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PARAMETRIC CHANNEL ESTIMATION FOR MASSIVE MIMO

Luc Le Magoarou, Stéphane Paquelet

b<>com, Rennes, France

ABSTRACT

Channel state information is crucial to achieving the capacity of multi-

antenna (MIMO) wireless communication systems. It requires esti-

mating the channel matrix. This estimation task is studied, consider-

ing a sparse physical channel model, as well as a general measurement

model taking into account hybrid architectures. The contribution is

twofold. First, the Cramér-Rao bound in this context is derived. Sec-

ond, interpretation of the Fisher Information Matrix structure allows

to assess the role of system parameters, as well as to propose asymp-

totically optimal and computationally efficient estimation algorithms.

Index Terms— Cramér-Rao bound, Channel estimation, MIMO.

1. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) wireless communication

systems allow for a dramatic increase in channel capacity, by adding

the spatial dimension to the classical time and frequency ones [1, 2].

This is done by sampling space with several antenna elements, form-

ing antenna arrays both at the transmitter (with nt antennas) and

receiver (with nr antennas). Capacity gains over single antenna

systems are at most proportional to min(nr,nt).
Millimeter wavelengths have recently appeared as a viable so-

lution for the fifth generation (5G) wireless communication systems

[3, 4]. Indeed, smaller wavelengths allow to densify half-wavelength

separated antennas, resulting in higher angular resolution and ca-

pacity for a given array size. This observation has given rise to the

massive MIMO field, i.e. the study of systems with up to hundreds or

even thousands of antennas.

Massive MIMO systems are very promising in terms of capacity.

However, they pose several challenges to the research community

[5, 6], in particular for channel estimation. Indeed, maximal capacity

gains are obtained in the case of perfect knowledge of the channel

state by both the transmitter and the receiver. The estimation task

amounts to determine a complex gain between each transmit/receive

antenna pair, the narrowband (single carrier) MIMO channel as a

whole being usually represented as a complex matrix H∈Cnr×nt of

such complex gains. Without a parametric model, the number of real

parameters to estimate is thus 2nrnt, which is very large for massive

MIMO systems.

Contributions and organization. In this work, massive MIMO

channel estimation is studied, and its performance limits are sought,

as well as their dependency on key system parameters. In order to

answer this question, the framework of parametric estimation [7] is

used. A physical channel model is first presented, with the general

considered observation model, and the objective is precisely stated.

The Cramér-Rao bound for is then derived, which bounds the vari-

ance of any unbiased estimator. Then, the interpretation of the bound

This work has been performed in the framework of the Horizon 2020
project ONE5G (ICT-760809) receiving funds from the European Union. The
authors would like to acknowledge the contributions of their colleagues in
the project, although the views expressed in this contribution are those of the
authors and do not necessarily represent the project.

allows to precisely assess the role of system design on estimation per-

formance, as well as to propose new computationally efficient channel

estimation algorithms showing asymptotic performance equivalent

to classical ones based on sparse recovery.

2. PROBLEM FORMULATION

Notations. Matrices and vectors are denoted by bold upper-case and

lower-case letters: A and a (except 3D “spatial” vectors that are

denoted −→a ); the ith column of a matrix A by: ai; its entry at the ith
line and jth column by: aij or Aij . A matrix transpose, conjugate

and transconjugate is denoted by: AT ,A∗ and A
H respectively. The

image, rank and trace of a linear transformation represented by A are

denoted: im(A), rank(A) and Tr(A) respectively. For matrices A

and B, A≥B means that A−B is positive semidefinite. The linear

span of a set of vectorsA is denoted: span(A). The Kronecker prod-

uct, standard vectorization and diagonalization operators are denoted

by vec(·), diag(·), and⊗ respectively. The identity matrix, them×n
matrix of zeros and ones are denoted by Id, 0m×n and 1m×n respec-

tively. CN (µ,Σ) denotes the standard complex gaussian distribution

with mean µ and covariance Σ. E(.) denotes expectation and cov(.)
the covariance of its argument.

2.1. Parametric physical channel model

Consider a narrowband block fading channel between a transmitter

and a receiver with respectively nt and nr antennas. It is represented

by the matrix H∈Cnr×nt , in which hij corresponds to the channel

between the jth transmit and ith receive antennas.

Classically, for MIMO systems with few antennas, i.e. when

the quantity nrnt is small (up to a few dozens), estimators such as

the Least Squares (LS) or the Linear Minimum Mean Squared Error

(LMMSE) are used [8].

However, for massive MIMO systems, the quantity2nrnt is large

(typically several hundreds), and resorting to classical estimators may

become computationally intractable. In that case, a parametric model

may be used. Establishing it consists in defining a set ofnp parameters

θ, (θ1,...,θnp)
T that describe the channel as H≈ f(θ) for a given

function f , where the approximation is inherent to the model struc-

ture and neglected in the sequel (considering H = f(θ)). Channel

estimation then amounts to estimate the parameters θ instead of the

channel matrix H directly. The parametrization is particularly useful

if np≪2nrnt, without harming accuracy of the channel description.

Inspired by the physics of wave propagation under the plane waves

assumption, it has been proposed to express the channel matrix as a

sum of rank-1 matrices, each corresponding to a single physical path

between transmitter and receiver [9]. Adopting this kind of modeling

and generalizing it to take into account any three-dimensional antenna

array geometry, channel matrices take the form

H=

P∑

p=1

cper(
−−→ur,p).et(

−−→ut,p)
H
, (1)



where P is the total number of considered paths (no more than a

few dozens), cp , ρpe
jφp is the complex gain of the pth path, −−→ut,p

is the unit vector corresponding to its Direction of Departure (DoD)

and −−→ur,p the unit vector corresponding to its Direction of Arrival

(DoA). Any unit vector −→u is described in spherical coordinates by

an azimuth angle η and an elevation angle ψ. The complex response

and steering vectors er(
−→u ) ∈ C

nr and et(
−→u ) ∈C

nt are defined as

(ex(
−→u ))i=

1√
nx

e−j 2π
λ

−−→ax,i.
−→u forx∈{r,t}. The set {−−→ax,1,...,

−−−→ax,nx}

gathers the positions of the antennas with respect to the centroid of

the considered array (transmit if x= t, receive if x= r). In order to

lighten notations, the matrix Ax , 2π
λ
(−−→ax,1, ... ,

−−−→ax,nx) ∈ R
3×nx is

introduced. It simplifies the steering/response vector expression to

ex(
−→u ) = 1√

nx
e−jAT

x
−→u , where the exponential function is applied

component-wise. In order to further lighten notations, the pth atomic

channel is defined as Hp,cper(
−−→ur,p).et(

−−→ut,p)
H , and its vectorized

version hp , vec(Hp) ∈ C
nrnt . Therefore, defining the vectorized

channel h,vec(H), yields h=
∑P

p=1hp. Note that the channel de-

scription used here is very general, as it handles any three-dimensional

antenna array geometry, and not only Uniform Linear Arrays (ULA)

or Uniform Planar Arrays (UPA) as is sometimes proposed.

In short, the physical channel model can be seen as a parametric

model with θ= {θ(p) , (ρp,φp,ηr,p,ψr,p,ηt,p,ψt,p), p= 1,...,P}.
There are thus 6P real parameters in this model (the complex gain,

DoD and DoA of every path are described with two parameters each).

Of course, the model is most useful for estimation in the case where

6P≪2nrnt, since the number of parameters is thus greatly reduced.

Note that most classical massive MIMO channel estimation

methods assume a similar physical model, but discretize a priori the

DoDs and DoAs, so that the problem fits the framework of sparse

recovery [10, 11, 12]. The approach used here is different, in the

sense that no discretization is assumed for the analysis.

2.2. Observation model

In order to carry out channel estimation, ns known pilot symbols

are sent through the channel by each transmit antenna. The corre-

sponding training matrix is denoted X ∈ C
nt×ns . The signal at the

receive antennas is thus expressed as HX+N, where N is a noise

matrix with vec(N)∼CN (0,σ2
Id). Due to the high cost and power

consumption of millimeter wave Radio Frequency (RF) chains, it has

been proposed to have less RF chains than antennas in both the trans-

mitter and receiver [13, 14, 15, 16]. Such systems are often referred to

as hybrid architectures. Mathematically speaking, this translates into

specific constraints on the training matrixX (which has to “sense” the

channel through analog precoders vi ∈C
nt , i=1,...,nRF, nRF being

the number of RF chains on the transmit side), as well as observing

the signal at the receiver through analog combiners. Let us denote

wj ∈C
nr , j=1,...,nc the used analog combiners, the observed data

is thus expressed in all generality as

Y=W
H
HX+W

H
N, (2)

where W , (w1,... ,wnc ) and the training matrix is constrained to

be of the form X =VZ, where Z ∈ C
nRF×ns is the digital training

matrix.

2.3. Objective: bounding the variance of unbiased estimators

In order to assess the fundamental performance limits of channel

estimation, the considered performance measure is the relative Mean

Squared Error (rMSE). Denoting indifferently H(θ) , f(θ) or H

the true channel (h(θ) or h in vectorized form) and H(θ̂) , f(θ̂)

or Ĥ its estimate (h(θ̂) or ĥ in vectorized form) in order to lighten

notations, rMSE is expressed

rMSE=E

(∥
∥H−Ĥ

∥
∥2

F

)

.
∥
∥H
∥
∥−2

F

=
(

Tr
(

cov
(
ĥ
))

︸ ︷︷ ︸
Variance

+
∥
∥E(Ĥ)−H

∥
∥2

F
︸ ︷︷ ︸

Bias

)

.
∥
∥H
∥
∥−2

F
, (3)

where the bias/variance decomposition can be done independently of

the considered model [7]. The goal here is to lower-bound the vari-

ance term, considering the physical model introduced in the previous

subsection. The bias term is not studied in details here, but its role is

evoked in section 3.3.

3. CRAMÉR-RAO LOWER BOUND

In this section, the variance term of eq. (3) is bounded using the

Cramér-Rao Bound (CRB) [17, 18], which is valid for any unbiased

estimator θ̂ of the true parameter θ. The complex CRB [19] states,

cov
(
g(θ̂)

)
≥
∂g(θ)

∂θ
I(θ)−1 ∂g(θ)

∂θ

H

,

with I(θ), E

[
∂logL
∂θ

∂logL
∂θ

H
]

the Fisher Information Matrix (FIM),

where L denotes the model likelihood, and g is any complex differ-

entiable vector function. In particular, regarding the variance term of

eq. (3),

Tr
(

cov
(
h(θ̂)

))

≥Tr
(∂h(θ)

∂θ
I(θ)−1 ∂h(θ)

∂θ

H)

, (4)

with
∂h(θ)
∂θ

=
(
∂h(θ)
∂θ1

,...,
∂h(θ)
∂θnp

)
.A model independent expression for

the FIM is provided in section 3.1, and particularized in section 3.2 to

the model of section: 2.1. Finally, the bound is derived from eq. (4) in

section 3.3.

3.1. General derivation

First, notice that vectorizing eq. (2), the observation matrixY follows

a complex gaussian distribution,

vec(Y)∼CN
(
(XT⊗WH)h(θ)
︸ ︷︷ ︸

µ(θ)

,σ
2(Idns⊗W

H
W)

︸ ︷︷ ︸
Σ

)
.

In that particular case, the Slepian-Bangs formula [20, 21] yields:

I(θ)=2Re

{
∂µ(θ)
∂θ

H
Σ

−1 ∂µ(θ)
∂θ

}

= 2α2

σ2 Re

{
∂h(θ)
∂θ

H
P
∂h(θ)
∂θ

}

,

(5)

with P, σ2

α2 (X
∗⊗W)Σ−1(XT⊗WH ) where α2, 1

ns
Tr(XH

X)
is the average transmit power per time step. Note that the expression

can be simplified to P = 1
α2

(
(X∗

X
T ) ⊗ (W(WH

W)−1
W

H)
)

using elementary properties of the Kronecker product. The matrix

W(WH
W)−1

W
H is a projection matrix onto the range of W. In

order to ease further interpretation, assume that XH
X = α2

Idns .

This assumption means that the transmit power is constant during

training time (‖xi‖
2
2 = α2, ∀i) and that pilots sent at different time

instants are mutually orthogonal (xHi xj = 0, ∀i 6= j). This way,
1
α2X

∗
X
T is a projection matrix onto the range of X∗, and P can

itself be interpreted as a projection, being the Kronecker product of

two projection matrices [22, p.112] (it is an orthogonal projection

since PH=P).



3.2. Fisher information matrix for a sparse channel model
Consider now the parametric channel model of section 2.1, where

h=
∑P

p=1hp, withhp=cpet(
−−→ut,p)

∗⊗er(
−−→ur,p).

Intra-path couplings. The derivatives of h with respect to parame-

ters of thepth pathθ(p) can be determined using matrix differentiation

rules [23]:

• Regarding the complex gain cp = ρpe
jφp , the model yields the

expressions
∂h(θ)
∂ρp

= 1
ρp

hp and
∂h(θ)
∂φp

=jhp.

• Regarding the DoA,
∂h(θ)
∂ηr,p

=
(
Idnt⊗diag(−jAT

r
−−→vηr,p)

)
hp and

∂h(θ)
∂ψr,p

=
(
Idnt⊗diag(−jAT

r
−−−→vψr,p)

)
hp, where −−→vηr,p and −−−→vψr,p

are the unit vectors in the azimuth and elevation directions at−−→ur,p,

respectively.

• Regarding the DoD,
∂h(θ)
∂ηt,p

=
(
diag(jAT

t
−−→vηt,p )⊗Idnr

)
hp and

∂h(θ)
∂ψt,p

=
(
diag(jAT

t
−−→vψt,p )⊗Idnr

)
hp, where −−→vηt,p and −−→vψt,p are

the unit vectors in the azimuth and elevation directions at −−→ut,p,

respectively.

Denoting ∂h

∂θ(p) ,

(
∂h(θ)
∂ρp

,
∂h(θ)
∂φp

,
∂h(θ)
∂ηr,p

,
∂h(θ)
∂ψr,p

,
∂h(θ)
∂ηt,p

,
∂h(θ)
∂ψt,p

)

, the

part of the FIM corresponding to couplings between the parameters

θ(p) (intra-path couplings) is expressed as

I
(p,p)

,
2α2

σ2
Re

{
∂hH

∂θ(p)
P

∂h

∂θ(p)

}

. (6)

Let us now particularize this expression. First of all, in order

to ease interpretations carried out in section 4, consider the case of

optimal observation conditions (when the range of P contains the

range of
∂h(θ)
∂θ

). This allows indeed to interpret separately the role of

the observation matrices and the antenna arrays geometries. Second,

consider for example the entry corresponding to the coupling between

the departure azimuth angle ηt,p and the arrival azimuth angle ηr,p of

the pth path. It is expressed under the optimal observation assumption

as 2α2

σ2 Re

{
∂h(θ)
∂ηr,p

H ∂h(θ)
∂ηt,p

}

. Moreover,

∂h(θ)
∂ηr,p

H ∂h(θ)
∂ηt,p

=h
H
p

(

diag
(
jAT

t
−−→vηt,p

)
⊗diag

(
jAT

r
−−→vηr,p

))

hp

=
−ρ2p
nrnt

(
1
T
nt
A
T
t
−−→vηt,p

)(
1
T
nr

A
T
r
−−→vηr,p

)
=0,

since Ar1nr =0 and At1nt =0 by construction (because the anten-

nas positions are taken with respect to the array centroid). This means

that the parameters ηr,p and ηt,p are statistically uncoupled, i.e. or-

thogonal parameters [24]. Computing all couplings for θ(p) yields

I
(p,p)=

2ρ2pα
2

σ2








1
ρ2p

0 01×2 01×2

0 1 01×2 01×2

02×1 02×1 Br 02×2

02×1 02×1 02×2 Bt







, (7)

where

Bx=
1

nx





∥
∥A

T
x
−−→vηx,p

∥
∥
2

2
−−→vηx,p

T
AxA

T
x
−−−→vψx,p

−−−→vψx,p

T
AxA

T
x
−−→vηx,p

∥
∥A

T
x
−−−→vψx,p

∥
∥
2

2



, (8)

with x ∈ {r, t}. These expressions are thoroughly interpreted in

section 4.

Global FIM. Taking into account couplings between all paths, The

global FIM is easily deduced from the previous calculations and block

structured,

I(θ)=





I
(1,1)

I
(1,2) ... I

(1,P )

I
(2,1)

I
(2,2)

...
. . .

I
(P,1)

I
(P,P )



,

where I(p,q)∈R6×6 contains the couplings between parameters of the

pth and qth paths and is expressed I
(p,q), 2α2

σ2 Re
{

∂h

∂θ(p)

H
P

∂h

∂θ(q)

}
.

The off-diagonal blocks I
(p,q) of I(θ), corresponding to couplings

between parameters of distinct paths, or inter-path couplings, can be

expressed explicitly (as in eq. (7) for intra-path couplings). However,

the obtained expressions are less prone to interesting interpretations,

and inter-paths couplings have been observed to be negligible in most

cases. They are thus not displayed in the present paper, for brevity

reasons. Note that a similar FIM computation was recently carried

out in the particular case of linear arrays [25]. However, the form of

the FIM (in particular parameter orthogonality) was not exploited in

[25], as is done here in sections 4 and 5.

3.3. Bound on the variance

The variance of channel estimators remains to be bounded, using

eq. (4). From eq. (5), the FIM can be expressed more conveniently

only with real matrices as I(θ)= 2α2

σ2 D̄
T
P̄D̄,with

D̄,

(
Re{∂h(θ)

∂θ
}

Im{∂h(θ)
∂θ
}

)

, P̄,

(
Re{P} −Im{P}
Im{P} Re{P}

)

,

where P̄ is also a projection matrix. Finally, injecting eq. (5) into

eq. (4) assuming the FIM is invertible, gives for the relative variance

Tr
(
cov
(
h(θ̂)

))
.‖h‖−2

2 ≥
σ2

2α2Tr
(
D̄(D̄T

P̄D̄)−1
D̄
T
)
.‖h‖−2

2

≥ σ2

2α2Tr
(
D̄(D̄T

D̄)−1
D̄
T
)
.‖h‖−2

2

= σ2

2α2‖h‖22
np=

3P
SNR

,

(9)

where the second inequality comes from the fact that P̄ being an

orthogonal projection matrix, P̄ ≤ Id ⇒ D̄
T
P̄D̄ ≤ D̄

T
D̄ ⇒

(D̄T
P̄D̄)−1≥ (D̄T

D̄)−1⇒D̄(D̄T
P̄D̄)−1

D̄
T ≥D̄(D̄T

D̄)−1
D̄
T

(using elementary properties of the ordering of semidefinite positive

matrices, in particular [26, Theorem 4.3]). The first equality comes

from the fact that Tr
(
D̄(D̄T

D̄)−1
D̄
T
)
= Tr(Idnp) = np. Finally,

the second equality is justified by np = 6P considering the sparse

channel model, and by taking SNR ,
α2‖h‖22
σ2 (this is actually an

optimal SNR, only attained with perfect precoding and combining).

Optimal bound. The first inequality in eq. (9) becomes an equality

if an efficient estimator is used [7]. Moreover, the second inequality

is an equality if the condition im
(
∂h(θ)
∂θ

)
⊂ im(P) is fulfilled (this

corresponds to optimal observations, further discussed in section 4).

Remarkably, under optimal observations, the lower bound on the

relative variance is directly proportional to the considered number of

paths P and inversely proportional to the SNR, and does not depend

on the specific model structure, since the influence of the derivative

matrix D̄ cancels out in the derivation.

Sparse recovery CRB. It is interesting to notice that the bound ob-

tained here is similar to the CRB for sparse recovery [27] (correspond-

ing to an intrinsically discrete model), that is proportional to the spar-

sity of the estimated vector, analogous here to the number of paths.

4. INTERPRETATIONS

The main results of sections 3.2 and 3.3 are interpreted in this section,

ultimately guiding the design of efficient estimation algorithms.

Parameterization choice. The particular expression of the FIM al-

lows to assess precisely the chosen parameterization. First of all, I(θ)
has to be invertible and well-conditioned, for the model to be theoret-

ically and practically identifiable [28, 29], respectively. As a coun-

terexample, imagine two paths indexed byp and q share the same DoD

and DoA, then proportional columns appear in
∂h(θ)
∂θ

, which implies



non-invertibility of the FIM. However, it is possible to summarize the

effect of these two paths with a single virtual path of complex gain

cp+cq without any accuracy loss in channel description, yielding an

invertible FIM. Similarly, two paths with very close DoD and DoA

yield an ill-conditioned FIM (since the corresponding steering vec-

tors are close to colinear), but can be merged into a single virtual path

with a limited accuracy loss, improving the conditioning. Interest-

ingly, in most channel models, paths are assumed to be grouped into

clusters, in which all DoDs and DoAs are close to a principal direction

[30, 31, 32]. Considering the MSE, merging close paths indeed de-

creases the variance term (lowering the total number of parameters),

without increasing significantly the bias term (because their effects on

the channel matrix are very correlated). These considerations suggest

dissociating the number of paths considered in the model P from the

number of physical paths, denoted Pφ, taking P < Pφ by merging

paths. This is one motivation behind the famous virtual channel

representation [9], where the resolution at which paths are merged is

fixed and given by the number of antennas. The theoretical frame-

work of this paper suggests to setP (and thus the merging resolution)

so as to minimize the MSE. A theoretical study of the bias term of

the MSE (which should decrease when P increases) could thus allow

to calibrate models, choosing an optimal number of paths P ∗ for

estimation. Such a quest forP ∗ is carried out empirically in section 5.

Optimal observations. The matrices X and W (pilot symbols

and analog combiners) determine the quality of channel observa-

tion. Indeed, it was shown in section 3.3 that the lowest CRB is

obtained when im
(
∂h(θ)
∂θ

)
⊂ im (P), with P = 1

α2

(
(X∗

X
T ) ⊗

(W(WH
W)−1

W
H)
)
. In case of sparse channel model, using the

expressions for
∂h(θ)
∂θ

derived above, this is equivalent to two distinct

conditions for the training matrix:

span

(
P⋃

p=1

{

et(
−−→ut,p),

∂et(
−−→ut,p)

∂ηt,p
,
∂et(
−−→ut,p)

∂ψt,p

}
)

⊂ im(X),

and for the analog combiners:

span

(
P⋃

p=1

{

er(
−−→ur,p),

∂er(
−−→ur,p)

∂ηr,p
,
∂er(
−−→ur,p)

∂ψr,p

}
)

⊂ im(W),

where
∂ex(−−→ux,p)

∂ξx,p
= diag(−jAT

x
−−→vξx,p )ex(

−−→ux,p) with x ∈ {r,t} and

ξ ∈ {η,ψ}. These conditions are fairly intuitive: to estimate accu-

rately parameters corresponding to a given DoD (respectively DoA),

the sent pilot sequence (respectively analog combiners) should span

the corresponding steering vector and its derivatives (to “sense” small

changes). To accurately estimate all the channel parameters, it should

be met for each atomic channel.

Array geometry. Under optimal observation conditions, perfor-

mance limits on DoD/DoA estimation are given by eq. (8). The lower

the diagonal entries B
−1
x , the better the bound. This implies the

bound is better if the diagonal entries of Bx are large and the off-

diagonal entries are small (in absolute value). Since the unit vectors
−−→vηx,p and−−−→vψx,p are by definition orthogonal, having AxA

T
x =β2

Id

with maximal β2 is optimal, and yields uniform performance limits

for any DoD/DoA. Moreover, in this situation, β2 is proportional to
1
nx

∑nx

i=1‖
−−→ax,i‖

2
2, the mean squared norm of antenna positions with

respect to the array centroid. Having a larger antenna array is thus

beneficial (as expected), because the furthest antennas are from the

array centroid, the larger β2 is.

Orthogonality of DoA and DoD. Section 3.2 shows that the matrix

corresponding to intra-path couplings (eq. (7)) is block diagonal,

meaning that for a given path, parameters corresponding to gain,

Algorithm 1 Sequential direction estimation (DoA first)

1: ChoosemDoAs to test: {−→u1,...,
−→um}

2: Build the matrix Kr=
(

W
H

er(
−→u1)

‖WHer(
−→u1)‖2

|...| W
H

er(
−→un)

‖WHet(
−→un)‖

2

)

3: Find the index î of the maximal entry of diag(KH
r YY

H
Kr),

set −̂→ut←
−→uî (O(m) complexity)

4: Choose nDoDs to test: {−→v1 ,...,
−→vn}

5: Build the matrix Kt=
(

X
H

et(
−→v1)

‖XHet(
−→v1)‖2

|...| X
H

et(
−→vn)

‖XHet(
−→vn)‖

2

)

6: Find the index ĵ of the maximal entry of er(
−→uî)

H
YKt,

set −̂→ut←
−→vĵ (O(n) complexity)

phase, DoD and DoA are mutually orthogonal. Maximum Likeli-

hood (ML) estimators of orthogonal parameters are asymptotically

independent [24] (when the number of observations, or equivalently

the SNR goes to infinity). Classically, channel estimation in mas-

sive MIMO systems is done using greedy sparse recovery algorithms

[10, 11, 12]. Such algorithms can be cast into ML estimation with dis-

cretized directions, in which the DoD and DoA (coefficient support)

are estimated jointly first (which is costly), and then the gain and phase

are deduced (coefficient value), iteratively for each path. Orthogo-

nality between the DoD and DoA parameters is thus not exploited by

classical channel estimation methods. We propose here to exploit it

via a sequential decoupled DoD/DoA estimation, that can be inserted

in any sparse recovery algorithm in place of the support estimation

step, without loss of optimality in the ML sense. In the proposed

method, one direction (DoD or DoA) is estimated first using an ML

criterion considering the other direction as a nuisance parameter, and

the other one is deduced using the joint ML criterion. Such a strategy

is presented in algorithm 1. It can be verified that lines 3 and 6 of the

algorithm actually correspond to ML estimation of the DoA and joint

ML estimation, respectively. The overall complexity of the sequential

directions estimation is thusO(m+n), compared toO(mn) for the

joint estimation with the same test directions. Note that a similar

approach, in which DoAs for all paths are estimated at once first, was

recently proposed [33] (without theoretical justification).

5. PRELIMINARY EXPERIMENT

Let us compare the proposed sequential direction estimation to the

classical joint estimation. This experiment must be seen as an exam-

ple illustrating the potential of the approach, and not as an extensive

experimental validation.

Experimental settings. Consider synthetic channels generated us-

ing the NYUSIM channel simulator [34] (setting f = 28GHz, the

distance between transmitter and receiver to d= 30m) to obtain the

DoDs, DoAs, gains and phases of each path. The channel matrix is

then obtained from eq. (1), considering square Uniform Planar Arrays

(UPAs) with half-wavelength separated antennas, with nt = 64 and

nr=16. Optimal observations are considered, taking both W and X

as the identity. Moreover, the noise variance σ2 is set so as to get an

SNR of 10 dB. Finally, the two aforementioned direction estimation

strategies are inserted in the Matching Pursuit (MP) algorithm [10],

discretizing the directions taking m = n = 2,500, and varying the

total number P of estimated paths.

Results. Table 1 shows the obtained relative MSE and estimation

times (Python implementation on a laptop with an Intel(R) Core(TM)

i7-3740QM CPU @ 2.70 GHz). First of all, for P = 5,10,20, the

estimation error decreases and the estimation time increases with

P , exhibiting a trade-off between accuracy and time. However,

increasing P beyond a certain point seems useless, since the error

re-increases, as shown by the MSE for P =40, echoing the trade-off



evoked in section 3.3, and indicating that P ∗ is certainly between 20
and 40 for both methods in this setting. Finally, for any value of P ,

while the relative errors of the sequential and joint estimation methods

are very similar, the estimation time is much lower (between ten and

twenty times) for sequential estimation. This observation validates

experimentally the theoretical claims made in the previous section.

6. CONCLUSIONS AND PERSPECTIVES

In this paper, the performance limits of massive MIMO channel es-

timation were studied. To this end, training based estimation with a

physical channel model and an hybrid architecture was considered.

The Fisher Information Matrix and the Cramér-Rao bound were de-

rived, yielding several results. The CRB ended up being proportional

to the number of parameters in the model and independent from the

precise model structure. The FIM allowed to draw several conclu-

sions regarding the observation matrices and the arrays geometries.

Moreover, it suggested computationally efficient algorithm which are

asymptotically as accurate as classical ones.

This paper is obviously only a first step toward a deep theoretical

understanding of massive MIMO channel estimation. Apart from

more extensive experimental evaluations and optimized algorithms, a

theoretical study of the bias term of the MSE would be needed to cal-

ibrate models, and the interpretations of section 4 could be leveraged

to guide system design.
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