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Abstract We present a quantum formalism that provides a quantitative picture of the fundamental pro-
cesses of charge separation that follow an absorption event. We apply the formalism to two-level photo-
voltaic cells and our purpose is to pedagogically explain the main aspects of the model. The formalism is
developed in the energy domain and provides detailed knowledge about existence or absence of localized
states and their effects on electronic structure and photovoltaic yield.

1 Introduction

Nanostructured photovoltaic cells including organic so-
lar cells, dye and quantum dot sensitized- solar cells have
received great attention as promising photovoltaic tech-
nologies because of their prospective applications and in-
teresting operation principle [1–12]. In nanostructured so-
lar cells, following the photon absorption, electron-hole
pair creation occurs in a confined zone [13–16] and hence,
the Coulomb interaction between the charge carriers and
their possible recombination plays an essential role. Fun-
damentally different from conventional silicon-based pho-
tovoltaic devices, in nanostructured solar cells the charge
carriers separation and transport rely on a high density of
nanoscale interfaces.

While understanding the performance of nanostruc-
tured solar cells has been a central effort of the scien-
tific community for many years [17–21], theoretical ap-
proaches still are needed to facilitate the understanding
of electron-hole interaction and recombination effects on
the cell performance. In view of their nano-metric size,
the semi-classical approaches are expected to fail and fully
quantum treatments are needed.

We develop a new quantum formalism, which is based
on quantum scattering theory and in particular on the
Lippmann-Schwinger equation [22–24]. A non-equilibrium
wave function, which describes the state of the working
cell, is computed and allows determining all parameters of
the cell and its performance. As an example, we consider
two-level quantum model and show that the formalism
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provides a comprehensive framework to understand the
effects of electron-hole interaction and recombination on
the performance of photovoltaic systems.

2 Theoretical method

2.1 Two-level photovoltaic systems

The basic idea of our methodology is described through
the example of two-level photovoltaic systems with the
electron-hole interaction and non-radiative recombination.
The two-level system characterized by the HOMO (high-
est occupied molecular orbital) and the LUMO (lowest
unoccupied molecular orbital) can be in the permanent or
in the transitory regime of illumination.

As an example, for the photovoltaic devices in the per-
manent regime of illumination, we consider the molecular
photocells where the energy conversion process takes place
in a single molecular donor-acceptor complex attached to
electrodes. In the absence of photons, the whole system is
in the ground state with filled valence bands and empty
conduction bands. Under the flux of photons, absorption
by the molecule creates electron and hole in LUMO and
HOMO, respectively. Both charge carriers interact via the
Coulomb potential and can be recombined in the molecule
or can be transferred to their respective channels where
they produce permanent photovoltaic current (see Fig. 1-
left).

The Bulk-Hetero Junction (BHJ) structure is an ex-
ample of systems in the transitory regime. Indeed in the
BHJ structure, following the absorption of a photon an
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Fig. 1. The two-level model in the permanent (left panel) and transitory (right panel) regime of illumination. (Left panel)
A molecular photocell with one HOMO and one LUMO orbitals attached to the electrodes. The red line represents the electron-
hole interaction and recombination inside the molecule and the hopping integrals of electron and hole are denoted by C and
J . E is the energy of absorbed photon. (Right panel) Schematic representation of a donor-acceptor system. Charge evacuation
leads are considered as semi-infinite chains. Here, Je and Jh are the coupling energies between two adjacent sites in the electron
and hole chains, respectively. Also, Ce and Ch represent the first coupling energies between the interface states and charge
evacuation leads.

exciton is created in the donor side of the cell at one neg-
ative time, and then it diffuses up to the interface (the
two-level system). This exciton arrives at the interface at
time t = 0 and our aim is to evaluate the total charge in-
jected in each contact due to the exciton dissociation after
a sufficiently large time (see Fig. 1-right).

2.2 The electron-hole pair Hamiltonian

In both systems of Figure 1, we have to determine the
possible quantum states of the photo-generated electron-
hole pair. The Hilbert space of these electron-hole pairs
can be mapped onto a square lattice (Fig. 2). For the PV
devices in the permanent regime, x(y) represents the po-
sition of the electron (hole), in the molecule or in the at-
tached leads. Site x = 0 (y = 0) corresponds to the LUMO
(HOMO) orbital in the molecule and x > 0 (y > 0) rep-
resents the electron (hole) position in its respective lead.
Therefore, site (x = 0, y = 0) is the electron-hole pair po-
sition on the molecule that is simply the initial state just
after the photon absorption, i.e., the excited state.

Furthermore, for the PV devices in the transitory
regime, x(y) represents the position of the electron (hole),
on the interface or in the attached leads. Site x = 0 (y = 0)
corresponds to the LUMO (HOMO) orbital on the inter-
face and x > 0 (y > 0) represents the electron (hole) posi-
tion in its respective lead. Therefore, site (x = 0, y = 0) is
the electron-hole pair position on the D-A interface. The
energy difference between LUMO and HOMO levels on the
absorber molecule (permanent regime) or on the interface
(transient regime) is equal to Δ. The coupling matrix el-
ements between the molecular or interface states and the
possible evacuation leads is denoted by C. The hopping
matrix element inside each evacuation lead is considered
uniform and denoted by J . The onsite energies of the elec-
tron at site (x) and the hole at site (y) are assumed to be
εe(x) and εh(y), respectively.

The effective Hamiltonian of the system is of the tight-
binding type additionally including the electron-hole in-

Fig. 2. The Hilbert space of the electron-hole pair by consid-
ering just one evacuation channel for each charge carrier, with
one state at each point (x, y) of the lattice. The coordinates
x and y of a given state represent the position of electron and
hole in their respective leads. ε(x, y) is the onsite energy of
each site of the square lattice and the hopping integrals (C
and J) are along the bonds of the square lattice.

teraction term

H =
∑

i

εi |i〉 〈i| +
∑
i,j

Jij |i〉 〈j| (1)

where the first term indicates the total onsite energy of
each square lattice basis state, which is defined as a sum-
mation over the electron onsite energy, the hole onsite en-
ergy and the Coulomb interaction energy between them:

ε(x, y) = εe(x) + εh(y) + I(x, y). (2)
I(x, y) represents the Coulomb-type interaction between
the charge carriers and is modeled by:

I(x, y) =

{
U if x = 0 and y = 0
V

(x+y) if x �= 0 or y �= 0.
(3)

Since I(x, y) is an attractive Coulomb interaction, there-
fore U and V have negative values.
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Fig. 3. Weight of the scattered wave function (|Ψp(E)〉) on different sites (x, y) of the square lattice normalized to its value
on the initial site (|〈x, y|ΨP (E)〉|2/|〈0, 0|ΨP (E)〉|2) for various absorbed photon energies (E). The energy continuum (EC) is
between 0.8 and 3.2 eV.

In equation (3),U represents the strength of the local
electron-hole interaction, i.e., when they are in the same
place (either on the absorber molecule or on the D-A in-
terface) and V is the strength of the long-range electron-
hole interaction. In this formalism, the probability of pho-
togenerated electron-hole pair local-recombination inside
the absorber molecule or on the D-A interface is taken into
account by adding an imaginary part −iΓR/2 to the onsite
energy of the site (0, 0), where ΓR is the recombination
rate.

Finally, the second term in equation (1) represents the
coupling energy between two adjacent basis states on the
square lattice. As pointed above, the coupling parameters
between molecular states or interface states (i.e., site (0,
0)) and their first neighbors are taken different form the
other coupling energies. The realistic values of hopping
and interaction energies could be obtained from ab initio
calculations or from experiments, however in this study
they are taken as parameters.

2.3 Non-equilibrium wave function of solar cell

Let us first discuss the formalism for the case in the
permanent regime. We consider a photovoltaic cell as a
system submitted to an incident flux of photons and as-
sume that the whole system (PV cell and electromagnetic
field) is in a stationary state. By applying quantum scat-
tering theory, an open quantum system method, in partic-
ular the Lippmann-Schwinger equation, the photovoltaic
system is described by a wave function. The incoming
state of the theory |Φinc〉 represents the photon field with
the PV cell in its ground state. By the dipolar interac-
tion between the photovoltaic system and the electromag-
netic field this incident state |Φinc〉 is coupled to a state
where one photon is absorbed and one electron-hole pair
is created.

Based on the Lippmann-Schwinger equation and ap-
plying the Born approximation, the total wave function of
the system is

|Ψ(E)〉 = |Φinc〉 + |Ψp(E)〉. (4)

The second term in the right hand side of the above equa-
tion, |Ψp(E)〉, is called the scattered wave function which
represents the charge carriers photo-generated by absorp-
tion of a photon with energy E and plays an important
role. |Ψp(E)〉 represents the whole system i.e., the cell with
one electron hole pair plus the photon field with one less
photon. Yet for the rest of this paper we focus on the
current in the material system therefore we do not need
to specify the part of |Ψp(E)〉 which represents the pho-
ton field. With this convention |Ψp(E)〉 is defined by the
following equation:

|Ψp(E)〉 = α(E)
1

E + iε−H
|0, 0〉 (5)

where α2(E) is the product of the square of the dipole ma-
trix element of the molecular transition d times the elec-
tromagnetic energy density ρ(E) of photons with energy
E, i.e., α2(E) = d2ρ(E)/2ε0. ε0 is the vacuum permittiv-
ity, ε is an infinitesimal positive energy and |0, 0〉 is the
excited state after the photon absorption. Furthermore, H
is the Hamiltonian of the electron-hole pair, which is de-
fined by the tight-binding model on the mentioned square
lattice.

To have an idea about the behavior of scattered wave
function |Ψp(E)〉, Figure 3 represents the weight of |Ψp(E)〉
on different sites (x, y) of the square lattice normalized to
its value on the initial site |〈x, y|ΨP (E)〉|2/|〈0, 0|ΨP (E)〉|2
by considering two different absorbed photon energies for
a cell with energy continuum (EC) lying between 0.8 and
3.2 eV. It has to be noted that the energy continuum is
the all allowed energies for the electron-hole pair. As can
be seen, for the photon energies outside the continuum,
the scattered wave function is nearly localized on the site
|0, 0〉 which is simply the absorber molecule. As the photon
energy increases such that lies into the continuum, the
scattered wave function extends on the various sites of
the square lattice.
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2.4 Fluxes

In this formalism, the cell performance can be de-
scribed through the definition of a series of fluxes and
knowledge of scattered wave function |Ψp(E)〉 enables one
to compute all the essential fluxes. The main three fluxes
are: (1) the flux of absorbed photons ΦPh(E) which is
the number of absorbed photons per unit time; (2) the
fluxes of electron-hole pairs that recombine in the molecule
ΦR(E); and (3) the flux of pairs that escape from the
molecule and results in the photovoltaic current ΦC(E).
The flux conservation implies that

Φph(E) = ΦC(E) + ΦR(E). (6)

The flux of absorbed photons is related to the local DOS
n(E) through the Fremi’s golden rule

Φph(E) = α2(E)
2π
�
n(E), (7)

when the electron and the hole are not interacting n(E) is
nothing but the joint density of states between electrons
and holes which is a key quantity for light-matter inter-
action. If the electron and the hole are interacting n(E)
is defined as the local density of states of electron-hole
pair. This equation presents the direct relation between
the photon absorption capability and the local density of
states (LDOS) on site |0, 0〉 of the square lattice. n(E) can
be expressed based on the diagonal matrix elements of the
retarded Green’s function

n(E) = − 1
π

ImGr
00(E). (8)

As will be discussed in the numerical method section,
Gr

00(E) can be expressed by:

Gr
00(E) =

1
E + iΓR

2 −Σ0(E)
(9)

where Σ0 and ΓR represents the self-energy of the system
and recombination rate, respectively.

It has to be noted that the LDOS indicates all the
possible energy states for the electron-hole pair and im-
plicitly presents the capability of the photovoltaic cell to
absorb the light. Additionally, the current and recombina-
tion fluxes can be expressed by

ΦC(E) = |Gr
00(E)|2 ImΣ0

�
(10)

ΦR(E) = |Gr
00(E)|2 ΓR

�
. (11)

Finally, the fluxes that allow describing the cell perfor-
mance depend on recombination rate ΓR and self-energy
Σ0. The imaginary part of the self-energy Σ0 plays a cen-
tral role for the injection of current as shown by the above
equation. The real part of the self-energy Σ0 plays a cen-
tral role to determine the position of the resonance in the
density of states n(E) and therefore in the frequency of
photons that are most efficiently absorbed by the two-
level system. The self-energy can be determined from
Hamiltonian of the square lattice (see numerical method).

2.5 Expression of the quantum yield

Let us first consider a photovoltaic cell in the perma-
nent regime of illumination. At a given photon energy E,
the yield Y (E) is proportional to the ratio of photogen-
erated electrons or holes that arrive at the electrodes and
the total number of absorbed photons at this given energy

Y (E) =
ΦC(E)
Φph(E)

=
−ImΣ0

−ImΣ0 + ΓR/2
. (12)

Through the assumption that α2(E) = α2 in the region
where n(E) (i.e., photon absorption) is important, the av-
erage yield or in other words, the charge separation yield
Y , which is the proportion of the all electron-hole pairs,
generated by different photons and giving rise to the pho-
tovoltaic current can be defined as

Y =
∫
ΦC(E) dE∫
Φph(E) dE

=
∫
n(E)Y (E) dE. (13)

Here, we draw the reader’s attention to an interesting
point: in the limit of small recombination rate, if pho-
ton energy E lies into the energy continuum then there
is a transformation into an electron-hole pair and there-
fore yield Y (E) is one. Whereas, if E corresponds to a
bound electron-hole state, no current can be injected in
the leads and finally the electron-hole pair recombine so
that Y (E) is zero. As a consequence, the average yield Y
given by equation (12) can be expressed by Y = 1 − P ,
with P representing the total weight of localized states.
This means that the efficiency of the cell depends criti-
cally on the existence or absence of the bound states as
illustrated bellow. For the PV devices in the transitory
regime, we consider the total charges injected in a bind
(in units of the electron charge) Q

Q =

∞∫
0

dt 〈ψ(t)| Â |ψ(t)〉 (14)

where Â is the current operator on that bind and

|ψ(t)〉 = U(t) |ψ〉 ; U(t) = e−iHt/�, (15)

where |ψ〉 is the electron-hole pair wave function and U(t)
is the time evolution operator.

Through introducing the total electron number Qe or
hole number Qh injected in the contacts one obtains

Y = Qe = Qh. (16)

Interestingly, through the Fourier transform between the
time and energy domain one obtains an expression for the
charge separation yield in the transitory regime the same
as equation (13).

3 Numerical method

3.1 Recursion method

In this section, we discuss the recursion method, which
presents a central role in the computation of the scattered
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Fig. 4. Propagation of different orders of recursion wave-vectors. The coupling parameters are Je = Jh = 0.3 eV, Ce = 0.2 eV
and Ch = 0.15 eV.

state and fluxes for a given Hamiltonian. An initial-state
vector, on whose projection one going to compute a den-
sity of states, is selected. One can build a new basis set
and a series of recursion coefficients starting from the men-
tioned initial state. In this new basis, the Hamiltonian be-
comes tri-diagonal and the recursion coefficients are the
matrix elements of the Hamiltonian [25–28].

We consider a system described by a tight-binding
Hamiltonian H . To a given normalized state |ψ0〉 we can
always associate a recursion basis which is constructed
by a Schmidt orthogonalization procedure starting from
the set of states |ψ0〉, H |ψ0〉, H2 |ψ0〉, . . . , Hn−1 |ψ0〉, . . .
Let us consider H |ψ0〉 and decompose it into two compo-
nents: first component parallel to |ψ0〉 and the second one
orthogonal to |ψ0〉. Therefore, we can write

H |ψ0〉 = a0|ψ0〉 + b1|ψ1〉. (17)

In the next step, we consider H |ψ1〉 which can be decom-
posed into a component parallel to the space spanned by
|ψ0〉, |ψ1〉 and a component orthogonal to this space. We
obtain

H |ψ1〉 = a1|ψ1〉 + b1|ψ0〉 + b2|ψ2〉. (18)

The process can be repeated and leads to the construction
of a set of states |ψn〉 which are orthonormal and satisfy
the below equation

H |ψn〉 = an|ψn〉 + bn−1|ψn−1〉 + bn|ψn+1〉. (19)

The an and bn parameters are called recursion coefficients
and |ψn〉 are the recursion wave vectors. At any step n,
the recursion coefficient an is determined by 〈ψn|H |ψn〉

which is a real number. Then, the recursion coefficient
bn and recursion wave vector |ψn+1〉 are obtained by the
normalization condition for |ψn+1〉 and the choice of a real
positive bn. An important property of the states |ψn〉 is
that they spread progressively from an initial state. In
Figure 4, the propagation of recursion wave vectors on a
square lattice is shown.

The significant achievement of the recursion method is
that the Hamiltonian H on the basis (|ψ0〉, |ψ1〉, . . . ) can
be written in a tri-diagonal form

Ĥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 b0 0 . . .

b0 a1 b1 . . .

0 b1 a2 b2 . . .

...
. . . . . . . . . . . .

an bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

Therefore, Gr
00(E) can be written in the following form

Gr
00(E) =

1

E + iΓR

2 − a0 − b21

E−a1− b22

E−a2−
.. .

(21)

and in a shortened notation

Gr
00(E) =

1
E + iΓR

2 −Σ0(E)
(22)

where, Σ0(E) is the self-energy as pointed previously.
Finally, let us recall that the recursion method allows

the computation of the scattered wave function and of all
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Fig. 5. LDOS as a function of the energy of the absorbed photon under the influence of short-range electron-hole interaction.

fluxes. Technically, one can compute |Ψp(E)〉 based on the
product of recursion coefficients.

4 Results and discussions

4.1 Study of occurrence of bound states
under the influence of short-range
electron-hole interaction

In order to analyze the cell performance we consider
the spectral information and in particular, the local DOS
on site (0,0). For the numerical calculation, parameters
Δ = 2 eV, Je = Jh = 0.3 eV, Ce = Ch = 0.3 eV have
been used. With the chosen parameters the electron-hole
pair energy continuum lies between 0.8 and 3.2 eV.

In Figure 5, the LDOS under the influence of short-
range Coulomb interaction conditions is plotted as a func-
tion of the absorbed photon energy. As can be seen for
small values of |U |, there is a single peak which becomes
narrower as |U | increases and all weight of the DOS is in
the continuum part (left panel). As |U | increases, the DOS
line-shape splits into two parts, a part inside the energy
continuum and a sharp peak outside the energy continuum
(right panel).

The narrow peak outside the continuum is called exci-
tonic state, which suppresses the charge carrier injection
to the energy continuum and expedite the charge carri-
ers recombination. The creation of excitonic state can be
understood in full details through the discussion given in
reference [21], which shows that there is a critical interac-
tion energy to create localized states. Mathematically an
excitonic peak appears at a given energy E outside the
energy continuum, if

E −Σ0(E) = 0. (23)

Indeed excitonic states are the poles of the retarded Gree’s
function. It is expected that in a bound-state the charge
carriers will ultimately recombine since they cannot es-
cape into the leads. The appearance of excitonic states
decreases the number of charge carriers arrived at the elec-
trodes and therefore lowers the photocell yield.

For the local interacting electron-hole pair, the depen-
dence of the yield Y on the electron-hole interaction U
for two different recombination rate (ΓR) and different set
of coupling parameters (C = Ce = Ch) is investigated
in Figure 6. As can be seen, in all cases, for small values
of interaction energy, the yield remains 1 for ΓR = 0. As
|U |increase, the yield decreases. This behaviour can be un-
derstood based on the information provided in Figure 5.
For larger values of |U |, the charge carriers will stay on
the molecule (or interface) to form a localized state be-
cause their energy does not lie in the energy continuum
of the contacts. Furthermore, for large values of the cou-
pling parameters (C), charge carriers will transfer more
efficiently to the evacuation channels and hence the cell
remains efficient over a wider range of the recombination
parameter ΓR.

4.2 Occurrence of bound states under the influence
of long-range Coulomb interaction

Now we turn to the case of the long-range electron-hole
interaction and examine its impact on the spectral proper-
ties (see Fig. 7). We find that under the influence of long-
range electron-hole interaction a series of excitonic peaks
appears below the lower band of energy continuum. This
is expected, as it is known that the long-range Coulomb
attraction creates localized states. In this figure, all the ex-
citonic peaks close to lower band edge cannot be resolved.

We see that, as the interaction strength increases, the
weight of localized states increases as well. Therefore,
under the influence of long-range interaction less charge
carriers exit through the contacts because of localized-
state formation and hence it is expected that the yield
decreases.

4.3 Occurrence of bound states under the influence
of lattice distortion and polaron formation

The charge carrier mobility can be influenced by the
electron-phonon vibration interaction and therefore in the
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Fig. 6. Yield of a two-level photovoltaic cell as a function of interaction energy (U) for different recombination rate (ΓR) and
coupling parameter (C).

Fig. 7. LDOS as a function of the energy of the absorbed photon under the influence of long-range electron-hole interaction.

strong coupling regime, the charge carrier transport can be
described by a polaron hopping from molecule to molecule
where a polaron is a freely moving charge (electron or
hole), surrounded by virtual cloud of phonons [29].

To have a clear idea, suppose in a D-A system, the
exciton arrives at the interface at time t = 0 coming from
the donor side. After the exciton dissociation at the D-
A interface, the electron either will be recombined with
the hole or will move through a set of acceptor sites. To
investigate the effects of coupling to the phonon modes, we
suppose that electron on each acceptor site can be coupled
to one single phonon mode. The model considered here is
exactly that described in [29].

Figure 8 represents the typical electronic structure of
such a system far from interface (left panel) and on the
interface (right panel). Based on the Holstein Hamiltonian
model β represents the strength of coupling to the phonon
modes and ε is the LUMO-LUMO offset [29]. As can be
seen from the left panel, the electronic structure is com-

posed of a series of bands called polaronic bands and an
energy gap separates the different bands. Based on the
right panel, for a given ε the electronic structure may con-
tain the energy states on the allowed polaronic bands as
well localized states in the energy gap. The charge carriers
lying in a polaronic band evacuate and arrive at the elec-
trodes. On the other hand, the charge carriers localized in
the bound state in the gap recombine quickly and cannot
lead to photovoltaic current

5 Conclusions

To conclude, we have presented a non-equilibrium
quantum formalism, which allows describing the funda-
mental phenomena related to charge separation or charge
recombination after the absorption of a photon. This for-
malism should be useful in particular for nanostructured
photovoltaic cells.
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Fig. 8. Electronic structure as a function of the energy under the influence of coupling to the phonon modes. (Left panel) Far
from the D-A interface. (Right panel) On the D-A interface. The hopping integral on the linear chain is J = 1 eV [29].

In this paper, we considered the simplest case of a
two-level quantum system This simple study illustrates
the fact that localized excitonic or polaronic states can
play a central role in the limitation of the quantum yield.
This study represents that the formalism can be applied
to include in particular the role of electron-hole interac-
tion and the role of phonon on exciton propagation and
charge separation.

The authors would like to thank Simone Fratini and Kevin-
Davis Richler for fruitful discussions.
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