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Channel state information is crucial to achieving the capacity of multiantenna (MIMO) wireless communication systems. It requires estimating the channel matrix. This estimation task is studied, considering a sparse physical channel model, as well as a general measurement model taking into account hybrid architectures. The contribution is twofold. First, the Cramér-Rao bound in this context is derived. Second, interpretation of the Fisher Information Matrix structure allows to assess the role of system parameters, as well as to propose asymptotically optimal and computationally efficient estimation algorithms.

INTRODUCTION

Multiple-Input Multiple-Output (MIMO) wireless communication systems allow for a dramatic increase in channel capacity, by adding the spatial dimension to the classical time and frequency ones [START_REF] Telatar | Capacity of multi-antenna gaussian channels[END_REF][START_REF] Tse | Fundamentals of wireless communication[END_REF]. This is done by sampling space with several antenna elements, forming antenna arrays both at the transmitter (with nt antennas) and receiver (with nr antennas). Capacity gains over single antenna systems are at most proportional to min(nr,nt).

Millimeter wavelengths have recently appeared as a viable solution for the fifth generation (5G) wireless communication systems [START_REF] Theodore S Rappaport | Millimeter wave mobile communications for 5g cellular: It will work![END_REF][START_REF] Swindlehurst | Millimeter-wave massive mimo: the next wireless revolution?[END_REF]. Indeed, smaller wavelengths allow to densify half-wavelength separated antennas, resulting in higher angular resolution and capacity for a given array size. This observation has given rise to the massive MIMO field, i.e. the study of systems with up to hundreds or even thousands of antennas.

Massive MIMO systems are very promising in terms of capacity. However, they pose several challenges to the research community [START_REF] Rusek | Scaling up mimo: Opportunities and challenges with very large arrays[END_REF][START_REF] Erik G Larsson | Massive mimo for next generation wireless systems[END_REF], in particular for channel estimation. Indeed, maximal capacity gains are obtained in the case of perfect knowledge of the channel state by both the transmitter and the receiver. The estimation task amounts to determine a complex gain between each transmit/receive antenna pair, the narrowband (single carrier) MIMO channel as a whole being usually represented as a complex matrix H ∈ C nr ×nt of such complex gains. Without a parametric model, the number of real parameters to estimate is thus 2nrnt, which is very large for massive MIMO systems. Contributions and organization. In this work, massive MIMO channel estimation is studied, and its performance limits are sought, as well as their dependency on key system parameters. In order to answer this question, the framework of parametric estimation [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF] is used. A physical channel model is first presented, with the general considered observation model, and the objective is precisely stated. The Cramér-Rao bound for is then derived, which bounds the variance of any unbiased estimator. Then, the interpretation of the bound allows to precisely assess the role of system design on estimation performance, as well as to propose new computationally efficient channel estimation algorithms showing asymptotic performance equivalent to classical ones based on sparse recovery.

PROBLEM FORMULATION

Notations. Matrices and vectors are denoted by bold upper-case and lower-case letters: A and a (except 3D "spatial" vectors that are denoted -→ a ); the ith column of a matrix A by: ai; its entry at the ith line and jth column by: aij or Aij. A matrix transpose, conjugate and transconjugate is denoted by: A T , A * and A H respectively. The image, rank and trace of a linear transformation represented by A are denoted: im(A), rank(A) and Tr(A) respectively. For matrices A and B, A ≥ B means that A-B is positive semidefinite. The linear span of a set of vectors A is denoted: span(A). The Kronecker product, standard vectorization and diagonalization operators are denoted by vec(•), diag(•), and ⊗ respectively. The identity matrix, the m×n matrix of zeros and ones are denoted by Id, 0m×n and 1m×n respectively. CN (µ,Σ) denotes the standard complex gaussian distribution with mean µ and covariance Σ. E(.) denotes expectation and cov(.) the covariance of its argument.

Parametric physical channel model

Consider a narrowband block fading channel between a transmitter and a receiver with respectively nt and nr antennas. It is represented by the matrix H ∈ C nr ×nt , in which hij corresponds to the channel between the jth transmit and ith receive antennas.

Classically, for MIMO systems with few antennas, i.e. when the quantity nrnt is small (up to a few dozens), estimators such as the Least Squares (LS) or the Linear Minimum Mean Squared Error (LMMSE) are used [START_REF] Biguesh | Training-based mimo channel estimation: a study of estimator tradeoffs and optimal training signals[END_REF].

However, for massive MIMO systems, the quantity 2nr nt is large (typically several hundreds), and resorting to classical estimators may become computationally intractable. In that case, a parametric model may be used. Establishing it consists in defining a set of np parameters θ (θ1,...,θn p ) T that describe the channel as H ≈ f (θ) for a given function f , where the approximation is inherent to the model structure and neglected in the sequel (considering H = f (θ)). Channel estimation then amounts to estimate the parameters θ instead of the channel matrix H directly. The parametrization is particularly useful if np ≪ 2nrnt, without harming accuracy of the channel description. Inspired by the physics of wave propagation under the plane waves assumption, it has been proposed to express the channel matrix as a sum of rank-1 matrices, each corresponding to a single physical path between transmitter and receiver [START_REF] Akbar | Deconstructing multiantenna fading channels[END_REF]. Adopting this kind of modeling and generalizing it to take into account any three-dimensional antenna array geometry, channel matrices take the form

H = P p=1 cper( --→ ur,p).et( --→ ut,p) H , (1) 
where P is the total number of considered paths (no more than a few dozens), cp ρpe jφp is the complex gain of the pth path, --→ ut,p is the unit vector corresponding to its Direction of Departure (DoD) and --→ ur,p the unit vector corresponding to its Direction of Arrival (DoA). Any unit vector -→ u is described in spherical coordinates by an azimuth angle η and an elevation angle ψ. The complex response and steering vectors er( -→ u ) ∈ C nr and et( -→ u ) ∈ C nt are defined as (ex( -→ u ))i = 1

√ nx e -j 2π λ --→ a x,i . -→ u for x ∈ {r,t}. The set { --→ ax,1,..., ---→ ax,n x } gathers the positions of the antennas with respect to the centroid of the considered array (transmit if x = t, receive if x = r). In order to lighten notations, the matrix Ax 2π λ ( --→ ax,1,... , ---→ ax,n x ) ∈ R 3×nx is introduced. It simplifies the steering/response vector expression to ex( -→ u ) = 1

√ nx e -jA T x -→ u , where the exponential function is applied component-wise. In order to further lighten notations, the pth atomic channel is defined as Hp cper( --→ ur,p).et( --→ ut,p) H , and its vectorized version hp vec(Hp) ∈ C nr nt . Therefore, defining the vectorized channel h vec(H), yields h = P p=1 hp. Note that the channel description used here is very general, as it handles any three-dimensional antenna array geometry, not only Uniform Linear Arrays (ULA) or Uniform Planar Arrays (UPA) as is sometimes proposed.

In short, the physical channel model can be seen as a parametric model with θ = {θ (p) (ρp,φp,ηr,p,ψr,p,ηt,p,ψt,p), p = 1,...,P }. There are thus 6P real parameters in this model (the complex gain, DoD and DoA of every path are described with two parameters each). Of course, the model is most useful for estimation in the case where 6P ≪ 2nrnt, since the number of parameters is thus greatly reduced.

Note that most classical massive MIMO channel estimation methods assume a similar physical model, but discretize a priori the DoDs and DoAs, so that the problem fits the framework of sparse recovery [START_REF] Mallat | Matching pursuits with timefrequency dictionaries[END_REF][START_REF] Tropp | Signal recovery from random measurements via orthogonal matching pursuit[END_REF][START_REF] Bajwa | Compressed channel sensing: A new approach to estimating sparse multipath channels[END_REF]. The approach used here is different, in the sense that no discretization is assumed for the analysis.

Observation model

In order to carry out channel estimation, ns known pilot symbols are sent through the channel by each transmit antenna. The corresponding training matrix is denoted X ∈ C nt×ns . The signal at the receive antennas is thus expressed as HX + N, where N is a noise matrix with vec(N) ∼ CN (0,σ 2 Id). Due to the high cost and power consumption of millimeter wave Radio Frequency (RF) chains, it has been proposed to have less RF chains than antennas in both the transmitter and receiver [START_REF] Ayach | Spatially sparse precoding in millimeter wave mimo systems[END_REF][START_REF] Alkhateeb | Channel estimation and hybrid precoding for millimeter wave cellular systems[END_REF][START_REF] Heath | An overview of signal processing techniques for millimeter wave mimo systems[END_REF][START_REF] Akbar | Millimeter-Wave MIMO Transceivers: Theory, Design and Implementation[END_REF]. Such systems are often referred to as hybrid architectures. Mathematically speaking, this translates into specific constraints on the training matrix X (which has to "sense" the channel through analog precoders vi ∈ C nt , i = 1,...,nRF, nRF being the number of RF chains on the transmit side), as well as observing the signal at the receiver through analog combiners. Let us denote wj ∈ C nr , j = 1,...,nc the used analog combiners, the observed data is thus expressed in all generality as

Y = W H HX+W H N, (2) 
where W (w1,... ,wn c ) and the training matrix is constrained to be of the form X = VZ, where Z ∈ C n RF ×ns is the digital training matrix.

Objective: bounding the variance of unbiased estimators

In order to assess the fundamental performance limits of channel estimation, the considered performance measure is the relative Mean Squared Error (rMSE). Denoting indifferently H(θ) f (θ) or H the true channel (h(θ) or h in vectorized form) and H( θ) f ( θ) or Ĥ its estimate (h( θ) or ĥ in vectorized form) in order to lighten notations, rMSE is expressed

rMSE = E H-Ĥ 2 F . H -2 F = Tr cov ĥ Variance + E( Ĥ)-H 2 F Bias . H -2 F , (3) 
where the bias/variance decomposition can be done independently of the considered model [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF]. The goal here is to lower-bound the variance term, considering the physical model introduced in the previous subsection. The bias term is not studied in details here, but its role is evoked in section 3.3.

CRAM ÉR-RAO LOWER BOUND

In this section, the variance term of eq. ( 3) is bounded using the Cramér-Rao Bound (CRB) [START_REF] Calyampudi | Information and the accuracy attainable in the estimation of statistical parameters[END_REF]18], which is valid for any unbiased estimator θ of the true parameter θ. The complex CRB [START_REF] Van Den Bos | A cramér-rao lower bound for complex parameters[END_REF] states,

cov g( θ) ≥ ∂g(θ) ∂θ I(θ) -1 ∂g(θ) ∂θ H , with I(θ) E ∂logL ∂θ ∂logL ∂θ H the Fisher Information Matrix (FIM),
where L denotes the model likelihood, and g is any complex differentiable vector function. In particular, regarding the variance term of eq. ( 3),

Tr cov h( θ) ≥ Tr ∂h(θ) ∂θ I(θ) -1 ∂h(θ) ∂θ H , (4) 
with ∂h(θ) ∂θ = ∂h(θ) ∂θ 1 ,..., ∂h(θ) ∂θn p

. A model independent expression for the FIM is provided in section 3.1, and particularized in section 3.2 to the model of section: 2.1. Finally, the bound is derived from eq. ( 4) in section 3.3.

General derivation

First, notice that vectorizing eq. ( 2), the observation matrix Y follows a complex gaussian distribution,

vec(Y) ∼ CN (X T ⊗W H )h(θ) µ(θ) ,σ 2 (Idn s ⊗W H W) Σ .
In that particular case, the Slepian-Bangs formula [START_REF] Slepian | Estimation of signal parameters in the presence of noise[END_REF][START_REF] Bangs | Array Processing With Generalized Beamformers[END_REF] yields:

I(θ) = 2Re ∂µ(θ) ∂θ H Σ -1 ∂µ(θ) ∂θ = 2α 2 σ 2 Re ∂h(θ) ∂θ H P ∂h(θ) ∂θ , (5) 
with

P σ 2 α 2 (X * ⊗W)Σ -1 (X T ⊗W H ) where α 2 1
ns Tr(X H X) is the average transmit power per time step. Note that the expression can be simplified to P = 1 α 2 (X * X T ) ⊗ (W(W H W) -1 W H ) using elementary properties of the Kronecker product. The matrix W(W H W) -1 W H is a projection matrix onto the range of W. In order to ease further interpretation, assume that X H X = α 2 Idn s . This assumption means that the transmit power is constant during training time ( xi 2 2 = α 2 , ∀i) and that pilots sent at different time instants are mutually orthogonal (x H i xj = 0, ∀i = j). This way, 1 α 2 X * X T is a projection matrix onto the range of X * , and P can itself be interpreted as a projection, being the Kronecker product of two projection matrices [22, p.112] (it is an orthogonal projection since P H = P).

Fisher information matrix for a sparse channel model

Consider now the parametric channel model of section 2.1, where h = P p=1 hp, with hp = cpet( --→ ut,p) * ⊗er( --→ ur,p). Intra-path couplings. The derivatives of h with respect to parameters of the pth path θ (p) can be determined using matrix differentiation rules [START_REF] Brandt Petersen | The matrix cookbook[END_REF]: ∂φp , ∂h(θ) ∂ηr,p , ∂h(θ) ∂ψr,p , ∂h(θ) ∂ηt,p , ∂h(θ) ∂ψt,p , the part of the FIM corresponding to couplings between the parameters θ (p) (intra-path couplings) is expressed as

•
I (p,p) 2α 2 σ 2 Re ∂h H ∂θ (p) P ∂h ∂θ (p) . (6) 
Let us now particularize this expression. First of all, in order to ease interpretations carried out in section 4, consider the case of optimal observation conditions (when the range of P contains the range of ∂h(θ) ∂θ ). This allows indeed to interpret separately the role of the observation matrices and the antenna arrays geometries. Second, consider for example the entry corresponding to the coupling between the departure azimuth angle ηt,p and the arrival azimuth angle ηr,p of the pth path. It is expressed under the optimal observation assumption as since Ar1n r = 0 and At1n t = 0 by construction (because the antennas positions are taken with respect to the array centroid). This means that the parameters ηr,p and ηt,p are statistically uncoupled, i.e. orthogonal parameters [START_REF] David | Parameter orthogonality and approximate conditional inference[END_REF]. Computing all couplings for θ (p) yields

I (p,p) = 2ρ 2 p α 2 σ 2      1 ρ 2 p 0 01×2 01×2 0 1 01×2 01×2 02×1 02×1 Br 02×2 02×1 02×1 02×2 Bt      , (7) 
where

Bx = 1 nx   A T x --→ vη x,p 2 2 --→ vη x,p T AxA T x ---→ v ψx,p ---→ v ψx,p T AxA T x --→ vη x,p A T x ---→ v ψx,p 2 2   , (8) 
with x ∈ {r, t}. These expressions are thoroughly interpreted in section 4.

Global FIM. Taking into account couplings between all paths, The global FIM is easily deduced from the previous calculations and block structured, 2) ... I (1,P ) I (2,1) I (2,2) . . . . . . I (P,1) I (P,P )   , where I (p,q) ∈ R 6×6 contains the couplings between parameters of the pth and qth paths and is expressed I (p,q) 2α 2 σ 2 Re ∂h ∂θ (p) H P ∂h ∂θ (q) . The off-diagonal blocks I (p,q) of I(θ), corresponding to couplings between parameters of distinct paths, or inter-path couplings, can be expressed explicitly (as in eq. ( 7) for intra-path couplings). However, the obtained expressions are less prone to interesting interpretations, and inter-paths couplings have been observed to be negligible in most cases. They are thus not displayed in the present paper, for brevity reasons. Note that a similar FIM computation was recently carried out in the particular case of linear arrays [START_REF] Garcia | Optimal robust precoders for tracking the aod and aoa of a mm-wave path[END_REF]. However, the form of the FIM (in particular parameter orthogonality) was not exploited in [START_REF] Garcia | Optimal robust precoders for tracking the aod and aoa of a mm-wave path[END_REF], as is done here in sections 4 and 5.

I(θ) =   I (1,1) I (1,

Bound on the variance

The variance of channel estimators remains to be bounded, using eq. ( 4). From eq. ( 5), the FIM can be expressed more conveniently only with real matrices as

I(θ) = 2α 2 σ 2 DT P D, with D Re{ ∂h(θ) ∂θ } Im{ ∂h(θ) ∂θ } , P Re{P} -Im{P} Im{P} Re{P} ,
where P is also a projection matrix. Finally, injecting eq. ( 5) into eq. ( 4) assuming the FIM is invertible, gives for the relative variance (this is actually an optimal SNR, only attained with perfect precoding and combining). Optimal bound. The first inequality in eq. ( 9) becomes an equality if an efficient estimator is used [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF]. Moreover, the second inequality is an equality if the condition im ∂h(θ) ∂θ ⊂ im (P) is fulfilled (this corresponds to optimal observations, further discussed in section 4). Remarkably, under optimal observations, the lower bound on the relative variance is directly proportional to the considered number of paths P and inversely proportional to the SNR, and does not depend on the specific model structure, since the influence of the derivative matrix D cancels out in the derivation. Sparse recovery CRB. It is interesting to notice that the bound obtained here is similar to the CRB for sparse recovery [START_REF] Ben | The cramér-rao bound for estimating a sparse parameter vector[END_REF] (corresponding to an intrinsically discrete model), that is proportional to the sparsity of the estimated vector, analogous here to the number of paths.

Tr cov h( θ) . h -2 2 ≥ σ 2 2α 2 Tr D( DT P D) -1 DT . h -2 2 ≥ σ 2 2α 2 Tr D( DT D) -1 DT . h -2 2 = σ 2 2α 2 h 2 2 np = 3P SNR , (9) 

INTERPRETATIONS

The main results of sections 3.2 and 3.3 are interpreted in this section, ultimately guiding the design of efficient estimation algorithms. Parameterization choice. The particular expression of the FIM allows to assess precisely the chosen parameterization. First of all, I(θ) has to be invertible and well-conditioned, for the model to be theoretically and practically identifiable [START_REF] Thomas | Identification in parametric models[END_REF][START_REF] Kravaris | Advances and selected recent developments in state and parameter estimation[END_REF], respectively. As a counterexample, imagine two paths indexed by p and q share the same DoD and DoA, then proportional columns appear in ∂h(θ) ∂θ , which implies non-invertibility of the FIM. However, it is possible to summarize the effect of these two paths with a single virtual path of complex gain cp +cq without any accuracy loss in channel description, yielding an invertible FIM. Similarly, two paths with very close DoD and DoA yield an ill-conditioned FIM (since the corresponding steering vectors are close to colinear), but can be merged into a single virtual path with a limited accuracy loss, improving the conditioning. Interestingly, in most channel models, paths are assumed to be grouped into clusters, in which all DoDs and DoAs are close to a principal direction [START_REF] Adel | A statistical model for indoor multipath propagation[END_REF][START_REF] Jensen | Modeling the indoor mimo wireless channel[END_REF][START_REF] Michael | A review of antennas and propagation for mimo wireless communications[END_REF]. Considering the MSE, merging close paths indeed decreases the variance term (lowering the total number of parameters), without increasing significantly the bias term (because their effects on the channel matrix are very correlated). These considerations suggest dissociating the number of paths considered in the model P from the number of physical paths, denoted P φ , taking P < P φ by merging paths. This is one motivation behind the famous virtual channel representation [START_REF] Akbar | Deconstructing multiantenna fading channels[END_REF], where the resolution at which paths are merged is fixed and given by the number of antennas. The theoretical framework of this paper suggests to set P (and thus the merging resolution) so as to minimize the MSE. A theoretical study of the bias term of the MSE (which should decrease when P increases) could thus allow to calibrate models, choosing an optimal number of paths P * for estimation. Such a quest for P * is carried out empirically in section 5.

Optimal observations. The matrices X and W (pilot symbols and analog combiners) determine the quality of channel observation. Indeed, it was shown in section 3.3 that the lowest CRB is obtained when im ∂h(θ) ∂θ ⊂ im (P), with

P = 1 α 2 (X * X T ) ⊗ (W(W H W) -1 W H ) .
In case of sparse channel model, using the expressions for ∂h (θ) ∂θ derived above, this is equivalent to two distinct conditions for the training matrix: ux,p) with x ∈ {r, t} and ξ ∈ {η, ψ}. These conditions are fairly intuitive: to estimate accurately parameters corresponding to a given DoD (respectively DoA), the sent pilot sequence (respectively analog combiners) should span the corresponding steering vector and its derivatives (to "sense" small changes). To accurately estimate all the channel parameters, it should be met for each atomic channel. Array geometry. Under optimal observation conditions, performance limits on DoD/DoA estimation are given by eq. ( 8). The lower the diagonal entries B -1

x , the better the bound. This implies the bound is better if the diagonal entries of Bx are large and the offdiagonal entries are small (in absolute value). Since the unit vectors --→ vη x,p and ---→ v ψx,p are by definition orthogonal, having AxA T x = β 2 Id with maximal β 2 is optimal, and yields uniform performance limits for any DoD/DoA. Moreover, in this situation, β 2 is proportional to

1 nx nx i=1 --→ ax,i 2 2
, the mean squared norm of antenna positions with respect to the array centroid. Having a larger antenna array is thus beneficial (as expected), because the furthest antennas are from the array centroid, the larger β 2 is. Orthogonality of DoA and DoD. Section 3.2 shows that the matrix corresponding to intra-path couplings (eq. ( 7)) is block diagonal, meaning that for a given path, parameters corresponding to gain, Algorithm 1 Sequential direction estimation (DoA first) 

X H et( -→ v 1 ) X H et( -→ v 1 ) 2 |...| X H et( -→ vn) X H et( -→ vn) 2
6: Find the index ĵ of the maximal entry of er(

-→ u î ) H YKt, set - → ut ← -→ v ĵ (O(n) complexity)
phase, DoD and DoA are mutually orthogonal. Maximum Likelihood (ML) estimators of orthogonal parameters are asymptotically independent [START_REF] David | Parameter orthogonality and approximate conditional inference[END_REF] (when the number of observations, or equivalently the SNR goes to infinity). Classically, channel estimation in massive MIMO systems is done using greedy sparse recovery algorithms [START_REF] Mallat | Matching pursuits with timefrequency dictionaries[END_REF][START_REF] Tropp | Signal recovery from random measurements via orthogonal matching pursuit[END_REF][START_REF] Bajwa | Compressed channel sensing: A new approach to estimating sparse multipath channels[END_REF]. Such algorithms can be cast into ML estimation with discretized directions, in which the DoD and DoA (coefficient support) are estimated jointly first (which is costly), and then the gain and phase are deduced (coefficient value), iteratively for each path. Orthogonality between the DoD and DoA parameters is thus not exploited by classical channel estimation methods. We propose here to exploit it via a sequential decoupled DoD/DoA estimation, that can be inserted in any sparse recovery algorithm in place of the support estimation step, without loss of optimality in the ML sense. In the proposed method, one direction (DoD or DoA) is estimated first using an ML criterion considering the other direction as a nuisance parameter, and the other one is deduced using the joint ML criterion. Such a strategy is presented in algorithm 1. It can be verified that lines 3 and 6 of the algorithm actually correspond to ML estimation of the DoA and joint ML estimation, respectively. The overall complexity of the sequential directions estimation is thus O(m+n), compared to O(mn) for the joint estimation with the same test directions. Note that a similar approach, in which DoAs for all paths are estimated at once first, was recently proposed [START_REF] Noureddine | A two-step compressed sensing based channel estimation solution for millimeter wave mimo systems[END_REF] (without theoretical justification).

PRELIMINARY EXPERIMENT

Let us compare the proposed sequential direction estimation to the classical joint estimation. This experiment must be seen as an example illustrating the potential of the approach, and not as an extensive experimental validation. Experimental settings. Consider synthetic channels generated using the NYUSIM channel simulator [START_REF] Mathew | 3-d millimeterwave statistical channel model for 5g wireless system design[END_REF] (setting f = 28 GHz, the distance between transmitter and receiver to d = 30 m) to obtain the DoDs, DoAs, gains and phases of each path. The channel matrix is then obtained from eq. ( 1), considering square Uniform Planar Arrays (UPAs) with half-wavelength separated antennas, with nt = 64 and nr = 16. Optimal observations are considered, taking both W and X as the identity. Moreover, the noise variance σ 2 is set so as to get an SNR of 10 dB. Finally, the two aforementioned direction estimation strategies are inserted in the Matching Pursuit (MP) algorithm [START_REF] Mallat | Matching pursuits with timefrequency dictionaries[END_REF], discretizing the directions taking m = n = 2, 500, and varying the total number P of estimated paths. Results. Table 1 shows the obtained relative MSE and estimation times (Python implementation on a laptop with an Intel(R) Core(TM) i7-3740QM CPU @ 2.70 GHz). First of all, for P = 5, 10, 20, the estimation error decreases and the estimation time increases with P , exhibiting a trade-off between accuracy and time. However, increasing P beyond a certain point seems useless, since the error re-increases, as shown by the MSE for P = 40, echoing the trade-off evoked in section 3.3, and indicating that P * is certainly between 20 and 40 for both methods in this setting. Finally, for any value of P , while the relative errors of the sequential and joint estimation methods are very similar, the estimation time is much lower (between ten and twenty times) for sequential estimation. This observation validates experimentally the theoretical claims made in the previous section.

CONCLUSIONS AND PERSPECTIVES

In this paper, the performance limits of massive MIMO channel estimation were studied. To this end, training based estimation with a physical channel model and an hybrid architecture was considered. The Fisher Information Matrix and the Cramér-Rao bound were derived, yielding several results. The CRB ended up being proportional to the number of parameters in the model and independent from the precise model structure. The FIM allowed to draw several conclusions regarding the observation matrices and the arrays geometries. Moreover, it suggested computationally efficient algorithm which are asymptotically as accurate as classical ones.

This paper is obviously only a first step toward a deep theoretical understanding of massive MIMO channel estimation. Apart from more extensive experimental evaluations and optimized algorithms, a theoretical study of the bias term of the MSE would be needed to calibrate models, and the interpretations of section 4 could be leveraged to guide system design.

  Regarding the complex gain cp = ρpe jφp , the model yields the expressions ∂h(θ) ∂ρp = 1 ρp hp and ∂h(θ) ∂φp = jhp. • Regarding the DoA, ∂h(θ) ∂ηr,p = Idn t ⊗diag(-jA T r --→ vη r,p ) hp and ∂h(θ) ∂ψr,p = Idn t ⊗diag(-jA T r ---→ v ψr,p ) hp, where --→ vη r,p and ---→ v ψr,p are the unit vectors in the azimuth and elevation directions at --→ ur,p, respectively. • Regarding the DoD, ∂h(θ) ∂ηt,p = diag(jA T t --→ vη t,p )⊗Idn r hp and ∂h(θ) ∂ψt,p = diag(jA T t --→ v ψt,p )⊗Idn r hp, where --→ vη t,p and --→ v ψt,p are the unit vectors in the azimuth and elevation directions at --→ ut,p, respectively. Denoting ∂h ∂θ (p) ∂h(θ) ∂ρp , ∂h(θ)

2α 2 σ 2

 2 Re ∂h(θ) vη r,p = 0,

2 h 2 2 σ 2

 222 where the second inequality comes from the fact that P being an orthogonal projection matrix, P ≤ Id ⇒ DT P D ≤ DT D ⇒ ( DT P D) -1 ≥ ( DT D) -1 ⇒ D( DT P D) -1 DT ≥ D( DT D) -1 DT (using elementary properties of the ordering of semidefinite positive matrices, in particular [26, Theorem 4.3]). The first equality comes from the fact that Tr D( DT D) -1 DT = Tr(Idn p ) = np. Finally, the second equality is justified by np = 6P considering the sparse channel model, and by taking SNRα

=

  diag(-jA T x --→ v ξx,p )ex( --→

Acknowledgments. The authors wish to thank Matthieu Crussière for the fruitful discussions that greatly helped improving this work.

This work has been performed in the framework of the Horizon 2020 project ONE5G (ICT-760809) receiving funds from the European Union. The authors would like to acknowledge the contributions of their colleagues in the project, although the views expressed in this contribution are those of the authors and do not necessarily represent the project.