Abdalla Swikir 
  
Antoine Girard 
email: antoine.girard@l2s.centralesupelec.fr.
  
Majid Zamani 
email: zamani@tum.de
  
  
  
From dissipativity theory to compositional synthesis of symbolic models

come   L'archive ouverte pluridisciplinaire

From dissipativity theory to compositional synthesis of symbolic models Abdalla Swikir, Antoine Girard, and Majid Zamani Abstract-In this work, we introduce a compositional framework for the construction of finite abstractions (a.k.a. symbolic models) of interconnected discrete-time control systems. The compositional scheme is based on the joint dissipativity-type properties of discrete-time control subsystems and their finite abstractions. In the first part of the paper, we use a notion of so-called storage function as a relation between each subsystem and its finite abstraction to construct compositionally a notion of so-called simulation function as a relation between interconnected finite abstractions and that of control systems. The derived simulation function is used to quantify the error between the output behavior of the overall interconnected concrete system and that of its finite abstraction. In the second part of the paper, we propose a technique to construct finite abstractions together with their corresponding storage functions for a class of discrete-time control systems under some incremental passivity property. We show that if a discrete-time control system is so-called incrementally passivable, then one can construct its finite abstraction by a suitable quantization of the input and state sets together with the corresponding storage function. Finally, the proposed results are illustrated by constructing a finite abstraction of a network of linear discretetime control systems and its corresponding simulation function in a compositional way. The compositional conditions in this example do not impose any restriction on the gains or the number of the subsystems which, in particular, elucidates the effectiveness of dissipativity-type compositional reasoning for networks of systems.

I. INTRODUCTION

In the recent years, symbolic models were introduced as a method to reduce the complexity of controller synthesis in particular for enforcing complex logical properties. Symbolic models (a.k.a. finite abstractions) are abstract descriptions of the continuous-space control systems in which each discrete state corresponds to a collection of continuous states of the original system. Since symbolic models are finite, algorithmic approaches from computer science are applicable to synthesize controllers enforcing some complex properties including those expressed as linear temporal logic formulae.

Large-scale interconnected control systems, e.g., biological networks, power networks, and manufacturing systems, are intrinsically difficult to analyze and control and it is very challenging to design a controller to achieve some complex logical specifications over those interconnected systems. An appropriate technique to overcome this challenge is to first treat every subsystem individually and build an abstraction that approximates the behaviors of the corresponding concrete subsystem. Thereafter, one can establish a compositional framework to construct abstractions of the network of control subsystems and use them as a replacement in the controller design process. Recently, there have been several results on the compositional construction of finite abstractions of networks of linear and nonlinear control systems in [START_REF] Tazaki | Bisimilar finite abstractions of interconnected systems[END_REF], [START_REF] Pola | Symbolic models for networks of control systems[END_REF]. Recent work on the compositional construction of infinite abstractions of interconnected nonlinear control systems can be found in [START_REF] Rungger | Compositional construction of approximate abstractions[END_REF], [START_REF] Rungger | Compositional construction of approximate abstractions of interconnected control systems[END_REF]. The results in [START_REF] Tazaki | Bisimilar finite abstractions of interconnected systems[END_REF]- [START_REF] Rungger | Compositional construction of approximate abstractions of interconnected control systems[END_REF] use the small-gain type conditions to facilitate the compositional construction of (in)finite abstractions. However, those small-gain type conditions depend essentially on the size of the network graph and can be violated as the number of subsystems increases [START_REF] Das | Some new bounds on the spectral radius of graphs[END_REF]. The recent results in [START_REF] Zamani | Compositional abstraction for networks of control systems: A dissipativity approach[END_REF] propose a compositional framework for the construction of infinite abstractions of networks of contiunous-time control systems using dissipativity theory [START_REF] Arcak | Networks of dissipative systems[END_REF]. The proposed compositionality conditions in [START_REF] Zamani | Compositional abstraction for networks of control systems: A dissipativity approach[END_REF] can enjoy specific interconnection topologies and provide scale-free compositional abstractions for large-scale control systems.

In this work, we introduce a compositional approach for the construction of finite abstractions of interconnected discrete-time control systems using techniques from dissipativity theory [START_REF] Arcak | Networks of dissipative systems[END_REF]. First, we introduce a notion of so-called storage function inspired by the one introduced in [START_REF] Zamani | Compositional abstraction for networks of control systems: A dissipativity approach[END_REF] and use it to quantify the joint dissipativity-type properties of discrete-time control subsystems and their finite abstractions. Given storage functions between subsystems and their finite abstractions, we drive compositional conditions under which one can construct a so-called simulation function, similar to the one introduced in [START_REF] Girard | Hierarchical control system design using approximate simulation[END_REF], as a relation between the interconnected abstractions and the concrete network of control subsystems. The existence of such a simulation function ensures that the output behavior of the concrete system is quantitatively approximated by the corresponding one of its finite abstraction. In addition, we provide a procedure for the construction of finite abstractions together with their corresponding storage functions for a class of discrete-time control systems satisfying some incremental passivity property. Finally, we demonstrate the effectiveness of our results on an interconnected discrete-time linear control system in which the compositionality condition is always satisfied independently of the number of subsystems.

II. NOTATION AND PRELIMINARIES A. Notation

We denote by R, Z, and N the set of real numbers, integers, and non-negative integers, respectively. These symbols are annotated with subscripts to restrict them in the obvious way, e.g., R >0 denotes the positive real numbers. 

in N. Given N ∈ N ≥1 , vectors ν i ∈ R ni , n i ∈ N ≥1 , and i ∈ [1; N ], we use ν = [ν 1 ; . . . ; ν N ] to denote the vector in R N with N = i n i consisting of the concatenation of vectors ν i . Note that given any ν ∈ R n , ν ≥ 0 iff ν i ≥ 0 for any i ∈ [1; n].
We denote by diag(M 1 , . . . , M N ) the block diagonal matrix with diagonal matrix entries M 1 , . . . , M N . We denote the identity and zero matrices in R n×n by I n and 0 n , respectively. Given a function f : N → R n , the supremum of f is denoted by f ∞ ; we recall that f ∞ := sup{ f (k) , k ≥ 0}, where • denote the infinity norm. Given a function f : R n → R m and x ∈ R m , we use f ≡ x to denote that f (x) = x for all x ∈ R n . If x is the zero vector, we simply write f ≡ 0. Given a set A and matrix P of appropriate dimension, P A := {P a|a ∈ A}. The identity map on a set A in denoted by 1 A . The closed ball centered at x ∈ R n with radius ε is defined by

B ε (x) = {y ∈ R n | x -y ≤ ε}. For any set A ⊆ R n of the form of finite union of boxes, e.g., A = M j=1 A j for some M ∈ N, where A j = n i=1 [c j i , d j i ] ⊆ R n with c j i < d j i
, and positive constant η ≤ span(A), where span(A) = min j=1,...,M η Aj and η Aj = min{|d j

1 -c j 1 |, . . . , |d j n -c j n |}, define [A] η = {a ∈ A | a i = k i η, k i ∈ Z, i = 1, . . . , n}.
The set [A] η will be used as a finite approximation of the set A with precision η. Note that [A] η = ∅ for any η ≤ span(A). We denote by | • | the cardinality of a given set and by ∅ the empty set. We use notations K, K ∞ , and KL to denote the different classes of comparison functions, as follows: 

K = {α : R ≥0 → R ≥0 | α is continuous, strictly increasing, and α(0) = 0}; K ∞ = {α ∈ K| lim r→∞ α(r) = ∞}; a function β : R ≥0 ×N → R ≥0 is a KL function if, for each fixed k ≥ 0, the function β(•, k) is a K function,

B. Discrete-time control systems

In this paper we study discrete-time control systems of the following form.

Definition 1: A discrete-time control system Σ is defined by the tuple

Σ = (X, U, W, U, W, f, Y 1 , Y 2 , h 1 , h 2 ), (1) 
where X, U, W, Y 1 , and Y 2 are the state set, external input set, internal input set, external output set, and internal output set, respectively, and are assumed to be subsets of normed vector spaces with appropriate finite dimensions. Sets U and W denote the set of all bounded input functions ν : N → U and ω : N → W, respectively. The set-valued map f : X × U×W ⇒ X is called the transition function [9], h 1 : X → Y 1 is the external output map, and h 2 : X → Y 2 is the internal output map. The discrete-time conrol system Σ is described by difference inclusions of the form Σ :

   x(k + 1) ∈ f (x(k), ν(k), ω(k)) y 1 (k) = h 1 (x(k)) y 2 (k) = h 2 (x(k)), (2) 
where x : N → X,

y 1 : N → Y 1 , y 2 : N → Y 2 , ν ∈ U,
and ω ∈ W are the state signal, external output signal, internal output signal, external input signal, and internal input signal, respectively.

System Σ = (X, U, W, U, W, f, Y 1 , Y 2 , h 1 , h 2 ) is called deterministic if |f (x, u, w)| ≤ 1 ∀x ∈ X, ∀u ∈ U, ∀w ∈ W, and non-deterministic otherwise. System Σ is called blocking if ∃x ∈ X, ∀u ∈ U, ∀w ∈ W such that |f (x, u, w)| = 0 and non-blocking if |f (x, u, w)| = 0 ∀x ∈ X, ∃u ∈ U, ∃w ∈ W.
In this paper, we only deal with non-blocking systems. System Σ is called finite if X, U, W are finite sets and infinite otherwise.

Remark 1: If Σ does not have internal inputs and outputs, Definition 1 reduces to the tuple Σ = (X, U, U, f, Y, h) and the set-valued map f becomes f : X × U ⇒ X. Correspondingly, (2) reduces to:

Σ : x(k + 1) ∈ f (x(k), ν(k)) y(k) = h(x(k)). (3) 
C. Storage and Simulation functions First, we define a notion of so-called storage function, inspired by Definition 3.1 in [START_REF] Zamani | Compositional abstraction for networks of control systems: A dissipativity approach[END_REF], which quantifies the error between systems Σ and Σ both with internal and external inputs and outputs.

Definition 2: Consider systems

Σ = (X, U, W, U, W, f, Y 1 , Y 2 , h 1 , h 2 ),
and

Σ = ( X, Û, Ŵ, Û, Ŵ, f , Ŷ1 , Ŷ2 , ĥ1 , ĥ2 ), where Ŷ1 ⊆ Y 1 . A continuous function S : X × X → R ≥0 is called a storage function from Σ to Σ if ∀x ∈ X and ∀x ∈ X one has α( h 1 (x) -ĥ1 (x) ) ≤ S(x, x), (4) 
and ∀x ∈ X, ∀x ∈ X, ∀û ∈ Û, ∃u ∈ U, ∀w ∈ W, ∀ ŵ ∈ Ŵ, ∀x d ∈ f (x, u, w), ∃x d ∈ f (x, û, ŵ) such that one gets S(x d , xd ) -S(x, x) ≤ -σ(S(x, x)) + ρ ext ( û )+ W w -Ŵ ŵ h 2 (x) -H ĥ2 (x) T X:= X 11 X 12 X 21 X 22 W w -Ŵ ŵ h 2 (x) -H ĥ2 (x) + , (5) 
for some α, σ ∈ K ∞ , ρ ext ∈ K ∞ ∪ {0}, some matrices W, Ŵ , H of appropriate dimensions, some symmetric matrix X of appropriate dimension with conformal block partitions X ij , i, j ∈ [1; 2], and some ∈ R ≥0 . Here, system Σ is called an abstraction of Σ.

Note that Σ may be finite or infinite depending on cardinalities of sets X, Û, Ŵ. Now, we define a notion of so-called simulation function, inspired by Definition 1 in [START_REF] Girard | Hierarchical control system design using approximate simulation[END_REF], which quantifies the error between systems Σ and Σ both without internal inputs and outputs. Definition 3: Consider systems Σ = (X, U, U, f, Y, h) and Σ = ( X, Û, Û, f , Ŷ, ĥ). A continuous function V :

X × X → R ≥0 is called a simulation function from Σ to Σ if ∀x ∈ X and ∀x ∈ X one has α( h(x) -ĥ(x) ) ≤ V (x, x), (6) 
and ∀x ∈ X, ∀x ∈ X, ∀û ∈ Û, ∃u ∈ U, ∀x d ∈ f (x, u), ∃x d ∈ f (x, û) such that one gets

V (x d , xd ) -V (x, x) ≤ -σ(V (x, x)) + ρ ext ( û ) + ε, (7) 
for some α, σ ∈ K ∞ , ρ ext ∈ K ∞ ∪ {0}, and some ε ∈ R ≥0 . We say that a system Σ is approximately alternatingly simulated by a system Σ or a system Σ approximately alternatingly simulates a system Σ, denoted by Σ AS Σ, if there exists a simulation function from Σ to Σ as in Definition 3.

In general the notions of storage functions in Definition 2 and simulation functions in Definition 3 are not comparable. The former is established for systems with internal inputs and outputs while the latter is established only for systems without internal inputs and outputs. One can simply verify that both notions coincide for systems without internal inputs and outputs.

Before we provide our first main result, we recall Lemma B.1 in [START_REF] Jiang | Input-to-state stability for discrete-time nonlinear systems[END_REF] which is used later to show some of the results.

Lemma 1: For any function σ ∈ K ∞ , there exists a function σ ∈ K ∞ satisfying σ(s) ≤ σ(s) for all s ∈ R ≥0 , and 1 I d -σ ∈ K. The next theorem shows the importance of the existence of a simulation function.

Theorem 1: Consider systems Σ = (X, U, U, f, Y, h) and Σ = ( X, Û, Û, f , Ŷ, ĥ). Suppose V is a simulation function from Σ to Σ. Then there exist a constant ϕ ∈ R ≥0 , functions γ ext ∈ K ∞ ∪ {0} and λ ∈ K ∞ , where λ(s) < s ∀s ∈ R ≥0 , such that for any x ∈ X, x ∈ X, û ∈ Û, there exits u ∈ U so that for any andψ(σ(c)) = ρ ext ( û ) + ε, and by using [START_REF] Arcak | Networks of dissipative systems[END_REF], one obtains

x d ∈ f (x, u) in Σ there exists xd ∈ f (x, û) in Σ such that α( h(x d ) -ĥ(x d ) ) ≤V (x d , xd ) (8) ≤ max{λ(V (x, x)), γ ext ( û ) + ϕ}. Proof: Let ψ be a K ∞ function such that I d -ψ ∈ K ∞ and define c = σ-1 (ψ -1 )(ρ ext ( û ) + ε), where σ is given as in Lemma 1 for function σ appearing in Definition 3. Let D = {(x, x) ∈ X × X|V (x, x) ≤ c}. First, assume (x, x) ∈ D. Then V (x, x) ≤ c, that is, ψ(σ(V (x, x) ≤ ρ ext ( û ) + ε. Since (I d -σ) ∈ K,
V (x d , xd ) ≤ V (x, x) -σ(V (x, x)) + ρ ext ( û ) + ε ≤ (I d -σ)(V (x, x))) + ρ ext ( û ) + ε ≤ (I d -σ)(c) + ψ(σ(c)) ≤ c -σ(c) + ψ(σ(c)) ≤ -(I d -ψ)(σ(c)) + c ≤ c,
for all x d ∈ f (x, u) and some xd ∈ f (x, û). Using the definition of c, we have the following inequality

V (x d , xd ) ≤ σ-1 (ψ -1 (ρ ext ( û ) + ε) ≤ γ ext ( û ) + ϕ, (9) 
where

γ ext (s) = σ-1 (ψ -1 (2ρ ext (s))) ∀s ∈ R ≥0 , and ϕ = σ-1 (ψ -1 (2ε)). Now assume (x, x) / ∈ D. Then ψ(σ(V (x, x))) ≥ ρ ext ( û ) + ε, and one has V (x d , xd ) ≤ V (x, x) -σ(V (x, x)) + ψ(σ(V (x, x)) ≤ V (x, x) -(I d -ψ)(σ(V (x, x))) ≤ -ψ(V (x, x)) + V (x, x) ≤ (I d -ψ)(V (x, x)), (10) 
for all x d ∈ f (x, u) and some xd ∈ f (x, û), where ψ(s) := ψ)(s) < s ∀s ∈ R ≥0 . From [START_REF] Jiang | Input-to-state stability for discrete-time nonlinear systems[END_REF] and by defining λ(s) = (I d -ψ)(s) ∀s ∈ R ≥0 , one gets

(I d -ψ)(σ(s)) ∀s ∈ R ≥0 . Observe that (I d -ψ) is a K ∞ function since I d -
V (x d , xd ) ≤ λ(V (x, x)). (11) 
Combining ( 9) and ( 11), and by using ( 6), one gets

α( h(x d ) -ĥ(x d ) ) ≤ V (x d , xd ) ≤ max{λ(V (x, x)), γ ext ( û ) + ϕ},
which completes the proof. Remark 2: Assume that ∃v ∈ R >0 such that û ≤ v ∀û ∈ Û. Then Theorem 1 implies that the relation R ⊆ X× X defined by R = {(x, x) ∈ X × X|V (x, x) ≤ γ ext (v) + ϕ} is an ε-approximate alternating simulation relation, defined in [START_REF] Tabuada | Verification and Control of Hybrid Systems[END_REF], from Σ to Σ with ε = α -1 (γ ext (v) + ϕ).

III. COMPOSITIONALITY RESULT

In this section, we analyze networks of discrete-time control systems and show how to construct a simulation function from a network of their abstractions to the concrete network by using storage functions of the subsystems. The definition of the network of discrete-time control systems is based on the notion of interconnected systems described in [START_REF] Arcak | Networks of dissipative systems[END_REF].

A. Interconnected systems

Here, we define the interconnected discrete-time control system as the following.

Definition 4: 

Consider N ∈ N ≥1 discrete-time control subsystems Σ i = (X i , U i , W i , U i , W i , f i , Y 1i , Y 2i , h 1i , h 2i ), i ∈ [1; N ]
. ; x N ] | x i ∈ f i (x i , u i , w i ) ∀i ∈ [1; N ]}, h (x) 

B. Composing simulation functions from storage functions

We assume that we are given N control subsystems

Σ i = (X i , U i , W i , U i , W i , f i , Y 1i , Y 2i , h 1i , h 2i
) together with their abstractions Σi = ( Xi , Ûi , Ŵi , Ûi , Ŵi , fi , Ŷ1i , Ŷ2i , ĥ1i , ĥ2i ), and storage functions S i from Σi to Σ i . We use

α i , σ i , ρ iext , H i , W i , Ŵi , X i , X 11 i , X 12 
i , X 21 i , X 22 i , and i to denote the corresponding functions, matrices, and their corresponding conformal block partitions, and constants appearing in Definition 2.

The next theorem provides a compositional approach on the construction of abstractions of networks of control subsystems and that of the corresponding simulation function.

Theorem 2: Consider the interconnected control system Σ = I(Σ 1 , . . . , Σ N ) induced by N ∈ N ≥1 control subsystems Σ i and coupling matrix M . Suppose each control subsystem Σ i admits an abstraction Σi with the corresponding storage function S i . If there exist µ i ≥ 0, i ∈ [1; N ], and matrix M of appropriate dimension such that the matrix (in)equality and inclusion

W M I q T X(µ 1 X 1 , . . . , µ N X N ) W M I q 0, (12) 
W M H = Ŵ M , (13) 
M N i=1 Ŷ2i ⊆ N i=1 Ŵi , (14) 
are satisfied, where

W := diag(W 1 , . . . , W N ), Ŵ := diag( Ŵ1 , . . . , ŴN ) H := diag(H 1 , . . . , H N ), (15) 
X(µ 1 X 1 , . . . , µ N X N ) :=          µ 1 X 11 1 µ 1 X 12 1 . . . . . . µ N X 11 N µ N X 12 N µ 1 X 21 1 µ 1 X 22 1 . . . . . . µ N X 21 N µ N X 22 N          , ( 16 
)
and q is the number of rows in H, then

V (x, x) := N i=1 µ i S i (x i , xi )
is a simulation function from Σ = I( Σ1 , . . . , ΣN ), with the coupling matrix M , to Σ.

Proof: First we show that inequality (6) holds for some K ∞ function α. For any x = [x 1 ; . . . ; x N ] ∈ X and x = [x 1 ; . . . ; xN ] ∈ X, one gets:

h(x)-ĥ(x) = [h 11 (x 1 ); . . . ; h 1N (x N )] -[ ĥ11 (x 1 ); . . . ; ĥ1N (x N )] ≤ N i=1 h 1i (x i ) -ĥ1i (x i ) ≤ N i=1 α -1 i (S i (x i , xi )) ≤α V (x, x) ,
where α is a K ∞ function defined as 

α(s) = max ŝ≥0 N i=1 α -1 i (s i )|µ T ŝ = s , where ŝ = [s 1 ; . . . ; s N ] ∈ R N and µ = [µ 1 ; . . . ; µ N ]. By defining the K ∞ function α(s) = α -1 (s), ∀s ∈ R ≥0 , one obtains α( h(x) -ĥ(x) ) ≤ V (x,
W i w i -Ŵi ŵi h 2i (x i ) -H i ĥ2i (x i ) T Xi:= X 11 i X 12 i X 21 i X 22 i W i w i -Ŵi ŵi h 2i (x i ) -H i ĥ2i (x i ) + i . (17) 
Using conditions ( 12), [START_REF] Godsil | Algebraic Graph Theory[END_REF], and the definition of matrices W , Ŵ , H, and X in (15) and ( 16), the inequality (17) can be rewritten as Remark that condition (14) ensures that the interconnection

V (x d , xd ) -V (x, x) ≤ N i=1 µ i -σ i (S i (x i , xi )) + N i=1 µ i ρ iext ( ûi ) + N i=1 µ i i +           W    w 1 . . .

  We denote the closed, open and half-open intervals in R by [a, b], (a, b), [a, b), and (a, b], respectively. For a, b ∈ N and a ≤ b, we use [a; b], (a; b), [a; b), and (a; b] to denote the corresponding intervals

  and for each fixed r = 0 the function β(r, •) is decreasing and β(r, k) → 0 as k → ∞.

  ψ and σ are K ∞ functions and (I d -1 Here, I d ∈ K∞ denotes the identity function.

  , and a static matrix M of an appropriate dimension defining the coupling of these subsystems, where2 M N i=1 Y 2i ⊆ N i=1 W i . The interconnected discretetime control system Σ = (X, U, U, f, Y, h), denoted by I(Σ 1 , . . . , Σ N ), follows by X = N i=1 X i , U = N i=1 U i , Y = N i=1 Y 1i, and maps f (x, u):= {[x 1 ; . .

  := [h 11 (x 1 ); . . . ; h 1N (x N )], where u = [u 1 ; . . . ; u N ], x = [x 1 ; . . . ; x N ] and with the internal variables constrained by [w 1 ; . . . ; w N ] = M [h 21 (x 1 ); . . . ; h 2N (x N )].

hh(x 1 )hµ

 1 21 (x 1 ) -H 1 ĥ21 (x 1 ) . . .h 2N (x N ) -H N ĥ2N (x N ) 1 X 1 , . . . , µ N X N ) 21 (x 1 ) -H 1 ĥ21 (x 1 ). . .h 2N (x N ) -H N ĥ2N (x N ) σ i (S i (x i , xi )) + -H 1 ĥ21 (x 1 ) . . . h 2N (x N ) -H N ĥ2N (x N ) 1 X 1 , . . . , µ N X N ) 21 (x 1 ) -H 1 ĥ21 (x 1 ) . . . h 2N (x N ) -H N ĥ2N (x N ) i -σ i (S i (x i , xi )) + N i=1 µ i ρ iext ( ûi ) + N i=1 µ i i .

  Σi with the internal inputs given by [w 1 ; . . . ; w N ] = M [h 21 (x 1 ); . . . ; h 2N (x N )] and [ ŵ1 ; . . . ; ŵN ] = M [ ĥ21 (x 1 ); . . . ; ĥ2N (x N )]. We derive the following inequalityV (x d , xd )-V (x, x) S i (x di , xdi ) -S i (x i , xi ) -σ i (S i (x i , xi )) + ρ iext ( ûi )+

	N
	= µ i ≤ i=1 N µ i
	i=1

x), satisfying inequality

[START_REF] Zamani | Compositional abstraction for networks of control systems: A dissipativity approach[END_REF]

. Now we show that inequality

[START_REF] Arcak | Networks of dissipative systems[END_REF] 

holds as well. Consider any x = [x 1 ; . . . ; x N ] ∈ X, x = [x 1 ; . . . ; xN ] ∈ X, and û = [û 1 ; . . . ; ûN ] ∈ Û. For any i ∈ [1; N ], there exists u i ∈ U i , consequently, a vector u = [u 1 ; . . . ; u N ] ∈ U such that for any x d ∈ f (x, u) there exists xd ∈ f (x, û) satisfying (5) for each pair of subsystems Σ i and

This condition is required to have a well-defined interconnection.

This work was supported in part by the TUM International Graduate School of Science and Engineering (IGSSE).

where σ ∈ K ∞ and ρ ext ∈ K ∞ ∪ {0}, we readily have V (x d , xd ) -V (x, x) ≤ -σ (V (x, x)) + ρ ext ( û ) + ε, which satisfies inequality [START_REF] Arcak | Networks of dissipative systems[END_REF]. Hence, V is a simulation function from Σ to Σ.

IV. CONSTRUCTION OF SYMBOLIC MODELS

In the previous sections, Σ and Σ were considered as general discrete-time control systems, deterministic or nondeterministic, finite or infinite, that can be related to each other through a storage function or a simulation function when Σ and Σ are networks of control subsystems. In this section, we consider Σ as an infinite, deterministic, control system and Σ as its finite abstraction. In addition, the storage function from Σ to Σ is established under the assumption that the original discrete-time control system Σ is so-called incrementally passivable.

In order to show our next main result we introduce the following definition.

Definition 5: Control system

is called incrementally passivable if there exist functions H : X → U and G : X×X → R ≥0 such that ∀x, x ∈ X, ∀u ∈ U, ∀w, w ∈ W, the inequalities:

and

hold for some α, κ ∈ K ∞ , and matrix X of appropriate dimension.

Remark 3: Note that any stabilizable linear control system is incrementally passivable as in Definition 5. Moreover, any incrementally input-to-state stabilizable control system as in Definition 6 with ρ int (r) = cr 2 , for some c ∈ R >0 and any r ∈ R ≥0 , is also incrementally passivable.

Definition 6: Control system

is called incrementally input-to-state stabilizable with respect to the internal input if there exist functions H : X → U and V : X × X → R ≥0 such that ∀x, x ∈ X, ∀u ∈ U, ∀w, w ∈ W, the inequalities:

and

hold for some α, α, κ ∈ K ∞ , and ρ int ∈ K ∞ . We refer interested readers to [START_REF] Tran | Incremental stability properties for discrete-time systems[END_REF] for detailed information on incremental stability of discrete-time control systems. Now, we construct a finite abstraction Σ of an incrementally passivable control system Σ.

Definition 7: Given an incrementally passivable control system Σ = (X, U, W, U, W, f, X, Y 2 , 1 X, , h 2 ), where X, U, W are assumed to be finite unions of boxes, one can construct a finite system

where:

• Ŵ is an appropriate finite internal input set satisfying condition (14) in the compositional setting (cf. the example section). Now, we present one of the main results of the paper establishing the relation between Σ and Σ, introduced above, via the notion of storage function.

Theorem 3: Let Σ be an incrementally passivable control system as in Definition 5 and Σ be a finite system as in Definition 7. Assume that there exists a function γ ∈ K ∞ such that for any x, x , x ∈ X one has

for G as in Definition 5. Then G is a storage function from Σ to Σ. Proof: Since system Σ is incrementally passivable, from (18), ∀x ∈ X and ∀x ∈ X, we have

for any xd ∈ f (x, û, ŵ). Now, from Definition 7, the above inequality reduces to

Note that by (19) and since h 2 = ĥ2 , we get

.

It follows that ∀x ∈ X, ∀x ∈ X, ∀û ∈ Û, and ∀w ∈ W, ∀ ŵ ∈ Ŵ, one obtains

for any xd ∈ f (x, û, ŵ), satisfying ( 5) with = γ(η/2), u = H(x) + û, σ = κ, ρ ext ≡ 0, W, Ŵ , H are identity matrices of appropriate dimensions. Hence, G is a storage function from Σ to Σ.

V. EXAMPLE Consider a linear control system Σ described by

where A = e -Lτ for some matrix L ∈ R n×n and constant τ ∈ R >0 . Assume L is the Laplacian matrix [START_REF] Godsil | Algebraic Graph Theory[END_REF] of an undirected graph. We partition x(k) as

one can readily verify that Σ = I(Σ 1 , . . . , Σ N ) where the coupling matrix M is given by M = A -I n . Consider systems Σi constructed as in Definition 7. One can readily verify that, for any i ∈ [1; N ], conditions (18) and (19) are satisfied with

and

Hence,

Now, we look at Σ = I( Σ1 , . . . , ΣN ) with a coupling matrix M satisfying condition (13) as follows:

Choosing µ 1 = • • • = µ N = 1 and using X i in (24), matrix X in (16) reduces to

and condition (12) reduces to

which always holds without any restrictions on the number of the subsystems. In order to show the above inequality, we used A T = A 0, A-I n 0, and 2(1-λ)I n +A-I n 0. Note that by choosing finite internal input sets Ŵi of Σi in such a way that

, where η i is the state set quantization parameter of abstraction Σi and γ i is the K ∞ function satisfying (23) for G i .

VI. CONCLUSION

In this paper, we proposed a compositional framework for the construction of finite abstractions (a.k.a. symbolic models) of interconnected discrete-time control systems. First, we used a notion of so-called storage functions in order to construct compositionally a notion of so-called simulation functions that is used to quantify the error between the output behavior of the overall interconnected concrete system and the one of its finite abstraction. Furthermore, we provided an approach to construct finite abstractions together with their corresponding storage functions for a class of discrete-time control systems under some incremental passivity property. Finally, we demonstrated the effectiveness of the proposed results by constructing a finite abstraction of a network of linear discrete-time control systems and its corresponding simulation function in a compositional fashion and independently of the number of subsystems.