Section 4). Our
approach is very general and does not require to learn explicitly a transformation, as it directly solves
for the best function. We show that it can handle both regression and classification problems with a
large class of functions f including kernel machines and neural networks. We finally provide several
numerical experiments on real regression and classification problems that show the performances of
JDOT over the state-of-the-art (Section 5).

2 Joint distribution Optimal Transport

Let Ω ∈ Rd be a compact input measurable space of dimension d and C the set of labels. P(Ω)
denotes the set of all the probability measures over Ω. The standard learning paradigm assumes
classically the existence of a set of data Xs = {xsi}

Ns
i=1 associated with a set of class label information

Ys = {ysi }
Ns
i=1, ysi ∈ C (the learning set), and a data set with unknown labels Xt = {xti}

Nt
i=1 (the

testing set). In order to determine the set of labels Yt associated with Xt , one usually relies on an
empirical estimate of the joint probability distribution P(X,Y ) ∈ P(Ω × C) from (Xs,Ys), and
the assumption that Xs and Xt are drawn from the same distribution µ ∈ P(Ω). In the considered
adaptation problem, one assumes the existence of two distinct joint probability distributions Ps(X,Y )
and Pt(X,Y ) which correspond respectively to two different source and target domains. We will
write µs and µt their respective marginal distributions over X .

2.1 Optimal transport in domain adaptation

The Monge problem is seeking for a map T0 : Ω→ Ω that pushes µs toward µt defined as:

T0 = argmin
T

∫
Ω

d(x, T (x))dµs(x), s.t. T #µs = µt,

where T #µs the image measure of µs by T , verifying:

T #µs(A) = µt(T −1(A)), ∀ Borel subset A ⊂ Ω, (1)

and d : Ω × Ω → R+ is a metric. In the remainder, we will always consider without further
notification the case where d is the squared Euclidean metric. When T0 exists, it is called an optimal
transport map, but it is not always the case (e.g. assume that µs is defined by one Dirac measure and
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µt by two). A relaxed version of this problem has been proposed by Kantorovitch [15], who rather
seeks for a transport plan (or equivalently a joint probability distribution) γ ∈ P(Ω× Ω) such that:

γ0 = argmin
γ∈Π(µs,µt)

∫
Ω×Ω

d(x1,x2)dγ(x1,x2), (2)

where Π(µs, µt) = {γ ∈ P(Ω × Ω)|p+#γ = µs, p
−#γ = µt} and p+ and p− denotes the two

marginal projections of Ω× Ω to Ω. Minimizers of this problem are called optimal transport plans.
Should γ0 be of the form (id × T )#µs, then the solution to Kantorovich and Monge problems
coincide. As such the Kantorovich relaxation can be seen as a generalization of the Monge problem,
with less constraints on the existence and uniqueness of solutions [16].

Optimal transport has been used in DA as a principled way to bring the source and target distribution
closer [13, 14, 17], by seeking for a transport plan between the empirical distributions of Xs and
Xt and interpolating Xs thanks to a barycentric mapping [14], or by estimating a mapping which is
not the solution of Monge problem but allows to map unseen samples [17]. Moreover, they show
that better constraining the structure of γ through entropic or classwise regularization terms helps in
achieving better empirical results.

2.2 Joint distribution optimal transport loss

The main idea of this work is is to handle a change in both marginal and conditional distributions.
As such, we are looking for a transformation T that will align directly the joint distributions Ps and
Pt. Following the Kantovorich formulation of (2), T will be implicitly expressed through a coupling
between both joint distributions as:

γ0 = argmin
γ∈Π(Ps,Pt)

∫
(Ω×C)2

D(x1, y1;x2, y2)dγ(x1, y1;x2, y2), (3)

where D(x1, y1;x2, y2) = αd(x1,x2) + L(y1, y2) is a joint cost measure combining both the
distances between the samples and a loss function L measuring the discrepancy between y1 and y2.
While this joint cost is specific (separable), we leave for future work the analysis of generic joint cost
function. Putting it in words, matching close source and target samples with similar labels costs few.
α is a positive parameter which balances the metric in the feature space and the loss. As such, when
α → +∞, this cost is dominated by the metric in the input feature space, and the solution of the
coupling problem is the same as in [14]. It can be shown that a minimizer to (3) always exists and is
unique provided that D(·) is lower semi-continuous (see [18], Theorem 4.1), which is the case when
d(·) is a norm and for every usual loss functions [19].

In the unsupervised DA problem, one does not have access to labels in the target domain, and as such
it is not possible to find the optimal coupling. Since our goal is to find a function on the target domain
f : Ω→ C, we suggest to replace y2 by a proxy f(x2). This leads to the definition of the following
joint distribution that uses a given function f as a proxy for y:

Pft = (x, f(x))x∼µt
(4)

In practice we consider empirical versions of Ps and Pft , i.e. P̂s = 1
Ns

∑Ns

i=1 δxs
i ,y

s
i

and ˆPft =
1
Nt

∑Nt

i=1 δxt
i,f(xt

i)
. γ is then a matrix which belongs to ∆ , i.e.the transportation polytope of non-

negative matrices between uniform distributions. Since our goal is to estimate a prediction f on
the target domain, we propose to find the one that produces predictions that match optimally source
labels to the aligned target instances in the transport plan. For this purpose, we propose to solve the
following problem for JDOT:

min
f,γ∈∆

∑
ij

D(xsi ,y
s
i ;x

t
j , f(xtj))γij ≡ min

f
W1(P̂s,

ˆPft ) (5)

where W1 is the 1-Wasserstein distance for the loss D(x1, y1;x2, y2) = αd(x1,x2) + L(y1, y2).
We will make clear in the next section that the function f we retrieve is theoretically sound with
respect to the target error. Note that in practice we add a regularization term for function f in order
to avoid overfitting as discussed in Section 4. An illustration of JDOT for a regression problem is
given in Figure 1. In this figure, we have very different joint and marginal distributions but we want
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Figure 1: Illustration of JDOT on a 1D regression problem. (left) Source and target empirical
distributions and marginals (middle left) Source and target models (middle right) OT matrix on
empirical joint distributions and with JDOT proxy joint distribution (right) estimated prediction
function f .

to illustrate that the OT matrix γ obtained using the true empirical distribution Pt is very similar to
the one obtained with the proxy Pft which leads to a very good model for JDOT.

Choice of α. This is an important parameter balancing the alignment of feature space and labels. A
natural choice of the α parameter is obtained by normalizing the range of values of d(xsi ,x

t
j) with

α = 1/maxi,j d(xsi ,x
t
j). In the numerical experiment section, we show that this setting is very good

in two out of three experiments. However, in some cases, better performances are obtained with a
cross-validation of this parameter. Also note that α is strongly linked to the smoothness of the loss
L and of the optimal labelling functions and can be seen as a Lipschitz constant in the bound of
Theorem D.1.

Relation to other optimal transport based DA methods. Previous DA methods based on optimal
transport [14, 17] do not not only differ by the nature of the considered distributions, but also in the
way the optimal plan is used to find f . They learn a complex mapping between the source and target
distributions when the objective is only to estimate a prediction function f on target. To do so, they
rely on a barycentric mapping that minimizes only approximately the Wasserstein distance between
the distributions. As discussed in Section 4, JDOT uses the optimal plan to propagate and fuse the
labels from the source to target. Not only are the performances enhanced, but we also show how this
approach is more theoretically well grounded in next section 3.

Relation to Transport Lp distances. Recently, Thorpe and co-authors introduced the Transportation
Lp distance [20]. Their objective is to compute a meaningful distance between multi-dimensional
signals. Interestingly their distance can be seen as optimal transport between two distributions of
the form (4) where the functions are known and the label loss L is chosen as a Lp distance. While
their approach is inspirational, JDOT is different both in its formulation, where we introduce a more
general class of loss L, and in its objective, as our goal is to estimate the target function f which is
not known a priori. Finally we show theoretically and empirically that our formulation addresses
successfully the problem of domain adaptation.

3 A Bound on the Target Error

Let f be an hypothesis function from a given class of hypothesisH. We define the expected loss in
the target domain errT (f) as errT (f)

def
= E(x,y)∼Pt

L(y, f(x)). We define similarly errS(f) for the
source domain. We assume the loss function L to be bounded, symmetric, k-lipschitz and satisfying
the triangle inequality.

To provide some guarantees on our method, we consider an adaptation of the notion probabilistic
Lipschitzness introduced in [21, 22] which assumes that two close instances must have the same
labels with high probability. It corresponds to a relaxation of the classic Lipschitzness allowing one to
model the marginal-label relatedness such as in Nearest-Neighbor classification, linear classification
or cluster assumption. We propose an extension of this notion in a domain adaptation context by
assuming that a labeling function must comply with two close instances of each domain w.r.t. a
coupling Π.
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Definition (Probabilistic Transfer Lipschitzness) Let µs and µt be respectively the source and
target distributions. Let φ : R → [0, 1]. A labeling function f : Ω → R and a joint distribution
Π(µs, µt) over µs and µt are φ-Lipschitz transferable if for all λ > 0:

Pr(x1,x2)∼Π(µs,µt) [|f(x1)− f(x2)| > λd(x1,x2)] ≤ φ(λ).

Intuitively, given a deterministic labeling functions f and a coupling Π, it bounds the probability of
finding pairs of source-target instances labelled differently in a (1/λ)-ball with respect to Π.

We can now give our main result (simplified version):

Theorem 3.1 Let f be any labeling function of ∈ H. Let Π∗ =

argminΠ∈Π(Ps,Pf
t )

∫
(Ω×C)2 αd(xs,xt) + L(ys, yt)dΠ(xs, ys;xt, yt) and W1(P̂s,

ˆPft ) the as-
sociated 1-Wasserstein distance. Let f∗ ∈ H be a Lipschitz labeling function that verifies the
φ-probabilistic transfer Lipschitzness (PTL) assumption w.r.t. Π∗ and that minimizes the joint error
errS(f∗) + errT (f∗) w.r.t all PTL functions compatible with Π∗. We assume the input instances
are bounded s.t. |f∗(x1) − f∗(x2)| ≤ M for all x1,x2. Let L be any symmetric loss function,
k-Lipschitz and satisfying the triangle inequality. Consider a sample of Ns labeled source instances
drawn from Ps and Nt unlabeled instances drawn from µt, and then for all λ > 0, with α = kλ, we
have with probability at least 1− δ that:

errT (f) ≤ W1(P̂s,
ˆPft ) +

√
2

c′
log(

2

δ
)

(
1√
NS

+
1√
NT

)
+ errS(f∗) + errT (f∗) + kMφ(λ).

The detailed proof of Theorem D.1 is given in the supplementary material. The previous bound on the
target error above is interesting to interpret. The first two terms correspond to the objective function
(5) we propose to minimize accompanied with a sampling bound. The last term φ(λ) assesses the
probability under which the probabilistic Lipschitzness does not hold. The remaining two terms
involving f∗ correspond to the joint error minimizer illustrating that domain adaptation can work
only if we can predict well in both domains, similarly to existing results in the literature [23, 24].
If the last terms are small enough, adaptation is possible if we are able to align well Ps and Pft ,
provided that f∗ and Π∗ verify the PTL. Finally, note that α = kλ and tuning this parameter is thus
actually related to finding the Lipschitz constants of the problem.

4 Learning with Joint Distribution OT

In this section, we provide some details about the JDOT’s optimization problem given in Equation
(5) and discuss algorithms for its resolution. We will assume that the function space H to which
f belongs is either a RKHS or a function space parametrized by some parameters w ∈ Rp. This
framework encompasses linear models, neural networks, and kernel methods. Accordingly, we
are going to define a regularization term Ω(f) on f . Depending on how H is defined, Ω(f) is
either a non-decreasing function of the squared-norm induced by the RKHS (so that the representer
theorem is applicable) or a squared-norm on the vector parameter. We will further assume that Ω(f)
is continuously differentiable. As discussed above, f is to be learned according to the following
optimization problem

min
f∈H,γ∈∆

∑
i,j

γi,j

(
αd(xs

i ,x
t
j) + L(ysi , f(xt

j))
)

+ λΩ(f) (6)

where the loss function L is continuous and differentiable with respects to its second variable. Note
that while the above problem does not involve any regularization term on the coupling matrix γ, it is
essentially for the sake of simplicity and readability. Regularizers like entropic regularization [25],
which is relevant when the number of samples is very large, can still be used without significant
change to the algorithmic framework.

Optimization procedure. According to the above hypotheses on f and L, Problem (6) is smooth
and the constraints are separable according to f and γ. Hence, a natural way to solve the problem (6)
is to rely on alternate optimization w.r.t. both parameters γ and f . This algorithm well-known as
Block Coordinate Descent (BCD) or Gauss-Seidel method (the pseudo code of the algorithm is given
in appendix). Block optimization steps are discussed with further details in the following.
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Solving with fixed f boils down to a classical OT problem with a loss matrix C such that Ci,j =
αd(xsi ,x

t
j) + L(ysi , f(xtj)). We can use classical OT solvers such as the network simplex algorithm,

but other strategies can be considered, such as regularized OT [25] or stochastic versions [26].

The optimization problem with fixed γ leads to a new learning problem expressed as

min
f∈H

∑
i,j

γi,jL(ysi , f(xtj)) + λΩ(f) (7)

Note how the data fitting term elegantly and naturally encodes the transfer of source labels ysi through
estimated labels of test samples with a weighting depending on the optimal transport matrix. However,
this comes at the price of having a quadratic number NsNt of terms, which can be considered as
computationally expensive. We will see in the sequel that we can benefit from the structure of the
chosen loss to greatly reduce its complexity. In addition, we emphasize that when H is a RKHS,
owing to kernel trick and the representer theorem, problem (7) can be re-expressed as an optimization
problem with Nt number of parameters all belonging to R.

Let us now discuss briefly the convergence of the proposed algorithm. Owing to the 2-block coordinate
descent structure, to the differentiability of the objective function in Problem (6) and constraints on f
(or its kernel trick parameters) and γ are closed, non-empty and convex, convergence result of Grippo
et al. [27] on 2-block Gauss-Seidel methods directly applies. It states that if the sequence {γk, fk}
produced by the algorithm has limit points then every limit point of the sequence is a critical point of
Problem (6).

Estimating f for least square regression problems. We detail the use of JDOT for transfer least-
square regression problem i.e when L is the squared-loss. In this context, when the optimal transport
matrix γ is fixed the learning problem boils down to

min
f∈H

∑
j

1

nt
‖ŷj − f(xtj)‖2 + λ‖f‖2 (8)

where the ŷj = nt
∑
j γi,jy

s
i is a weighted average of the source target values. Note that this

simplification results from the properties of the quadratic loss and that it may not occur for more
complex regression loss.

Estimating f for hinge loss classification problems. We now aim at estimating a multiclass
classifier with a one-against-all strategy. We suppose that the data fitting is the binary squared hinge
loss of the form L(y, f(x)) = max(0, 1− yf(x))2. In a One-Against-All strategy we often use the
binary matrices P such that P si,k = 1 if sample i is of class k else P si,k = 0. Denote as fk ∈ H the
decision function related to the k-vs-all problem. The learning problem (7) can now be expressed as

min
fk∈H

∑
j,k

P̂j,kL(1, fk(xtj)) + (1− P̂j,k)L(−1, fk(xtj)) + λ
∑
k

‖fk‖2 (9)

where P̂ is the transported class proportion matrix P̂ = 1
Nt
γ>Ps. Interestingly this formulation

illustrates that for each target sample, the data fitting term is a convex sum of hinge loss for a negative
and positive label with weights in γ.

5 Numerical experiments

In this section we evaluate the performance of our method (JDOT) on two different transfer tasks of
classification and regression on real datasets 2.

Caltech-Office classification dataset. This dataset [28] is dedicated to visual adaptation. It contains
images from four different domains: Amazon, the Caltech-256 image collection, Webcam and DSLR.
Several features, such as presence/absence of background, lightning conditions, image quality, etc.)
induce a distribution shift between the domains, and it is therefore relevant to consider a domain
adaptation task to perform the classification. Following [14], we choose deep learning features
to represent the images, extracted as the weights of the fully connected 6th layer of the DECAF
convolutional neural network [29], pre-trained on ImageNet. The final feature vector is a sparse 4096
dimensional vector.

2Open Source Python implementation of JDOT: https://github.com/rflamary/JDOT
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Table 1: Accuracy on the Caltech-Office Dataset. Best value in bold.

Domains Base SurK SA ARTL OT-IT OT-MM JDOT

caltech→amazon 92.07 91.65 90.50 92.17 89.98 92.59 91.54
caltech→webcam 76.27 77.97 81.02 80.00 80.34 78.98 88.81

caltech→dslr 84.08 82.80 85.99 88.54 78.34 76.43 89.81
amazon→caltech 84.77 84.95 85.13 85.04 85.93 87.36 85.22

amazon→webcam 79.32 81.36 85.42 79.32 74.24 85.08 84.75
amazon→dslr 86.62 87.26 89.17 85.99 77.71 79.62 87.90

webcam→caltech 71.77 71.86 75.78 72.75 84.06 82.99 82.64
webcam→amazon 79.44 78.18 81.42 79.85 89.56 90.50 90.71

webcam→dslr 96.18 95.54 94.90 100.00 99.36 99.36 98.09
dslr→caltech 77.03 76.94 81.75 78.45 85.57 83.35 84.33
dslr→amazon 83.19 82.15 83.19 83.82 90.50 90.50 88.10
dslr→webcam 96.27 92.88 88.47 98.98 96.61 96.61 96.61

Mean 83.92 83.63 85.23 85.41 86.02 86.95 89.04
Mean rank 5.33 5.58 4.00 3.75 3.50 2.83 2.50

p-value < 0.01 < 0.01 0.01 0.04 0.25 0.86 −

Table 2: Accuracy on the Amazon review experiment. Maximum value in bold font.

Domains NN DANN JDOT (mse) JDOT (Hinge)

books→dvd 0.805 0.806 0.794 0.795
books→kitchen 0.768 0.767 0.791 0.794

books→electronics 0.746 0.747 0.778 0.781
dvd→books 0.725 0.747 0.761 0.763

dvd→kitchen 0.760 0.765 0.811 0.821
dvd→electronics 0.732 0.738 0.778 0.788
kitchen→books 0.704 0.718 0.732 0.728
kitchen→dvd 0.723 0.730 0.764 0.765

kitchen→electronics 0.847 0.846 0.844 0.845
electronics→books 0.713 0.718 0.740 0.749
electronics→dvd 0.726 0.726 0.738 0.737

electronics→kitchen 0.855 0.850 0.868 0.872

Mean 0.759 0.763 0.783 0.787
p-value 0.004 0.006 0.025 −

We compare our method with four other methods: the surrogate kernel approach ([4], denoted
SurK), subspace adaptation for its simplicity and good performances on visual adaptation ([8], SA),
Adaptation Regularization based Transfer Learning ([30], ARTL), and the two variants of regularized
optimal transport [14]: entropy-regularized OT-IT and classwise regularization implemented with the
Majoration-Minimization algorithm OT-MM, that showed to give better results in practice than its
group-lasso counterpart. The classification is conducted with a SVM together with a linear kernel for
every method. Its results when learned on the source domain and tested on the target domain are also
reported to serve as baseline (Base). All the methods have hyper-parameters, that are selected using
the reverse cross-validation of Zhong and colleagues [31].The dimension d for SA is chosen from
{1, 4, 7, . . . , 31}. The entropy regularization for OT-IT and OT-MM is taken from {102, . . . , 105},
102 being the minimum value for the Sinkhorn algorithm to prevent numerical errors. Finally the η
parameter of OT-MM is selected from {1, . . . , 105} and the α in JDOT from {10−5, 10−4, . . . , 1}.
The classification accuracy for all the methods is reported in Table 1. We can see that JDOT
is consistently outperforming the baseline (5 points in average), indicating that the adaptation is
successful in every cases. Its mean accuracy is the best as well as its average ranking. We conducted
a Wilcoxon signed-rank test to test if JDOT was statistically better than the other methods, and
report the p-value in the tables. This test shows that JDOT is statistically better than the considered
methods, except for OT based ones that where state of the art on this dataset [14].

Amazon review classification dataset We now consider the Amazon review dataset [32] which
contains online reviews of different products collected on the Amazon website. Reviews are encoded
with bag-of-word unigram and bigram features as input. The problem is to predict positive (higher
than 3 stars) or negative (3 stars or less) notation of reviews (binary classification). Since different
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Table 3: Comparison of different methods on the Wifi localization dataset. Maximum value in bold.

Domains KRR SurK DIP DIP-CC GeTarS CTC CTC-TIP JDOT
t1→ t2 80.84±1.14 90.36±1.22 87.98±2.33 91.30±3.24 86.76 ± 1.91 89.36±1.78 89.22±1.66 93.03 ± 1.24
t1→ t3 76.44±2.66 94.97±1.29 84.20±4.29 84.32±4.57 90.62±2.25 94.80±0.87 92.60 ± 4.50 90.06 ± 2.01
t2→ t3 67.12±1.28 85.83 ± 1.31 80.58 ± 2.10 81.22 ± 4.31 82.68 ± 3.71 87.92 ± 1.87 89.52 ± 1.14 86.76 ± 1.72

hallway1 60.02 ±2.60 76.36 ± 2.44 77.48 ± 2.68 76.24± 5.14 84.38 ± 1.98 86.98 ± 2.02 86.78 ± 2.31 98.83±0.58
hallway2 49.38 ± 2.30 64.69 ±0.77 78.54 ± 1.66 77.8± 2.70 77.38 ± 2.09 87.74 ± 1.89 87.94 ± 2.07 98.45±0.67
hallway3 48.42 ±1.32 65.73 ± 1.57 75.10± 3.39 73.40± 4.06 80.64 ± 1.76 82.02± 2.34 81.72 ± 2.25 99.27±0.41

words are employed to qualify the different categories of products, a domain adaptation task can be
formulated if one wants to predict positive reviews of a product from labelled reviews of a different
product. Following [33, 11], we consider only a subset of four different types of product: books,
DVDs, electronics and kitchens. This yields 12 possible adaptation tasks. Each domain contains
2000 labelled samples and approximately 4000 unlabelled ones. We therefore use these unlabelled
samples to perform the transfer, and test on the 2000 labelled data.

The goal of this experiment is to compare to the state-of-the-art method on this subset, namely
Domain adversarial neural network ([11], denoted DANN), and to show the versatility of our method
that can adapt to any type of classifier. The neural network used for all methods in this experiment is
a simple 2-layer model with sigmoid activation function in the hidden layer to promote non-linearity.
50 neurons are used in this hidden layer. For DANN, hyper-parameters are set through the reverse
cross-validation proposed in [11], and following the recommendation of authors the learning rate
is set to 10−3. In the case of JDOT, we used the heuristic setting of α = 1/maxi,j d(xsi ,x

t
j), and

as such we do not need any cross-validation. The squared Euclidean norm is used for both metric
in feature space and we test as loss functions both mean squared errors (mse) and Hinge losses. 10
iterations of the block coordinate descent are realized. For each method, we stop the learning process
of the network after 5 epochs. Classification accuracies are presented in table 2. The neural network
(NN), trained on source and tested on target, is also presented as a baseline. JDOT surpasses DANN
in 11 out of 12 tasks (except on books→dvd). The Hinge loss is better in than mse in 10 out of 12
cases, which is expected given the superiority of the Hinge loss on classification tasks [19].

Wifi localization regression dataset For the regression task, we use the cross-domain indoor Wifi
localization dataset that was proposed by Zhang and co-authors [4], and recently studied in [5]. From
a multi-dimensional signal (collection of signal strength perceived from several access points), the
goal is to locate the device in a hallway, discretized into a grid of 119 squares, by learning a mapping
from the signal to the grid element. This translates as a regression problem. As the signals were
acquired at different time periods by different devices, a shift can be encountered and calls for an
adaptation. In the remaining, we follow the exact same experimental protocol as in [4, 5] for ease of
comparison. Two cases of adaptation are considered: transfer across periods, for which three time
periods t1, t2 and t3 are considered, and transfer across devices, where three different devices are
used to collect the signals in the same straight-line hallways (hallway1-3), leading to three different
adaptation tasks in both cases.

We compare the result of our method with several state-of-the-art methods: kernel ridge regression
with RBF kernel (KRR), surrogate kernel ([4], denoted SurK), domain-invariant projection and its
cluster regularized version ([7], denoted respectively DIP and DIP-CC), generalized target shift ([34],
denoted GeTarS), and conditional transferable components, with its target information preservation
regularization ([5], denoted respectively CTC and CTC-TIP). As in [4, 5], the hyper-parameters of
the competing methods are cross-validated on a small subset of the target domain. In the case of
JDOT, we simply set the α to the heuristic value of α = 1/maxi,j d(xsi ,x

t
j) as discussed previously,

and f is estimated with kernel ridge regression.

Following [4], the accuracy is measured in the following way: the prediction is said to be correct if it
falls within a range of three meters in the transfer across periods, and six meters in the transfer across
devices. For each experiment, we randomly sample sixty percent of the source and target domain, and
report the mean and standard deviation of ten repetitions accuracies in Table 3. For transfer across
periods, JDOT performs best in one out of three tasks. For transfer across devices, the superiority of
JDOT is clearly assessed, for it reaches an average score > 98%, which is at least ten points ahead
of the best competing method for every task. Those extremely good results could be explained by the
fact that using optimal transport allows to consider large shifts of distribution, for which divergences
(such as maximum mean discrepancy used in CTC) or reweighting strategies can not cope with.
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6 Discussion and conclusion

We have presented in this paper the Joint Distribution Optimal Transport for domain adaptation,
which is a principled way of performing domain adaptation with optimal transport. JDOT assumes
the existence of a transfer map that transforms a source domain joint distribution Ps(X,Y ) into
a target domain equivalent version Pt(X,Y ). Through this transformation, the alignment of both
feature space and conditional distributions is operated, allowing to devise an efficient algorithm that
simultaneously optimizes for a coupling between Ps and Pt and a prediction function that solves the
transfer problem. We also proved that learning with JDOT is equivalent to minimizing a bound on
the target distribution. We have demonstrated through experiments on classical real-world benchmark
datasets the superiority of our approach w.r.t. several state-of-the-art methods, including previous
work on optimal transport based domain adaptation, domain adversarial neural networks or transfer
components, on a variety of task including classification and regression. We have also showed the
versatility of our method, that can accommodate with several types of loss functions (mse, hinge) or
class of hypothesis (including kernel machines or neural networks). Potential follow-ups of this work
include a semi-supervised extension (using unlabelled examples in source domain) and investigating
stochastic techniques for solving efficiently the adaptation. From a theoretical standpoint, future
works include a deeper study of probabilistic transfer lipschitzness and the development of guarantees
able to take into the complexity of the hypothesis class and the space of possible transport plans.
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Appendix Section

A Illustration on a simple example

We illustrate the behavior of our method on a 3-class toy example (Figure 2). We consider a
classification problem using the hinge loss and H is a Reproducing Kernel Hilbert Space. Source
domain samples are drawn from three different 2D Gaussian distributions with with different centers
and standard deviations. The target domain is obtained rotating the source distribution by π/4 radian.
Two types of kernel are considered: linear and RBF. In Figure 2.a, one can observe on the first column
of images that using directly a classifier learned on the source domain leads to bad performances
because of the rotation. We then show the iterations of the block coordinate descent which allows
one to recover the true labels of the target domain. It is also interesting to examine the impact of the
α parameter on the success of the method. In Figure 2.b, we show the evolution of classification
accuracy for six different α in the case of RBF kernel. Relying mostly on the label cost (α = {0.1})
leads to a deterioration of the final accuracy. Using only the input space distance (α = {50, 100}),
which is equivalent to [14], allows a performance gain. But it is clear that using both losses with
α = {0.5, 1, 10} leads to the best performance. Also note the small number of iterations required
(< 10) for achieving a steady state.

a 0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0 Accuracy along BCD iterations

α= 0.1

α= 0.5

α= 1.0

α= 10.0

α= 50.0

α= 100.0

b
Figure 2: Illustration on a toy example. (a): Decision boundaries for linear and RBF kernels on
selected iterations. The source domain is depicted with crosses, while the target domain samples are
class-colored circles. (b): Evolution of the accuracy along 15 iterations of the method for different
values of the α parameter;

B Block coordinate descent algorithm for solving JDOT

We give in algorithm 1 an overview of the block coordinate descent algorithm used for solving JDOT.

Algorithm 1 Optimization with Block Coordinate Descent
Initialize function f0 and set k = 1
Set α and λ
while not converged do
γk ← Solve OT problem (3 in paper) with fixed fk−1

fk ← Solve learning problem (7 in paper) with fixed γk
k ← k + 1

end while

C BCD iterations on real data

We report in Table 4, for a fixed set of parameter (no CV), the evolution of the empirical error along
the iterations of the 15 first iterations of the BCD on a real dataset. We can see that generally the
result stabilizes at around 10 iterations. We can also observe that the increase in performance is not
monotonic, contrary to the toy example.

11



Iter caltech→ amazon dslr→ amazon webcam→ caltech
0 89.14 80.9 75.6
1 91.75 86.22 80.23
2 91.44 86.95 81.75
3 91.54 87.68 82.64
4 91.44 87.68 83.26
5 91.65 88.0 83.35
6 91.86 88.1 83.17
7 92.17 87.89 83.08
8 92.28 87.58 83.26
9 92.28 87.58 83.26
10 92.28 87.68 83.35
11 92.28 87.79 83.44
12 92.28 87.79 83.44
13 92.28 87.79 83.44
14 92.28 87.79 83.44

Table 4: Accuracy of the estimated model along BCD iterations on Caltech-office dataset

D Proof of Theorem 3.1

We first recall some hypothesis used for this theorem.

H ⊂ CΩ is the hypothesis class. L : C × C → R+ is the loss function measuring the discrepancy
between two labels. This loss is assumed to be symmetric, bounded and k-lipschitz in its second
argument, i.e. there exists k such that for any y1, y2, y3 ∈ C:

|L(y1, y2)− L(y1, y3)| ≤ k|y2 − y3|.

Pt andPs are respectively the target and source distributions over Ω×C, with µt and µs the respective
marginals over Ω. The expected loss in the target domain errT (f) is defined for any f ∈ H as

errT (f)
def
= E

(x,y)∼Pt

L(y, f(x)).

We can similarly define errS(f) in the source domain and the expected inter function loss
errT (f, g) = E(x,y)∼Pt

L(g(x), f(x)).

The proxy Pft over Ω× C of Pt w.r.t. to µt and f is defined as: Pft = (x, f(x))x∼µt
.

We consider the following transport loss function:

W1(Ps,Pft ) = inf
Π∈Π(Ps,Pf

t )

∫
(Ω×C)2

αd(xs,xt) + L(ys, yt)dΠ((xs, ys), (xt, yt)).

We now recall the definition of the theorem with all the assumptions.

Theorem D.1 Let H ⊂ CΩ be the hypothesis class where Ω is a compact mesurable space of fi-
nite dimension accompanied with a metric d, and C is the output space. Let f be any labeling
function of ∈ H. Let Ps, Pt, Pft be three probability distributions over Ω × C with bounded
support, with Pft defined w.r.t. the marginal µt of Pt and f , accompanied with a sample of Ns
labeled source instances drawn from Ps and Nt unlabeled instances drawn from µt and labeled
by f , such that Ps and Pft and the associated samples follow the assumptions of Theorem E.1.
Let Π∗ = argminΠ∈Π(Ps,Pf

t )

∫
(Ω×C)2 αd(xs,xt) + L(ys, yt)dΠ((xs, ys), (xt, yt)). Let f∗ be a

Lipschitz labeling function of H, that verifies the φ-probabilistic transfer Lipschitzness (PTL) as-
sumption with respect to Π∗ and that minimizes the joint error errS(f∗) + errT (f∗) w.r.t all
compatible PTL functions with Π∗. We assume the instance space X ⊆ Ω is bounded3 such that

3Since the input space is bounded by say a constant K: ‖x‖ ≤ K, since f∗ is supposed l-Lipschitz, then we
have for any x1,x2: |f(x1)− f(x2)| ≤ l‖x1 − x2‖ ≤ 2lK = M .
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|f∗(x1)− f∗(x2)| ≤M for all x1,x2 ∈ X 2. Let L be any loss function symmetric, k-lipschitz and
that satisfies the triangle inequality. Then, there exists, c′ and N , such that for Ns > N and Nt > N ,
for all λ > 0, with α = kλ, we have with probability at least 1− δ:

errT (f) ≤ W1(P̂s,
ˆPft ) +

√
2

c′
log(

2

δ
)

(
1√
Ns

+
1√
Nt

)
+errS(f∗) + errT (f∗) + kMφ(λ).

Proof

errT (f) =E(x,y)∼Pt
L(y, f(x))

≤E(x,y)∼Pt
L(y, f∗(x)) + L(f∗(x), f(x))

=E(x,y)∼Pt
L(f(x), f∗(x)) + errT (f∗) (10)

=E(x,y)∼Pf
t
L(f(x), f∗(x)) + errT (f∗) (11)

= errT f (f∗)− errS(f∗) + errS(f∗) + errT (f∗)

≤ |errT f (f∗)− errS(f∗)|+ errS(f∗) + errT (f∗) (12)

Line (10) is due to the symmetry of the loss. Line (11) comes from the fact that:
E(x,y)∼Pt

L(f(x), f∗(x)) = E(x,f(x))∼Pf
t
L(f(x), f∗(x))

def
= errT f (f∗(x)).

Now, we have

|errT f (f∗)− errS(f∗)|

=

∣∣∣∣∫
Ω×C
L(y, f∗(x))(Pft (X = x, Y = y)− Ps(X = x, Y = y))dxdy

∣∣∣∣
=

∣∣∣∣∫
Ω×C
L(y, f∗(x))d(Pft − Ps)

∣∣∣∣
≤

∫
(Ω×C)2

∣∣∣L(yft , f
∗(xt))− L(ys, f

∗(xs))
∣∣∣dΠ∗((xs, ys), (xt, y

f
t )) (13)

=

∫
(Ω×C)2

∣∣∣L(yft , f
∗(xt))− L(yft , f

∗(xs))+

L(yft , f
∗(xs))− L(ys, f

∗(xs))
∣∣∣dΠ∗((xs, ys), (xt, y

f
t ))

≤
∫

(Ω×C)2

∣∣∣L(yft , f
∗(xt))− L(yft , f

∗(xs))
∣∣∣

+
∣∣∣L(yft , f

∗(xs))− L(ys, f
∗(xs))

∣∣∣dΠ∗((xs, ys), (xt, y
f
t ))

≤
∫

(Ω×C)2
k |f∗(xt)− f∗(xs)|+∣∣∣L(yft , f
∗(xs))− L(ys, f

∗(xs))
∣∣∣dΠ∗((xs, ys), (xt, y

f
t )) (14)

≤ k ∗M ∗ φ(λ) +

∫
(Ω×C)2

kλd(xt,xs) +∣∣∣L(yft , f
∗(xs))− L(ys, f

∗(xs))
∣∣∣dΠ∗((xs, ys), (xt, y

f
t )) (15)

≤
∫

(Ω×C)2
αd(xs,xt) + L(yft , ys)dΠ∗((xs, ys), (xt, y

f
t )) + k ∗M ∗ φ(λ) (16)

≤
∫

(Ω×C)2
αd(xs,xt) + L(ys, y

f
t )dΠ∗((xs, ys), (xt, y

f
t )) + k ∗M ∗ φ(λ) (17)

= W1(Ps,Pft ) + k ∗M ∗ φ(λ). (18)
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Line (13) is a consequence of the duality form of the Kantorovitch-Rubinstein theorem saying that
for any coupling Π ∈ Π(Ps, P

f
t ), we have:∣∣∣∣∫

Ω×C
L(y, f∗(x))d(Pft − Ps)

∣∣∣∣
=

∣∣∣∣∣
∫

(Ω×C)2
L(yft , f

∗(xt))− L(ys, f
∗(xs))dΠ((xs, ys), (xt, y

f
t ))

∣∣∣∣∣
≤

∫
(Ω×C)2

∣∣∣L(yft , f
∗(xt))− L(ys, f

∗(xs))
∣∣∣dΠ((xs, ys), (xt, y

f
t )).

Since the inequality is true for any coupling, it is then also true for Π∗. Inequality (14) is due to the
k-lipschitzness of the loss L in its second argument. Inequality (15) uses the fact that f∗ and Π∗

verify the probabilistic transfer Lipschitzness property with probability 1− φ(λ), additionally, taking
into account that the deviation between 2 instances with respect to f∗ is bounded by M we have the
additional term kMφ(λ) that covers the regions where the PTL does not hold. (16) is obtained by
the symmetry of d, the use of triangle inequality on L and by replacing kλ by α. Other inequalities
above are due the use of triangle inequality or properties of the absolute value. The last line (18) is
due to the definition of Π∗.

Now, note that by the use of triangle inequality:

W1(Ps,Pft ) ≤ W1(Ps, P̂s) +W1(P̂s,
ˆPft ) +W1(

ˆPft ,P
f
t ) (19)

≤ W1(P̂s,
ˆPft ) +

√
2

c′
log(

2

δ
)

(
1√
Ns

+
1√
Nt

)
. (20)

Indeed, the cost function D((xs, ys), (xt, yt)) = αd(x1,x2) + L(y1, y2) defines a distance over
(Ω × L)2, assuming that Ps and Pft have bounded support and the fact that our loss function is

bounded, we can apply Theorem E.1 (presented below) on W1(Ps, P̂s) and W1(
ˆPft ,Pt) above (with

probability δ/2 each). The two settings may have different constants N and c′ and and we consider
the maximum N and the minimum c′ that comply with both cases.

Combining inequalities (12), (18), inequality (20) and the use of the union bound, the theorem holds
with probability at least 1− δ for any f ∈ H. �

Note that, additionally to the analysis in the paper, a link can be made with classic generalization
bounds when the two distributions are equal, i.e. Ps = Pt. Indeed, if we can choose f∗ as the true
labeling function on source/target domains such that f∗ is strongly φ-lipschitz w.r.t. Π∗ (i.e. φ(λ) is
almost 0), then the bound is similar to a classic generalization bound: terms involving f∗ are null and
using the same sample for source and target d(x1,x2) = 0 w.r.t the best alignment. Thus, it remains
only the label loss which corresponds to a classic supervised learning loss.

E Empirical concentration result for Wasserstein distance

We give now the result from Bolley and co-authors used in the previous section.

Theorem E.1 (from [35], Theorem 1.1.) Let µ be a probability measure in Z so that for some
α > 0 we have for any z′

∫
Rd e

αdist(z,z′)2dµ <∞ and µ̂ = 1
N

∑N
i=1 δzi be the associated empirical

measure defined on a sample of independent variables {zi}Ni=1 drawn from µ. Then, for any
d′ > dim(Z) and c′ < c, there exists some constantN0 depending on d′ and some square exponential
moments of µ such that for any ε > 0 and N ≥ N0 max(ε−(d′+2), 1),

P [W1(µ, µ̂) > ε] ≤ exp

(
−c
′

2
Nε2

)
where c′ can be calculated explicitly.
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Note that c is such that µ verifies for any measure ν the Talagrand (transport) inequality T1(c) :

W1(µ, ν) ≤
√

2
cH(ν|µ) with H is the relative entropy. T1(c) holds when for some α > 0 and for

any z′:
∫
Rd e

αdist(z,z′)2dµ(z) <∞, and c can be found explicitly [35].
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