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Mehmet Kurt · Heng Chen · Young S. Lee ·
D. Michael McFarland · Lawrence A. Bergman ·
Alexander F. Vakakis

Nonlinear system identification of the dynamics
of a vibro-impact beam: numerical results

Abstract We study the dynamics of a cantilever beam with two rigid stops of certain clearances by performing
nonlinear system identification (NSI) based on the correspondence between analytical and empirical slow-flow
dynamics. The NSI method in this work can proceed in two directions: One for the numerical data obtained
from a reduced-order model by means of the assumed-mode method, and the other for the experimental data
measured at the same positions as in numerical simulations. This paper focuses on the analysis of the numerical
data, providing qualitative comparison with some experimental results; the latter task will be discussed in detail
in a companion paper. First, we perform empirical mode decomposition (EMD) on the acceleration responses
measured at ten, almost evenly-spaced, spanwise positions along the beam leading to sets of intrinsic modal
oscillators governing the vibro-impact dynamics at different time scales. In particular, the EMD analysis can
separate any nonsmooth effects caused by vibro-impacts of the beam and the rigid stops from the smooth (elas-
todynamic) response, so that nonlinear modal interactions caused by vibro-impacts can be explored only with
the remaining smooth components. Then, we establish nonlinear interaction models (NIMs) for the respective
intrinsic modal oscillators, where the NIMs invoke slowly-varying forcing amplitudes that can be computed
from empirical slow-flows. By comparing the spatio-temporal variations of the nonlinear modal interactions
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for the vibro-impact beam and those of the underlying linear model (i.e., the beam with no rigid constraints), we
demonstrate that vibro-impacts significantly influence the lower-frequency modes, introducing spatial modal
distortions, whereas the higher frequency modes tend to retain their linear dynamics between impacts. We
introduce a linear correlation coefficient as a measure for studying the linear dependency between the slowly-
varying complex forcing amplitudes for the linear and vibro-impact beams and demonstrate that only a set
of lower-frequency modes are strongly influenced by vibro-impacts, capturing most of the essential nonlin-
ear dynamics. These results demonstrate the efficacy of the proposed approach to analyze strongly nonlinear
measured time series and provide physical insight for strong nonlinear dynamical interactions.

Keywords Nonlinear system identification · Empirical mode decomposition · Vibro-impact beam ·
Intrinsic mode oscillation · Nonlinear interaction model

Abbreviations
DOF Degree-of-freedom
EMD Empirical mode decomposition
FEP Frequency-energy plot
FT Fourier transform
HT Hilbert transform
IMF Intrinsic mode function
IMO Intrinsic modal oscillator
NIM Nonlinear interaction model
NSI Nonlinear system identification
POD Proper orthogonal decomposition
ROM Reduced-order model
VI Vibro-impact

1 Introduction

Experimental modal analysis based on Fourier transforms (FTs) has been well established based on the assump-
tion of linearity and stationarity of the measured signals (see, for example, [1]). In many practical situations,
however, the measured data is likely to exhibit strong nonlinearity and nonstationarity, particularly when the
tested systems involve nonlinearities due to complexity caused by multi-physics nonlinear interactions [2]. In
addition, FT-based methods are not able to properly isolate and extract nonlinearity and nonstationarity from
the measured data, frequently leading to wrong conclusions (for example, to misinterpretations of internal and
combination resonances as natural frequencies). As a result, there has been the need for an effective, straight-
forward, system identification and reduced-order modeling method for characterizing strongly nonlinear and
nonstationary, complex, multi-component systems in multi-physics applications.

Reviews of nonlinear system identification (NSI) and reduced-order modeling (ROM) methods are provided
in [3,4]. Typical nonparametric NSI methods include proper orthogonal decomposition (POD, also known as
Karhunen-Loève decomposition [5–8]), smooth orthogonal decomposition [9], Volterra theory [10,11], Kal-
man filter [12], and so on. As for the methods of nonlinear parameter estimation, we mention the restoring
force surface method [13], NARMAX (Nonlinear Auto-Regressive Moving Average models with eXogenous
inputs) methods [14], harmonic balance method [15], methods based on Hilbert transform [16,17], and others.

Use of POD has been rather popular in studying system identification and nonlinear normal modes of
coupled beams [18] and rods [19], and in structural damage detection [20]. For example, the method of POD
has been utilized for studying chaotic vibrations of a 10-degree-of-freedom (DOF) impact oscillator and a flex-
ible-beam impact oscillator in [21] and [22], respectively. In these studies, the spatial structure of impacting
responses under a harmonic excitation of the boundary was demonstrated to be close to what can be obtained
by averaging over many impulse-response tests on the linear system (even if the system is strongly nonlin-
ear). Moreover, POD was applied for model reduction of a vibro-impact (VI) rod [23] and also for extracting
dominant coherent structures of a VI beam from experimental time series data [24] with the goal to eventually
derive low-dimensional ROMs through a Galerkin reconstruction process based on the extracted mode shape
functions.

We note, however, that these techniques are only applicable to specific classes of dynamical systems; in
addition, some functional form is assumed for modeling the system nonlinearity. Recently, a nonlinear system
identification (NSI) method with the promise of broad applicability was proposed by Lee et al. [25]. This
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Fig. 1 Experimental setup for the VI beam: x1–x10, xLDS, and xSTP respectively denote the spanwise locations of the accelerom-
eters, of the laser displacement sensors, and of the rigid stops

Table 1 Positions of the accelerometers, rigid stops, and laser displacement sensors of the VI beam

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 xSTP xLDS

Positions ( mm) 131 263 395 527 657 787 917 1, 052 1, 215 1, 311 1, 185 1, 230

method was based on empirical mode decomposition (EMD [26]), under the key assumption that the measured
time series can be decomposed in terms of a finite number of oscillating components. These are in the form of
fast (nearly) monochromatic oscillations modulated by slowly varying amplitudes. The empirical slow-flow
model of the dynamics is obtained from EMD, and its correspondence with the analytical slow-flow model
has been established [27], paving the way for constructing physics-based local nonlinear interaction models
(NIMs) [28].

A NIM consists of a set of intrinsic modal oscillators (IMOs) that can reproduce the measured time series
over different time scales and account for (even strongly) nonlinear modal interactions across scales. Hence,
it represents a local model of the dynamics, identifying specific nonlinear transitions. By collecting energy-
dependent frequency behaviors from all identified IMOs, a frequency-energy plot can be constructed, which
depicts global features of the dynamical system. The method requires no a priori system information but only
measured (or simulated) time series; that is, it is purely an output-based approach. Applications of the pro-
posed NSI methodology have been provided with studies of targeted energy transfers in a 2-DOF dynamical
system [28], instability generation and suppression in a 2-DOF rigid aeroelastic wing model [29], and the
dynamics of a rod coupled to an essentially nonlinear end attachment [30].

In this paper, we explore the nonlinear dynamics of a VI beam (whose setup is similar to that used in [24])
by performing the aforementioned NSI method [25] to reveal coherent structures (e.g., Dawes [31]) in terms
of IMOs of strongly nonlinear dynamics due to vibro-impacts. Study of such systems will provide essential
dynamical features of structures with defects with applications to structural health monitoring and damage
detection (e.g., [32,33]). For this purpose, this paper has the following structure. Section 2 provides a discussion
of the VI beam model including geometry, measurement locations, method of excitation, (linearized) natural
frequencies and mode shapes; in Sect. 3, the proposed NSI method is applied to the numerically obtained accel-
eration data of the VI beam and those of the underlying linearized beam for comparison purposes; then, some
of the experimental results are compared with the corresponding numerical data in Sect. 4, and concluding
remarks are provided in Sect. 5.

2 System descriptions

We consider the uniform, homogeneous cantilever beam (made of steel with the density ρ = 7, 850 kg/m3 and
Young’s modulus E = 200 GPa) depicted in Fig. 1, with dimensions L ×h × t = 1.311×0.0446×0.008 m so
that the cross-sectional area and the second moment of area with respect to the z axis are A = 3.57 × 10−4 m2

and Izz = 1.9 × 10−9 m4, respectively (we refer to Fig. 1 for a definition of the system of axes). Table 1 sum-
marizes the positions of the accelerometers x1–x10 along the beam span, the position of the laser displacement
sensor xLDS, and the placement of the two symmetric rigid stops xSTP causing vibro-impacts. The leading
ten natural frequencies (theoretical and experimental) ωn in Hz are listed in Table 2, with the corresponding
normalized mode shape functions φn(x/L), n = 1, . . . , 10, being presented in Fig. 2 [34,35].

Two clearance levels between the cantilever beam and the rigid stops are considered, namely, infinite
clearance corresponding to the case of the linear cantilever beam, and 4 mm clearance corresponding to the
case of the strongly nonlinear VI beam. Experimental procedures for measuring time series data involve (i)
applying impulsive excitation p(t) by varying magnitude at position x3 by means of an impact hammer,
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Table 2 The leading 10 linear natural frequencies (in Hz) of the linear cantilever beam in Fig. 1 (cf. [34,35])

ωn 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Theoretical 3.8 23.8 66.6 130.5 215.7 322.2 450.0 599.1 769.5 961.2
Experimental 3.7 23.2 64.9 126.9 209.4 314.7 433.9 580.7 751.3 926.7

Fig. 2 The normalized mode shape functions φn(x/L) of a cantilever beam: The first ten modes are depicted, and the vertical
dashed lines denote the positions for accelerometers

selecting the excitation frequency band by using several types of tips on the impact hammer (e.g., plastic,
rubber, and metal), and (ii) measuring the resulting accelerations at x1 through x10 and the displacement
at xLDS.

In this work, we utilize numerically generated acceleration signals from a reduced-order model based
on the assumed-modes method, and such numerical solutions are updated and validated by the experimental
measurements. That is, the beam was excited at each node with an impact hammer, and averages of four
measurements were taken at each node; from the resulting 100 transfer functions, the leading 10 mode shapes,
modal damping factors, and natural frequencies were obtained and used to update the assumed-modes model.
In the assumed-modes method, the analytical natural frequencies were replaced with the measured ones, and
numerically simulated time series were obtained by solving the reduced system of differential equations.
Details of this computation can be found in [34].

We remark that the 5th mode, whose linearized natural frequency is equal to 209 Hz, has a node at x9,
which is located very close to the point of vibro-impacts xSTP. Furthermore, the impulsive excitation is applied
at location x3, which is also close to another node of the 5th mode. As shown below, this will affect the results
of EMD analysis used for reconstructing the 5th mode at those particular points (i.e., there will arise issues of
observability) in the sense that the flexible dynamics of the beam at these locations is small and consequently
is dominated by the vibro-impacts (non-smooth effects). Similar observations apply for the 8th mode, which
possesses a node near the excitation point (x3).

3 Nonlinear system identification (NSI) of the vibro-impact beam

In this section, we apply the NSI methodology to two typical cases: (i) The linear beam (i.e., a cantilever beam
with infinite clearances at the impact boundaries); and (ii) the vibro-impact (VI) beam with 4 mm symmetric
clearances. In particular, by comparing the system identification results for the VI beam to those of the linear
beam, we wish to study the effects of the strongly nonlinear dynamics induced by the vibro-impacts. Typically,
we will consider the acceleration signals at position x9 for this comparison because the VI effects are expected
to be most significant there due to its proximity to the impact position. We also wish to illustrate overall
spatio-temporal variations of the beam dynamics caused by vibro-impacts. First, we briefly discuss the basic
elements of the NSI methodology.

3.1 NSI methodology

Once the (numerical) simulation data are computed, the first step of the proposed NSI methodology is to
perform empirical mode decomposition (EMD) [26,27] on the simulated time series, which yields a complete
and nearly (but not thoroughly) orthogonal basis of intrinsic mode functions (IMFs) at each sensing location.
These are oscillatory modes embedded in the time series, each with its own characteristic time scale, whose
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linear superposition reconstructs the measured time series. Hence, EMD provides a multi-scale decomposition
of a measured time series in terms of embedded oscillatory modes in the measured data at different time scales
of the dynamics. Although EMD was originally conceived as an ad hoc decomposition method, as discussed
below it can be provided with a physics-based foundation. First, we discuss the basic computational elements
of this decomposition.

The main loop of the EMD algorithm [26] for extracting the IMFs from a signal x(t) consists of the fol-
lowing steps: (i) identify all extrema of x(t); (ii) perform (spline) interpolations between minima (maxima),
resulting in an envelope emin(t) (emax(t)); (iii) compute the average R(t) = [emin(t)+ emax(t)]/2 (considered
as a residual); (iv) extract the remainder c(t) = x(t) − R(t); (v) iterate on the residual R(t). In practice, the
above procedure is refined by a sifting process, and the inner loop that iterates (i)–(iv) on the detail c(t) runs
until the average R(t) can be considered zero-mean under some tolerance (i.e., as a stopping criterion). Once
achieved, the detail c(t) is regarded as the effective IMF.

The NSI methodology is based on the basic assumption that the measured dynamics contains N dis-
tinct dominant components at frequencies, ω1, ω2, . . . , ωN , which are well separated and follow the ordering
ω1 < ω2 < · · · < ωN . Then, by applying the EMD, the measured signal is decomposed in terms of N
dominant IMFs (corresponding to the N dominant harmonic components in the signal), so the response x(t)
can be expressed as

x(t) ≈ c1(t)+ c2(t)+ · · · + cN (t) (1)

where cm(t), m = 1, 2, . . . , N , indicates the mth dominant IMF associated with the fast frequency ωm . We
remark that, by construction, each IMF is a function that possesses zero local mean with one zero between
any two consecutive local extrema, and, also by construction, is a narrowband signal. The dominant IMFs are
determined by performing Hilbert transform (HT) of the computed IMFs in order to extract their instantaneous
frequencies and comparing them to wavelet transform spectra of the corresponding time series. This procedure
determines the dominant IMFs and the corresponding fast frequencies in the dynamics at each sensing loca-
tion and also identifies the basic time scales and the dimensionality of the measured dynamics. Furthermore,
motivated by the fact that a complex function whose imaginary part is the HT of the real part is analytic, we
can complexify the mth IMF cm(t) by defining the following analytic complex function

ψ̂m(t) = cm(t)+ jH[cm(t)] � Âm(t)e
j θ̂m(t)e jωm t , j2 = −1 (2)

where H[·] denotes Hilbert transform. The slowly-varying envelope and phase of the mth IMF are computed
as Âm(t) = √

cm(t)2 + H[cm(t)]2 and θ̂m(t) = tan−1 [H[cm(t)]/cm(t)] − ωmt , respectively.
As mentioned previously, the EMD procedure is performed in an ad hoc fashion. As shown in previous

works [27,28], however, a physics-based foundation for EMD can be provided based on the slow flow of the
underlying dynamics. The analytical slow-flow dynamics (assuming that the equations of motion are known)
is studied using the complexification-averaging technique [36]. To this end, we express the response x(t) in
Eq. (1) as the sum of N independent components,

x(t) = x1(t)+ x2(t)+ · · · + xN (t) (3)

where the subscripts follow the same convention as in Eq. (1). For each component of Eq. (3), we assign a
new complex variable defined by

ψm(t) = ẋm(t)+ jωm xm(t) � ϕm(t)e
jωmt , j2 = −1 (4)

where a slow/fast partition of the dynamics in terms of the slow (complex) amplitude ϕm(t) and the fast oscil-
lation e jωmt was assumed. Substituting into the equations of motion and performing multiphase averaging [37]
for each of the fast frequencies, we obtain the analytical slow flow of the dynamical system.

Noting that complexifying the identified IMFs in Eq. (2) as ψ̂m(t) results in the same form as the complex-
ification (4) in the slow-flow construction, we have a direct way to relate the IMFs to the governing slow-flow
dynamics, in particular to the complex amplitudes, ψm(t). This provides a way to physically interpret the
(previously ad hoc) dominant IMFs in terms of the slow-flow dynamics. Moreover, these partitions can be
directly related, since they represent identical theoretical and numerical multi-scale slow-fast decompositions
of the measured time series, that is, xm(t) from the theoretical model and cm(t) from the numerical model.

xm(t) ⇔ cm(t), m = 1, . . . , N (5)
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Now, we introduce the alternative complexification of IMFs that resembles that of the analytical complex-
ification (4),

ψ̌m(t) = ċm(t)+ jωmcm(t) � Ǎm(t)e
j θ̌m(t)e jωm t , j2 = −1 (6)

where Ǎm(t) = √
ċm(t)2 + ω2

mcm(t)2 and θ̌m(t) = tan−1[ωmcm(t)/ċm(t)] −ωmt . Simple manipulations [28]
prove that the alternative complexifications of the IMFs (2) and (6) are related through

ψ̂m(t) = 1

jωm
ψ̌m(t) (7)

which suggests that the complexifications must be of the form
[
ψm(t) ⇔ ψ̌m(t) = jωmψ̂m(t)

]
�⇒

[
ϕm(t) ⇔ jωm Âm(t)e

j θ̂m(t)
]

(8)

Relations (8) provide a physics-based theoretical foundation for EMD, whereby the dominant IMFs represent
the underlying slow flow of the dynamics and, hence, capture all the important (multi-scale) dynamics. This
leads us to the important conclusion that dominant IMFs extracted by means of EMD of experimentally mea-
sured time series (i.e., from systems whose governing equations are not known) correspond to the underlying
slow-flow dynamics of the tested dynamical system.

Based on the correspondence (8) between the theoretical and empirical slow-flow analyses, we address
the local aspect of the NSI methodology by constructing a reduced-order model (ROM) or, more generally, a
nonlinear interaction model (NIM) in terms of intrinsic modal oscillators (IMOs). We define the IMOs as the
equivalent set of linear oscillators that can reproduce a measured time series at different time scales. IMOs
are typically expressed as sets of linear, damped oscillators having as forcing functions the nonlinear modal
interactions [28]. A basic requirement is that each IMO should approximately reproduce the corresponding
dominant IMF (i.e., the one corresponding to the same fast frequency), provided that the fast frequencies of
the time series are well separated (distinct). For the mth component of x(t) in Eq. (3), we write

ẍm(t)+ 2ζ̂mωm ẋm(t)+ ω2
m xm(t) = Fm(t) (9)

where the coefficients ζ̂m and ωm are assumed to be constant, and the nonhomogeneous term Fm(t) represents
a time-dependent forcing term describing the nonlinear modal interaction of the mth component of x(t) with
the other components of the measured time series. Equivalently, we assume that each of the components in
Eq. (3) is generated by an IMO of the form (9). In principle, the nonhomogeneous term in (9) can be expressed
in terms of slow/fast partitions of all participating frequency components. That is, we can write,

Fm(t) = Re
[
Λ1(t)e

jω1t +Λ2(t)e
jω2t + · · · +Λm(t)e

jωmt + · · · +ΛN (t)e
jωN t

]
(10)

where Re[·] represents the real part, and Λm(t), the slowly-varying (complex) forcing amplitude. However,
because of the linear structure of the IMO, it should be clear that the only term that can produce an O(1)
dynamic response is the one with fast frequency ωm (i.e., the eigenfrequency of the IMO). Hence, it is justified
to approximately express the IMO in the simplified form

ẍm(t)+ 2ζ̂mωm ẋm(t)+ ω2
m xm(t) ≈ Re[Λm(t)e

jωmt ] (11)

where m = 1, . . . , N and the nonhomogeneous term is in the form of a slowly modulated oscillation with fast
frequency equal to the eigenfrequency of the IMO.

The issue is now to identify the modal parameters of the IMO (11) and, more importantly, its forcing term
representing the nonlinear modal interaction at the respective time scale (frequency). To this end, we apply
complexification-averaging technique by introducing the new complex variable (4), which, when substituted
into Eq. (11), yields the complexification of the IMO

[ϕ̇m(t)+ jωmϕm(t)] e jωmt − jωm

2

[
ϕm(t)e

jωmt + ϕm(t)
∗e− jωmt

]

+2
ζmωm

2

[
ϕm(t)e

jωmt + ϕm(t)
∗e− jωmt

]
+ ω2

m

2 jωm

[
ϕm(t)e

jωmt − ϕm(t)
∗e− jωmt

]

≈ 1

2

[
Λm(t)e

jωmt +Λm
∗(t)e− jωmt

]
(12)
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Multiplying both sides of Eq. (12) by e− jωm t and averaging out fast terms other than e jωmt , we derive a relation
between the forcing amplitude of the nonlinear modal interaction Λm(t) and the complex amplitude ϕm(t) as
follows,

Λm(t) ≈ 2
[
ϕ̇m(t)+ ζ̂mωmϕm(t)

]
≈ 2

[
d

dt

(
jωm Âm(t)e

j θ̂m(t)
)

+ j ζ̂mω
2
m Âm(t)e

j θ̂m(t)
]

(13)

where relation (8) was taken into account. This provides a way to estimate the nonlinear modal interaction
force provided that the eigenfrequency and viscous damping ratio of the IMO are known. The eigenfrequency
ωm is directly determined by performing wavelet analysis of the time series and constructing wavelet transform
spectra in time [27]. The viscous damping factor ζ̂m is determined through an optimization process based on
the requirement that the response of the IMO should reproduce the IMF corresponding to the dominant fre-
quency ωm ; hence, the damping factor is selected by minimizing the normalized mean square errors between
the envelope of the IMF cm(t) and the IMO solution xm(t) [28].

As discussed in [25], following these steps local models of the dynamics are constructed, modeling specific
nonlinear damped transitions of the system under specific applied excitations. Global models of the dynamics
can then be synthesized from the local models by depicting the local models in a frequency-energy plot (FEP)
at different frequency and energy ranges. This is performed by wavelet transforming individual time series and
depicting the resulting spectra in the frequency-energy domain. Since the global aspect of the NSI methodology
will not be considered herein, we will not elaborate any further on the construction of the global FEP models,
instead referring to [25].

3.2 Linear beam

By linear beam, we mean the cantilever beam in Fig. 1 without any rigid stops (or with impacting boundaries
of infinite clearances). Then, since the beam is homogeneous and uniform, we can assume that its transverse
vibrations can be approximately governed by the Bernoulli–Euler beam model with the following equation of
motion,

ρAv̈(x, t)+ E Izzv
′′′′(x, t) = p(t)δ(x − x3) (14)

where v(x, t) denotes the displacement of the beam in the transverse (y) direction at (x, t) (cf. Fig. 1);
p(t) = P0δ(t) is the impulsive excitation at t = 0, where δ(t) and δ(x) denote Dirac delta functions; and
primes and dots are partial differentiation with respect to x and t , respectively. Then, the general solution for
Eq. (14) can be written as

v(x, t) =
∞∑

m=1

Amφm(x)e
−ζmωmt cos(ωmdt − θm) (15)

where ωmd = ωm
√

1 − ζ 2
m ; ωm is the natural frequency of the mth linear bending mode; ζm is the modal

damping factor (when a certain viscous damping is assumed in the system); and φm(x) is the normalized mode
shape function for the mth mode (cf. Fig. 2). The corresponding acceleration can be written as

a(x, t) � v̈(x, t) =
∞∑

m=1

Āmφm(x)e
−ζmωmt cos(ωmdt − θ̄m) (16)

where Ām = Amω
2
m and θ̄m = θm + tan−1[2ζm

√
1 − ζ 2

m/(1 − 2ζ 2
m)].

Consider now that the acceleration response of the linear beam at position x9 depicted in Fig. 3. The wavelet
and Fourier transforms clearly depict the ten dominant fast frequencies identified from experimental modal
analysis (see Table 2). As discussed in Sect. 2, the harmonic at 209 Hz appears to be negligible because the
position x9 is close to one of the nodes for the 5th mode. We write

a9(t) ≡ a(x9, t) ≈
10∑

m=1

Āmφm(x9)e
−ζmωmt cos(ωmt − θ̄m) (17)
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Fig. 3 Wavelet and Fourier transforms of the acceleration for the linear beam at position x9

for small damping ζm . By means of EMD analysis, we wish to obtain the relation between the acceleration
time series and the intrinsic mode functions (IMFs) such that

a9(t) ≈
10∑

m=1

cm(a9, t) ≈
10∑

m=1

Āmφm(x9)e
−ζmωmt cos(ωmt − θ̄m) (18)

where cm(a9, t) denotes the mth IMF of the acceleration at position x9 (and is usually associated with the
mth normal mode vibration that can be observed at the same position of the beam). Figure 4 depicts the ten
dominant IMFs from the advanced EMD analysis algorithm introduced in [27], demonstrating that the relation
(18) is valid except for the 5th mode of the beam due to observability issues. (For this kind of a linear response,
one might get similar or even better decomposition with a typical bandwidth filter.)

We establish the reduced-order model (ROM) for the acceleration in Fig. 3 for the linear beam dynamics
at position x9 in terms of intrinsic modal oscillators (IMOs). That is, we write the IMO corresponding to each
IMF as in Eq. (11), and the instantaneous slowly-varying envelope and phase of the mth IMF are computed
respectively as

Âm(t) =
√

cm(a9, t)2 + H[cm(a9, t)]2, θ̂m(t) = tan−1{H[cm(a9, t)]/cm(a9, t)} − ωmt (19)

where m = 1, . . . , 10. Since the slowly-varying complex forcing amplitudeΛm(t) is computed from the time
series (or IMF) in an effort to match the solution xm(t) of the IMO with the corresponding IMF [cf. Eq. (13)],
we can write xm(t) ≈ cm(a9, t). During this validation process, the damping factor 0 < ζ̂m < 1 is chosen
such as to minimize the error between xm(t) and cm(a9, t). Then, the original response can be reconstructed
as the sum of all IMO solutions; that is, the following expression holds:

a9(t) ≈
10∑

m=1

xm(t) ≈
10∑

m=1

cm(a9, t) (20)

Figure 5 compares the 10th and 5th IMFs with the corresponding IMO solutions, exhibiting good agreement.
Finally, we consider the physical meaning of the complex-valued forcing functionΛm(t) for the mth IMO

of the linear problem, since such a term is known to be associated with nonlinear modal interactions in non-
linear dynamical systems [28,29]. In our linear beam problem, the slowly-varying envelope Âm(t) and phase
θ̂m(t) in Eq. (8) can be identified from Eq. (18) as

Âm(t) = Āmφm(x9)e
−ζmωmt , θ̂m(t) = −θ̄m = constant (21)

Then, the slow-flow variable in Eq. (8) can be expressed as

ϕm(t) ≈ jωm Āmφm(x9)e
− j θ̄m e−ζmωmt ⇒ ϕ̇m(t) ≈ − jζmω

2
m Āmφm(x9)e

− j θ̄m e−ζmωmt (22)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 4 The 10 dominant IMFs extracted from the acceleration response in Fig. 3: a through j sequentially depict the 10th to 1st
IMFs, respectively
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(a) (b)

Fig. 5 Comparison of the IMFs in Fig. 4 with their corresponding IMO solutions: a 10th IMF; b 5th IMF

If ζ̂m = ζm (i.e., the damping factor in the IMO is the same as the modal damping factor identified from
experimental modal analysis, and carries a direct physical meaning), then we can easily show thatΛm(t) ≈ 0
due to Eq. (13). This idea may sound feasible and reasonable, because the resulting reduced-order model will
be the same as that obtained from the typical linear modal analysis with the coordinates, xm, m = 1, . . . , 10,
being the modal coordinates. Furthermore, the solution for the IMO (11) will appear as a free damped response,
which may naturally satisfy the relation in Eq. (18). However, as is the case for many other nonlinear system
identification methods where it is of more interest to check whether the proposed parametric model is able to
reproduce the measured (or simulated) dynamics, the damping factor in the IMO is not necessarily the same
as the physical one (i.e., ζ̂m 
= ζm , in general). In this case, the complex forcing amplitude Λm(t) can be
expressed as

Λm(t) ≈ j (ζ̂m − ζm)ω
2
m Āmφm(x9)e

− j θ̄m e−ζmωmt (23)

The absolute value of the complex number (23) is a monotonically and exponentially decaying function (cf.
Fig. 11 in Sect. 3.3); such forcing function will not generate any modal interactions (as is supposed to be the
case for a linear system). Nonetheless, the solution for the IMO (11), which is strongly driven by the forcing
Λm(t)e jωmt because ζ̂m � ζm , can approximately reproduce the IMF in Eq. (18). Similar discussions can be
made not only for the response at position x9, but also for those at all other positions along the linear beam.

3.3 Vibro-impact (VI) beam

We now consider the cantilever beam in Fig. 1 but with the two symmetric rigid stops of 4 mm clearances at
position xSTP. If the displacement |v(xSTP, t)| < 4 mm, then the dynamics of the beam is linear and can be
described by Eq. (14). Whenever the beam displacement |v(xSTP, t)| = 4 mm, a vibro-impact occurs resulting
in a new impact load p̄(t)δ(x − xSTP) applied to the beam as well as causing energy dissipation due to inelastic
impact. Mathematically speaking, the nonsmoothness due to the vibro-impacts means that the displacement
response is of class C0 (i.e., continuous but not continuously differentiable).

For this strongly nonlinear nonsmooth dynamical system, there is no closed-form solution available, in
general. Furthermore, such a VI dynamical system may possess a very complicated topological structure of
periodic orbits (e.g., see [38]). This is mainly because nonsmooth dynamical systems may involve complicated
dynamics such as grazing bifurcations [39] and chaos [22]. We wish to model and understand the nonlinear
dynamics of the VI beam by applying the proposed NSI method.

As for the case of the linear beam problem of the previous section, we consider the acceleration signal at
position x9 (depicted in Fig. 6), where the effects of vibro-impacts generate multiple broadband perturbations
in the wavelet transforms. In particular, comparing the Fourier transform of the linear beam response (dashed
line) with that of the VI beam, this broadband excitation of the beam due to vibro-impacts is significant.
Figure 7a depicts the numerically computed displacement and the corresponding impact load on the beam at
xSTP in order to identify the instants of vibro-impacts (i.e., the time instants when the beam displacement at
xSTP reaches the thresholds ±4mm).

It was shown in [38] that the nonlinear modal interactions due to vibro-impacts are purely due to the
smooth parts of the VI dynamics, whereas the nonsmooth parts tend to create frequency-energy relations
involving numerical artifacts. Such numerical artifacts could lead to wrong conclusions regarding the non-
linear resonances involved in the nonlinear modal interactions between the measured IMFs. Furthermore, it
was demonstrated that the smooth parts of the VI dynamics can be obtained by separating the nonsmooth

10



Fig. 6 Wavelet and Fourier transforms of the acceleration for the VI beam at x = x9 (The Fourier transform in Fig. 3 is
superimposed as a dashed line to illustrate the effects of vibro-impacts in frequency domain)

(a) (b)

Fig. 7 Depiction of the vibro-impacts: a the displacement response of the VI beam simulated at position xSTP and its correspond-
ing impact loads on the beam from the rigid stops; b the nonsmooth component of the acceleration in Fig. 6 is decomposed via
EMD analysis (Note that the dashed lines at t = tk , k = 1, . . . , 13 imply the impact instants identified from the impact force
p̄(t))

effects by means of EMD analysis [38]. Typically, the nonsmooth part is computed as the first IMF with the
help of masking and mirror-image signals [27]. The characteristics of the nonsmooth IMF were explored in
previous works by relating them to Fourier series expansions of saw-tooth wave signals [41] and also by a
partial-differential-equation-based sifting process [40] noting that EMD acts, in essence, as a dyadic filter
bank.

Figure 7b depicts such a nonsmooth IMF for the acceleration signal in Fig. 6. Superposition of the impact
instants identified from Fig. 7a illustrates that the isolated nonsmoothness agrees reasonably well with the time
instants of vibro-impacts. We note that the numerical displacement was calculated from the reduced-order
model through the assumed-modes method, which means that some other modes higher than 10th may need
to be included to get a better match between the numerical simulations and experimental measurements. Some
quantitative discrepancies prevail after 0.2 s with the current reduced-order model.

Now EMD is applied to the remaining smooth part of the acceleration signal after subtracting the non-
smooth IMF in Fig. 7b from the original acceleration in Fig. 6. The ten dominant IMFs are depicted in Fig. 8.
By superimposing the vertical dashed line at each impact instant identified from Fig. 7a, one can at least
qualitatively observe the effects of vibro-impacts on each IMF at position x9; for example, the vibro-impacts
seem to directly influence higher IMFs (above the 5th). Indeed, considering these higher frequency IMFs,
we note linear dynamical behavior between consecutive vibro-impacts, in the form of exponentially decaying
damped responses. On the other hand, lower IMFs do not seem to exhibit such straightforward patterns, imply-
ing that these IMFs may undergo more strongly nonlinear modal interactions and may be more significantly
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 8 The 10 dominant IMFs extracted from the acceleration response in Fig. 6: a through j sequentially depict the 10th to 1st
IMFs, respectively (Note that the dashed lines imply the impact instants identified in Fig. 7)
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(a) (b)

Fig. 9 Comparison of the IMFs in Fig. 8 with their corresponding IMO solutions: a 10th IMF; b 5th IMF

Fig. 10 Comparison of the reconstructed acceleration from the 10 IMO solutions plus the nonsmooth IMF with the original
response in Fig. 6

influenced by the strong nonlinearities due the vibro-impacts. These aspects will be explored further in terms
of the nonlinear modal interaction terms of the corresponding IMOs depicted in Figs. 11 and 13.

As in the linear beam, we can also establish a nonlinear interaction model (NIM) for the IMFs obtained in
Fig. 8 in terms of a set of IMOs. Computing the nonlinear modal interaction forcingΛm(t) [cf. Eq. (13)] from
each IMF by means of the slow-flow correspondence (8), we solve the ten IMOs (11), respectively. Figure 9
compares the IMFs with the corresponding IMO solutions for 10th and 5th IMFs, which show good agreement.
We sum all IMO solutions to reconstruct the original signal [cf. Eq. (20)], and this exhibits a perfect match
as depicted in Fig. 10. That is, the NIM we established has been validated, so that it can be used to study the
nonlinear dynamics of the VI beam (at position x9) as an alternative reduced-order model.

As was discussed in Sect. 3.2, an understanding of the physical meaning of the slowly-varying complex
forcing amplitude Λm(t) in the ROM (or NIM for the VI beam) is essential, because the response obtained
from the IMO in the ROM is strongly dictated by this nonhomogeneous forcing term, whereas the influence
from the homogeneous part of the ROM is minimal. In other words, the ROM will predict linear (nonlinear)
responses if the slowly-varying forcing term Λm(t) exhibits linear (nonlinear) behaviors.

Now, the physical meaning of Λm(ak, t), m, k = 1, . . . , 10, in the nonlinear dynamics of the VI beam
can be explored by comparing it with that for the linear beam. We first note that the magnitude of Λm(a9, t)
for all IMOs of the linear beam appears as almost a straight line on a logarithmic scale (cf. Fig. 11), which
makes sense due to the form of Eq. (23). Similarly, |Λm(a9, t)| for the VI beam can also exhibit linearity with
the same slope on average on a logarithmic scale as in the case of the linear beam, but such a linear pattern
appears only in between impact instants and, in particular, when m ≥ 6 (cf. Fig. 11a for the 10th IMO). The
trajectory of Λ10(a9, t) in the complex plane for the linear beam appears as a single, monotonic, decaying
pattern ( i.e., time-like behavior on a logarithmic scale), which implies no modal coupling or interactions in
the ROM by means of Eq. (11), as was discussed in Sect. 3.2. The trajectory ofΛ10(a9, t) in the complex plane
for the VI beam also exhibits such monotonic behavior but only in between vibro-impacts (denoted by the
intervals In, n = 1, 2, . . .); the role of the vibro-impacts is to cause phase shifts of the slowly-varying forcing
Λ10(a9, t) at the instants of vibro-impacts. On the other hand, the slowly-varying complex forcing function
for the 4th IMO of the VI beam does not exhibit any linear behavior but only a slowly-varying wavy envelope
regardless of vibro-impacts (cf. Fig. 11b). Such wavy patterns in the plot of |Λ4(a9, t)| indicate that certain
modal interactions occur through nonlinear resonant conditions such as internal resonances or resonance cap-
tures [31]. Also, nonlinear modal interactions are evidenced by the spiral (or non-time-like) patterns of the
trajectory in the complex plane.
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(a)

(b)

Fig. 11 Comparison of the slowly-varying forcing functions Λm(a9, t): a m = 10 (i.e., 10th IMO) and b m = 4 (i.e., 4th IMO).
Note that the dashed lines imply the impact instants identified in Fig. 7

Fig. 12 Linear correlation coefficient (%) between the slowly-varying forcing functions Λm(ak , t), m, k = 1, . . . , 10, where m
and k denote the mode number and accelerometer position, respectively, of the linear and VI beams

From these two typical examples, we may conjecture the following: Whereas the higher IMOs (i.e., the
IMOs associated with higher frequency components) tend to maintain their linear dynamics in between impacts
(although the overall dynamics is strongly nonlinear), the lower IMOs exhibit strongly nonlinear modal inter-
actions independent of vibro-impact patterns. The role of vibro-impacts is just to exert broadband impulsive
excitations on the linear beam causing instantaneous phase shifts in the higher IMOs.

To verify this conjecture, we first compute Pearson’s linear correlation coefficient [42] for the slowly-vary-
ing complex forcing amplitudes Λm(ak, t), m, k = 1, . . . , 10, of all IMOs for the linear and VI beams at all
the positions along the beam. This correlation coefficient is widely utilized in statistics as a measure of the
linear dependence between two variables, and a Matlab command, ‘corr.m’, was used in this work. Figure 12
depicts the interpolated contour map of the absolute value of the linear correlation coefficient for each mode
number along the beam span. Note that by ‘mode number’ m in Fig. 12, we mean the IMO which is associated
with the mth linear mode. From these simple calculations, we find that the IMOs higher than the 4th possess
strong linear dependence (linear correlation coefficient above 90 %) between the linear and VI responses of

14



Fig. 13 The spanwise magnitudes of nonlinear modal interaction for the VI beam: a through j sequentially depict the 10th to 1st
IMFs, respectively (Note that the logarithm with base 10 is taken for |Λm(ak , t)|, and that the sections at t = tn, n = 1, . . . , 9,
denote some of the impact instants identified in Fig. 7)

the beam, regardless of the position along the beam. Again, it is noted that the low correlation for the 3rd, 5th,
7th and 9th IMOs at the midspan of the beam is due to the fact that the position is very close to one of the nodes
for the respective linear modes. Similar explanations can be given for the 5th and 7th IMOs at position x9, and
for the 8th IMO at position x8. Therefore, the aforementioned conjecture is confirmed by means of the linear
correlation coefficients between |Λm(ak, t)| (and hence the corresponding IMO responses) for the linear and
VI beams. That is, vibro-impacts do not significantly alter the linear dynamics for the higher modes (typically,
higher than 4th), but they significantly affect the lower modes through strongly nonlinear modal interactions.
This result agrees with Cusumano’s previous work [22], where the topological characterization of the spatial
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structure of the VI beam vibrations was studied by means of the two-point spatial correlation ( i.e., correlation
dimension) and POD. In particular, the estimate for the correlation dimension of the VI dynamics obtained
was lower than but near 4, which dictates that a low-dimensional model can capture the overall complicated,
chaotic-like VI beam dynamics. Furthermore, if such complicated dynamics can be captured by a low-dimen-
sional model with several lower IMOs, then energy transfers (or cascades) from the higher to the lower modes
through certain nonlinear modal interactions, such as internal resonances, may be responsible [22].

While the linear correlation coefficient provides excellent physical insights into the VI beam dynamics, we
note that it can be regarded as a ‘static’ global measure; that is, it does not contain any information regarding the
temporal variations of the vibro-impacts throughout the beam. A high linear correlation coefficient for certain
IMOs at some position may indicate a strong linear dependence between the VI beam and the underlying linear
beam, and imply that the corresponding IMO of the VI beam behaves linearly for that position. Nonetheless,
this will not be apparent in the local dynamics (e.g., propagation and/or localization of the effects of nonlinear
modal interactions caused by vibro-impacts, such as the temporal localization of the nonlinear dynamics for
the 7th IMO). In particular, the linear correlation becomes a poor measure when the issue of observability is
involved (e.g., all the odd-number IMOs higher than 3rd at position x5 in Fig. 12).

Hence, we construct a different set of maps for the spatio-temporal variations of |Λm(ak, t)|, m, k =
1, . . . , 10, depicted in Fig. 13 for all computed IMOs. We note that, since the position x5 is very close to one
of the nodes for the 5th, 7th and 9th linear modes, no meaningful IMFs could be obtained for this measuring
position, creating discontinuous surface plots in Fig. 13b, d and f, respectively. Linear logarithmic decrement
of |Λm(ak, t)| in time between vibro-impacts indicates that linear dynamics between vibro-impacts prevails
for IMOs higher than the 3rd (cf. Fig. 13a–g) for the VI beam dynamics. On the other hand, we can confirm
that modes lower than the 4th are significantly influenced by vibro-impacts (cf. Fig. 13h–j). That is, strong,
wavy, wrinkled spatio-temporal distributions of |Λm(ak, t)| can be observed from the 3-dimensional surface
plot, as compared to the almost flat distributions of |Λm(ak, t)| with simultaneous occurrences of spikes due
to vibro-impacts for the higher IMOs. The lower IMOs also appear as high-frequency, smudged images of
recurrent nested contours in the 2-dimensional projection, and accordingly, the impact patterns associated with
vibro-impacts are hard to read and no longer simultaneous at all sensing positions.

Finally, we remark that not all higher IMOs behave completely linearly in between vibro-impacts. Whereas
the spatio-temporal variations of |Λm(ak, t)| for the 9th and 10th IMOs are almost globally linear (evidenced
by the formation of nearly rectangular strips in the contour plot on the (x, t) plane, neglecting changes in
their absolute magnitudes), those for the 4th–8th IMOs manifest spatially-localized nonlinear behavior, in
particular, at position x9 where vibro-impacts from the rigid stops strongly affect the beam dynamics. The
slowly-varying complex forcing at positions x3 and x8 for the 8th IMO, and at position x4 for the 5th IMO
also demonstrate spatially-localized nonlinear effects on the VI beam. Furthermore, the 7th IMO even exhibits
temporal localization of the nonlinear dynamics in between the impact instants t11 and t13 in Fig. 13d.

4 Comparison with results of experimental data analysis

In this section, we compare the NSI analysis of the numerical data in Sect. 3 with experimental measure-
ments for the VI beam. Note that comparisons in this section will remain qualitative, because the impulsive
excitations by an impact hammer for the experiments were different than the impulsive excitations used in
the numerical simulation. That is, a plastic tip was put on the impact hammer in the experiments, whereas an
aluminum tip was considered in the numerical simulations. Use of such a plastic tip on the impact hammer
limits the frequency bandwidth of the excitation, whereas an aluminum tip broadens the excitation bandwidth.
A more complete NSI analysis of the experimental data will be discussed in a companion paper [43], so here
we provide only a preliminary qualitative comparison between computational and experimental results.

The procedures for NSI of the experimental VI beam responses are the same as those for the numerical
data. We perform EMD analysis of the ten acceleration measurements respectively at the ten sensing positions
(x1 through x10) along the beam span. For the purpose of comparison, NSI of the acceleration at position x9
is our primary interest in the current work. The 10th and 5th IMFs of this experimental acceleration response
are depicted in Fig. 14a and b, respectively. Comparing them with those depicted in Fig. 8, we find qualitative
similarity. That is, the 10th IMF exhibits multiple exponential decays initiated at every vibro-impact, whereas
the 5th IMF seems to exhibit strong nonlinear modal interactions. Indeed, this observation is qualitatively
consistent with that for the numerical data.

Then, we establish a nonlinear interaction model (NIM) as a set of IMOs [cf. Eq. (11)], whose solutions
are verified and validated to match the respective IMFs. Furthermore, we confirm completeness of the IMO
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(a) (b)

Fig. 14 IMFs extracted from the experimentally measured acceleration at the sensing position x9: a 10th IMF (cf. Fig. 8a); b 5th
IMF (cf. Fig. 8f)

Fig. 15 Comparison of the reconstructed acceleration from the ten (smooth) IMO solutions with the original experimental response
measured at position x9

Fig. 16 The spatio-temporal variations of Λm(a9, t) the VI beam from experimental measurements: a m = 10 (i.e., 10th IMF);
b m = 5 (i.e., 5th IMF)

solutions as a basis with which the given measurement can be expanded. This is demonstrated in Fig. 15. Note
that the apparent discrepancies between the measured and reconstructed acceleration signals are due to the
fact that the nonsmooth IMF was not included when reconstructing the original signal.

Finally, Fig. 16a and b depict the spatio-temporal variations of |Λm(ak, t)|, k = 1, . . . , 10, respectively,
for the 10th (m = 10) and 5th (m = 5) IMFs from experimental measurements at the 10 positions along
the beam. As was discussed in Sect. 3.3, from the NSI of the numerical data, the 10th IMO manifests linear
dynamics in between vibro-impacts (cf. Fig. 13a), whereas the 5th IMO does not (cf. Fig. 13g). For the 10th
(or higher) IMO, formation of the flat strips is more evident, compared to that of the numerical data; moreover,
the influences of vibro-impacts occur simultaneously along the whole beam. On the other hand, the 5th (or
lower) IMO exhibits linear dynamics between instants of vibro-impacts, except for the position x9 where
strong effects due to vibro-impacts from the rigid stops exist in the beam dynamics. Also, the measurements
at positions such as x1 and x3 exhibit localized nonlinear modal interactions evidenced by the wavy, wrinkled
surface plot. Overall, NSI of the experimental results demonstrates dynamical behaviors qualitatively similar
to those observed in the numerical results. The NSI of the experimental results will be further discussed in a
companion paper [43].
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5 Concluding remarks

We studied the dynamics of a cantilever beam with two symmetric rigid stops with prescribed clearances
by performing nonlinear system identification (NSI) based on the correspondence between analytical and
empirical slow-flow dynamics. Performing empirical mode decomposition (EMD) analysis of the numerically
computed acceleration responses at ten, almost evenly-spaced, spanwise positions along the beam, we con-
structed sets of intrinsic modal oscillators at different time scales of the dynamics. In particular, the EMD
analysis can separate nonsmooth effects due to vibro-impacts between the beam and the rigid stops from the
underlying smooth dynamics of the flexible beam, so that nonlinear modal interactions can be explored only
based on the remaining smooth components. Then, we established nonlinear interaction models (NIMs) for the
respective intrinsic mode oscillations, where the NIMs invoke slowly-varying forcing amplitudes (or nonlinear
modal interaction terms) that can be computed from empirical slow-flows and directly dictate nonlinear modal
interactions between different-scale dynamics. By comparing the spatio-temporal variations of the nonlinear
modal interactions for the vibro-impact beam and the corresponding linear beam model, we demonstrated
that vibro-impacts significantly influence the lower intrinsic mode functions through strongly nonlinear modal
interactions, whereas the higher modes tend to retain their linear dynamics between impacts. Also, computation
of linear correlation coefficients as measures for linear dependence between the dynamics of the linear and
VI beams manifested the same results but only with spatial information about this correlation. A preliminary
comparison of numerical and experimental NSI results demonstrated qualitative similarity between the experi-
mental and numerical simulations. Further analysis of the experimental results will be discussed in a companion
paper [43].

Acknowledgments This work was supported in part by the National Science Foundation of United States through Grants Number
CMMI-0927995 and CMMI-0928062.

References

1. Ewins, D.J.: Modal Testing: Theory and Practice. Research Studies Press, UK (1990)
2. Brandon, J.A.: Some insights into the dynamics of defective structures. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng.

Sci. 212, 441–454 (1998)
3. Kerschen, G., Golinval, J.-C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for order

reduction of mechanical systems: an overview. Nonlinear Dyn. 41, 147–170 (2005)
4. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.-C.: Past, present and future of nonlinear system identification in

structural dynamics. Mech. Syst. Signal Process. 20, 505–592 (2005)
5. Feeny, B.F., Kappagantu, R.: On the physcal interpretation of proper orthogonal modes in vibrations. J. Sound Vib. 211,

607–616 (1998)
6. Kerschen, G., Golinval, J.C.: Physical interpretation of the proper orthogonal modes using the singular value decomposi-

tion. J. Sound Vib. 249, 849–865 (2002)
7. Bellizzi, S., Sampaio, R.: POMs analysis of randomly vibrating systems obtained from Karhunen-Loève expansion. J. Sound

Vib. 297, 774–793 (2006)
8. Allison, T.C., Miller, A.K., Inman, D.J.: A deconvolution-based approache to structural dynamics system identification and

response prediction. J. Vib. Acoust. 130, 031010 (2008)
9. Chelidze, D., Zhou, W.: Smooth orthogonal decomposition-based vibration mode identification. J. Sound Vib. 292,

461–473 (2006)
10. Silva, W.: Identification of nonlinear aeroelastic systems based on the Volterra theory: progress and opportunities. Nonlinear

Dyn. 39, 25–62 (2005)
11. Li, L.M., Billings, S.A.: Analysis of nonlinear oscillators using Volterra series in the frequency domain. J. Sound

Vib. 330, 337–355 (2011)
12. Mariani, S., Ghisi, A.: Unscented Kalman filtering for nonlinear structural dynamics. Nonlinear Dyn. 49, 131–150 (2007)
13. Masri, S., Caughey, T.: A nonparametric identification techanique for nonlinear dynamic systems. J. Appl. Mech. 46,

433–441 (1979)
14. Leontaritis, I.J., Billings, S.A.: Input–output parametric models for nonlinear systems. Part I. Deterministic nonlinear sys-

tems; Part II. Stochastic nonlinear systems. Int. J. Control 41, 303–328; 329–344 (1985)
15. Thothadri, M., Casas, R.A., Moon, F.C., D’Andrea, R., Johnson, C.R. Jr.: Nonlinear system identification of multi-degree-

of-freedom systems. Nonlinear Dyn. 32, 307–322 (2003)
16. Feldman, M.: Non-linear system vibration analysis using Hilbert transform–I. Free vibration analysis method ‘FREEVIB’;

II. Forced vibration analysis method ‘FORCEVIB’. Mech. Syst. Signal Proces. 8, 119–127; 309–318 (1994)
17. Feldman, M.: Time-varying vibration decomposition and analysis based on the Hilbert transform. J. Sound Vib. 295,

518–530 (2006)
18. Ma, X., Azeez, M.F.A., Vakakis, A.F.: Non-linear normal modes and non-parametric system identification of non-linear

oscillators. Mech. Syst. Signal Process. 14, 37–48 (2000)

18



19. Georgiou, I.: Advanced proper orthogonal decomposition tools: using reduced order models to identify normal modes of
vibration and slow invariant manifolds in the dynamics of planar nonlinear rods. Nonlinear Dyn. 41, 69–110 (2005)

20. Galvanetto, U., Surace, C., Tassotti, A.: Structural damage detection based on proper orthogonal decomposition: experimental
verification. AIAA J. 46, 1624–1630 (2008)

21. Cusumano, J.P., Bae, B.-Y.: Period-infinity periodic motions, chaos, and spatial coherence in a 10 degree of freedom impact
oscillator. Chaos, Solitons Fractals 3, 515–535 (1993)

22. Cusumano, J.P., Sharkady, M.T., Kimble, B.W.: Experimental measurements of dimensionality and spatial coherence in the
dynamics of a flexible-bea impact oscillator. Philos. Trans. R. Soc. Ser. A 347, 421–438 (1994)

23. Ritto, T.G., Buezas, F.S., Sampaio, R.: A new measure of efficiency for model reduction: application to a vibroimpact
system. J. Sound Vib. 330, 1977–1984 (2011)

24. Azeez, M.F.A., Vakakis, A.F.: Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations. J. Sound
Vib. 240, 859–889 (2001)

25. Lee, Y.S., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: A global-local approach to system identification: a review. Struct.
Control Health Monit. 17, 742–760 (2010)

26. Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N.-C, Tung, C., Liu, H.: The empirical mode decompostion
and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A. Math. Phys.
Sci. 454, 903–995 (1998)

27. Lee, Y.S., Tsakirtzis, S., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Physics-based foundation for empirical mode
decomposition. AIAA J. 47, 2938–2963 (2009)

28. Lee, Y.S., Tsakirtzis, S., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: A time-domain nonlinear system identification
method based on multiscale dynamic partitions. Meccanica 46, 625–649 (2010)

29. Lee, Y.S., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Nonlinear system identification of the dynamics of aeroelastic
instability suppression based on targeted energy transfers. Aeronaut. J. 114, 61–82 (2010)

30. Tsakirtzis, S., Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Modeling of nonlinear modal interactions
in the transient dynamics of an elastic rod with an essentially nonlinear attachment. Commun. Nonlinear Sci. Numer.
Simul. 15, 2617–2633 (2010)

31. Dawes, J.H.P.: Review: the emergence of a coherent structure for coherent structures: localized states in nonlinear sys-
tems. Philos. Trans. R. Soc. Ser. A 368, 3519–3534 (2010)

32. Chati, M., Rand, R., Mukherjee, S.: Modal analysis of a cracked beam. J. Sound Vib. 207, 249–270 (1997)
33. Chen, H.G., Yan, Y.J., Jiang, J.S.: Vibration-based damage detection in composite wingbox structures by HHT. Mech. Syst.

Signal Process. 21, 307–321 (2007)
34. Mane, M.: Experiments in Vibro-Impact Beam Dynamics and a System Exhibiting a Landau-Zener Quantum Effect. MS

Thesis (unpublished), Univeristy of Illinois at Urbana-Champaign (2010)
35. Blevins, R.D.: Formulas for Natural Frequency and Mode Shape. Krieger, New York (1995)
36. Manevitch, L.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex vari-

ables. Nonlinear Dyn. 25, 95–109 (2001)
37. Lochak, P., Meunier, C.: Multiphase Averaging for Classical Systems: With Applications to Adiabatic Theo-

rems. Springer, New York (1988)
38. Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits and damped transitions of vibro-impact

dynamics. Phys. D 238, 1868–1896 (2009)
39. Nordmark, A.B.: Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators. Nonlinear-

ity 14, 1517–1542 (2001)
40. Deléchelle, E., Lemoine, J., Niang, O.: Empirical mode decomposition: an analytical approach for sifting process. IEEE

Signal Process. Lett. 12, 764–767 (2005)
41. Lee, Y.S., Chen, H., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Nonlinear system identification of vibro-impact non-

smooth dynamical systems (AIAA-2011-2067). In: 52nd AIAA Structures, Structural Dynamics and Materials Conference,
Denver, Colorado, 4–7 April 2011 (2011)

42. Gibbons, J.D.: Nonparametric Statistical Inference. 2nd edn. M. Dekker, New York (1985)
43. Chen, H., Kurt, M., Lee, Y.S., McFarland, D.M., Bergman, L.A., and Vakakis, A.F.: System identification of a vibro-impact

beam with a view toward structural health monitoring. Exp. Mech. (submitted)

19


	Nonlinear system identification of the dynamics of a vibro-impact beam: numerical results
	Abstract
	1 Introduction
	2 System descriptions
	3 Nonlinear system identification (NSI) of the vibro-impact beam
	3.1 NSI methodology
	3.2 Linear beam
	3.3 Vibro-impact (VI) beam

	4 Comparison with results of experimental data analysis
	5 Concluding remarks
	Acknowledgments
	References




