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PARAMETRIC CHANNEL ESTIMATION FOR MASSIVE MIMO

Luc Le Magoarou, Stéphane Paquelet

b<>com, Rennes, France

ABSTRACT

Channel state information is crucial to achieving the capacity of multi-
antenna (MIMO) wireless communication systems. It requires estimating
the channel matrix. This estimation task is studied, considering a sparse
channel model particularly suited to millimeter wave propagation, as well
as a general measurement model taking into account hybrid architectures.
The contribution is twofold. First, the Cramér-Rao bound in this context is
derived. Second, interpretation of the Fisher Information Matrix structure
allows to assess the role of system parameters, as well as to propose
asymptotically optimal and computationally efficient estimation algorithms.

Index Terms— MIMO, Channel estimation, Cramér-Rao bound.

1. INTRODUCTION
Multiple-Input Multiple-Output (MIMO) wireless communication systems
allow for a dramatic increase in channel capacity, by adding the spatial di-
mension to the classical time and frequency ones [1, 2]. This is done by sam-
pling space with several antenna elements, forming antenna arrays both at
the transmitter (withnt antennas) and receiver (withnr antennas). Capacity
gains over single antenna systems are at most proportional to min(nr,nt).

Millimeter wavelengths have recently appeared as a viable solution for
the fifth generation (5G) wireless communication systems [3, 4]. Indeed,
smaller wavelengths allow to densify half-wavelength separated antennas,
resulting in higher angular resolution and capacity for a given array size.
This observation has given rise to the massive MIMO field, i.e. the study
of systems with up to hundreds or even thousands of antennas.

Massive MIMO systems operating in the millimeter wave band are
very promising in terms of capacity. However, they pose several challenges
to the research community [5, 6], in particular for channel estimation. In-
deed, maximal capacity gains are obtained in the case of perfect knowledge
of the channel state by both the transmitter and the receiver. The estimation
task amounts to determine a complex gain between each transmit/receive
antenna pair, the narrowband (single carrier) MIMO channel as a whole
being usually represented as a complex matrix H ∈ Cnr×nt of such
complex gains. Without a parametric model, the number of real parameters
to estimate is thus 2nrnt, which is very large for massive MIMO systems.
Contributions and organization. In this work, massive MIMO channel
estimation is studied, and its performance limits are sought, as well as their
dependency on key system parameters. In order to answer this question, the
framework of parametric estimation [7] is used. A physical channel model
is first presented, with the general considered observation model, and the
objective is precisely stated. The Cramér-Rao bound for is then derived,
which bounds the variance of any unbiased estimator. To the best of the
authors’ knowledge, this constitutes a novel result for MIMO channel esti-
mation. Interpretation of the bound then allows to precisely assess the role
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of system design on estimation performance, as well as to propose new com-
putationally efficient channel estimation algorithms showing asymptotic
performance equivalent to classical ones based on sparse recovery.

2. PROBLEM FORMULATION
Notations. Matrices and vectors are denoted by bold upper-case and
lower-case letters: A and a (except 3D “spatial” vectors that are denoted
−→a ); the ith column of a matrix A by: ai; its entry at the ith line and jth
column by: aij or Aij. A matrix transpose, conjugate and transconjugate
is denoted by: AT , A∗ and AH respectively. The image, rank and trace
of a linear transformation represented by A are denoted: im(A), rank(A)
and Tr(A) respectively. For matrices A and B, A ≥ B means that
A−B is positive semidefinite. The linear span of a set of vectors A is
denoted: span(A). The Kronecker product, standard vectorization and
diagonalization operators are denoted by vec(·), diag(·), and⊗ respectively.
The identity matrix, them×nmatrix of zeros and ones are denoted by Id,
0m×n and 1m×n respectively. CN (µ,Σ) denotes the standard circularly
symmetric complex gaussian distribution with mean µ and covariance Σ.
E(.) denotes expectation and cov(.) the covariance of its argument.

2.1. Parametric channel model
Consider a narrowband block fading channel between a transmitter and
a receiver with respectively nt and nr antennas. It is represented by the
matrix H∈Cnr×nt , in which hij corresponds to the channel between
the jth transmit and ith receive antennas.

Classically, for MIMO systems with few antennas, i.e. when the quan-
titynrnt is small (up to a few dozens), estimators such as the Least Squares
(LS) or the Linear Minimum Mean Squared Error (LMMSE) are used [8].

However, for massive MIMO systems, the quantity 2nrnt is simply
too big (several hundreds), and resorting to classical estimators becomes
computationally intractable. In that case, a parametric model may be used.
Establishing it consists in defining a set ofnp parameters θ,(θ1,...,θnp)T

that describe the channel as H≈f(θ) for a given function f , where the
approximation is inherent to the model structure and neglected in the sequel
(considering H=f(θ)). Channel estimation then amounts to estimate the
parameters θ instead of the channel matrix H directly. The parametrization
is particularly useful if np� 2nrnt, without harming accuracy of the
channel description. Inspired by the physics of wave propagation under
the plane waves assumption, it has been proposed to express the channel
matrix as a sum of rank-1 matrices, each corresponding to a single physical
path between transmitter and receiver [9]. Adopting this kind of modeling
and generalizing it to take into account any three-dimensional antenna array
geometry, channel matrices take the form

H=

P∑
p=1

cper(
−−→ur,p).et(−−→ut,p)H, (1)

where P is the total number of considered paths (no more than a few
dozens), cp,ρpejφp is the complex gain of the pth path,−−→ut,p is the unit
vector corresponding to its Direction of Departure (DoD) and−−→ur,p the unit
vector corresponding to its Direction of Arrival (DoA). Any unit vector−→u
is described in spherical coordinates by an azimuth angle η and an elevation



angle ψ. The complex response and steering vectors er(
−→u )∈Cnr and

et(
−→u )∈Cnt are defined as (ex(−→u ))i=

1√
nx

e−j 2π
λ
−−→ax,i.−→u for x∈{r,t}.

The set {−−→ax,1,...,−−−→ax,nx} gathers the positions of the antennas with respect
to the centroid of the considered array (transmit if x=t, receive if x=r).
In order to lighten notations, the matrix Ax, 2π

λ
(−−→ax,1,...,−−−→ax,nx)∈R3×nx

is introduced. It simplifies the steering/response vector expression to
ex(−→u ) = 1√

nx
e−jATx

−→u , where the exponential function is applied
component-wise. In order to further lighten notations, the pth atomic
channel is defined as Hp , cper(

−−→ur,p).et(−−→ut,p)H , and its vectorized
version hp , vec(Hp) ∈ Cnrnt . Therefore, defining the vectorized
channel h , vec(H), yields h =

∑P
p=1 hp. Note that the channel

description used here is very general, as it handles any three-dimensional
antenna array geometry, and not only Uniform Linear Arrays (ULA) or
Uniform Planar Arrays (UPA) as is sometimes proposed.

In short, the physical channel model can be seen as a parametric model
with θ = {θ(p) , (ρp,φp,ηr,p,ψr,p,ηt,p,ψt,p), p= 1,...,P}. There are
thus 6P real parameters in this model (the complex gain, DoD and DoA of
every path are described with two parameters each). Of course, the model
is most useful for estimation in the case where 6P � 2nrnt, since the
number of parameters is thus greatly reduced.

Note that most classical massive MIMO channel estimation methods
assume a similar physical model, but discretize a priori the DoDs and DoAs,
so that the problem fits the framework of sparse recovery [10, 11, 12].
The approach used here is different, in the sense that no discretization is
assumed for the analysis.

2.2. Observation model
In order to carry out channel estimation, ns known pilot symbols are
sent through the channel by each transmit antenna. The corresponding
training matrix is denoted X ∈ Cnt×ns . The signal at the receive an-
tennas is thus expressed as HX+N, where N is a noise matrix with
vec(N)∼ CN (0,σ2Id). Due to the high cost and power consumption
of millimeter wave Radio Frequency (RF) chains, it has been proposed
to have less RF chains than antennas in both the transmitter and receiver
[13, 14, 15, 16]. Such systems are often referred to as hybrid architectures.
Mathematically speaking, this translates into specific constraints on the
training matrix X (which has to “sense” the channel through analog
precoders vi∈Cnt , i=1,...,nRF, nRF being the number of RF chains on
the transmit side), as well as observing the signal at the receiver through
analog combiners. Let us denote wj∈Cnr , j=1,...,nc the used analog
combiners, the observed data is thus expressed in all generality as

Y=WHHX+WHN, (2)

where W,(w1,...,wnc) and the training matrix is constrained to be of
the form X=VZ, where Z∈CnRF×ns is the digital training matrix.

2.3. Objective: bounding the variance of unbiased estimators
In order to assess the fundamental performance limits of channel estimation,
the considered performance measure is the Mean Squared Error (MSE).
Denoting indifferently H(θ), f(θ) or H the true channel (h(θ) or h

in vectorized form) and H(θ̂), f(θ̂) or Ĥ its estimate (h(θ̂) or ĥ in
vectorized form) in order to lighten notations, MSE is expressed

MSE=E
(∥∥H−Ĥ

∥∥2
F

)
=Tr

(
cov
(
ĥ
))

︸ ︷︷ ︸
Variance

+
∥∥E(Ĥ)−H

∥∥2
F
,︸ ︷︷ ︸

Bias

(3)

where the bias/variance decomposition can be done independently of the
considered model [7]. The goal here is to lower-bound the variance term,
considering the physical model introduced in the previous subsection. The
bias term is not studied in details here, but its role is evoked in section 3.3.

3. CRAMÉR-RAO LOWER BOUND
In this section, the variance term of eq. (3) is bounded using the Cramér-Rao
Bound (CRB) [17, 18], which is valid for any unbiased estimator θ̂ of the
true parameter θ. The complex CRB [19] states,

cov
(
g(θ̂)

)
≥ ∂g(θ)

∂θ
I(θ)−1 ∂g(θ)

∂θ

H

,

with I(θ),E
[
∂logL
∂θ

∂logL
∂θ

H
]

the Fisher Information Matrix (FIM), where
L denotes the model likelihood, and g is any complex differentiable vector
function. In particular, regarding the variance term of eq. (3),

Tr
(

cov
(
h(θ̂)

))
≥Tr

(∂h(θ)

∂θ
I(θ)−1 ∂h(θ)

∂θ

H)
, (4)

with ∂h(θ)
∂θ

=
(∂h(θ)
∂θ1

,...,∂h(θ)
∂θnp

)
. A model independent expression for the

FIM is provided in section 3.1, and particularized in section 3.2 to the model
of section: 2.1. Finally, the bound is derived from eq. (4) in section 3.3.

3.1. General derivation
First, notice that vectorizing eq. (2), the observation matrix Y follows a
complex gaussian distribution,

vec(Y)∼CN
(
(XT⊗WH)h(θ)︸ ︷︷ ︸

µ(θ)

,σ2(Idns⊗WHW)︸ ︷︷ ︸
Σ

)
.

In that particular case, the Slepian-Bangs formula [20, 21] yields:

I(θ)=2Re
{
∂µ(θ)
∂θ

H
Σ−1 ∂µ(θ)

∂θ

}
= 2α2

σ2
Re
{
∂h(θ)
∂θ

H
P∂h(θ)

∂θ

}
,

(5)

with P, σ2

α2 (X∗⊗W)Σ−1(XT⊗WH) where α2, 1
ns

Tr(XHX) is
the average transmit power per time step. Note that the expression can be
simplified to P= 1

α2

(
(X∗XT )⊗(W(WHW)−1WH)

)
using elemen-

tary properties of the Kronecker product. The matrix W(WHW)−1WH

is a projection matrix onto the range of W. In order to ease further interpre-
tation, assume that XHX=α2Idns . This assumption means that the trans-
mit power is constant during training time (‖xi‖22=α2, ∀i) and that pilots
sent at different time instants are mutually orthogonal (xHi xj=0, ∀i 6=j).
This way, 1

α2 X∗XT is a projection matrix onto the range of X∗, and P can
itself be interpreted as a projection, being the Kronecker product of two pro-
jection matrices [22, p.112] (it is an orthogonal projection since PH=P).

3.2. Fisher information matrix for a sparse channel model
Consider now the parametric channel model of section 2.1, where
h=

∑P
p=1hp, with hp=cpet(

−−→ut,p)∗⊗er(
−−→ur,p).

Intra-path couplings. The derivatives of h with respect to parameters of
the pth path θ(p) can be determined using matrix differentiation rules [23]:
• Regarding the complex gain cp = ρpe

jφp , the model yields the
expressions ∂h(θ)

∂ρp
= 1
ρp

hp and ∂h(θ)
∂φp

=jhp.

• Regarding the DoA, ∂h(θ)
∂ηr,p

=
(
Idnt⊗diag(−jAT

r
−−→vηr,p)

)
hp and

∂h(θ)
∂ψr,p

=
(
Idnt⊗diag(−jAT

r
−−−→vψr,p)

)
hp, where−−→vηr,p and−−−→vψr,p are the

unit vectors in the azimuth and elevation directions at−−→ur,p, respectively.
• Regarding the DoD, ∂h(θ)

∂ηt,p
=
(
diag(jAT

t
−−→vηt,p)⊗Idnr

)
hp and

∂h(θ)
∂ψt,p

=
(
diag(jAT

t
−−→vψt,p)⊗Idnr

)
hp, where−−→vηt,p and−−→vψt,p are the

unit vectors in the azimuth and elevation directions at−−→ut,p, respectively.



Denoting ∂h

∂θ(p) ,
(
∂h(θ)
∂ρp

,∂h(θ)
∂φp

,∂h(θ)
∂ηr,p

,∂h(θ)
∂ψr,p

,∂h(θ)
∂ηt,p

,∂h(θ)
∂ψt,p

)
, the part

of the FIM corresponding to couplings between the parameters θ(p)

(intra-path couplings) is expressed as

I(p,p),
2α2

σ2
Re

{
∂hH

∂θ(p)
P

∂h

∂θ(p)

}
. (6)

Let us now particularize this expression. First of all, in order to
ease interpretations carried out in section 4, consider the case of optimal
observation conditions (when the range of P contains the range of ∂h(θ)

∂θ
).

This allows indeed to interpret separately the role of the observation
matrices and the antenna arrays geometries, and corresponds to take
P=Id in eq. (6). Second, consider for example the entry corresponding
to the coupling between the departure azimuth angle ηt,p and the arrival
azimuth angle ηr,p of the pth path. It is expressed under the optimal

observation assumption as 2α2

σ2
Re
{
∂h(θ)
∂ηr,p

H ∂h(θ)
∂ηt,p

}
. Moreover,

∂h(θ)
∂ηr,p

H ∂h(θ)
∂ηt,p

=hHp

(
diag
(
jAT

t
−−→vηt,p

)
⊗diag

(
jAT

r
−−→vηr,p

))
hp

=
−ρ2p
nrnt

(
1TntA

T
t
−−→vηt,p

)(
1TnrA

T
r
−−→vηr,p

)
=0,

since Ar1nr =0 and At1nt =0 by construction (because the antennas
positions are taken with respect to the array centroid). This means that
the parameters ηr,p and ηt,p are statistically uncoupled, i.e. orthogonal
parameters [24]. Computing all couplings for θ(p) yields

I(p,p)=
2ρ2pα

2

σ2


1
ρ2p

0 01×2 01×2

0 1 01×2 01×2

02×1 02×1 Br 02×2

02×1 02×1 02×2 Bt

, (7)

where

Bx=
1

nx

 ∥∥AT
x
−−→vηx,p

∥∥2
2

−−→vηx,pTAxA
T
x
−−−→vψx,p

−−−→vψx,p
TAxA

T
x
−−→vηx,p

∥∥AT
x
−−−→vψx,p

∥∥2
2

, (8)

with x∈{r,t}. These expressions are thoroughly interpreted in section 4.
Global FIM. Taking into account couplings between all paths, The global
FIM is easily deduced from the previous calculations and block structured,

I(θ)=

I(1,1) I(1,2) ... I(1,P)

I(2,1) I(2,2)
...

. . .

I(P,1) I(P,P)

,
where I(p,q)∈R6×6 contains the couplings between parameters of the pth
and qth paths and is expressed I(p,q) , 2α2

σ2
Re
{

∂h

∂θ(p)

H
P ∂h

∂θ(q)

}
. The

off-diagonal blocks I(p,q) of I(θ), corresponding to couplings between
parameters of distinct paths, or inter-path couplings, can be expressed
explicitly (as in eq. (7) for intra-path couplings). However, the obtained
expressions are less prone to interesting interpretations, and inter-paths
couplings have been observed to be negligible in most cases. They are thus
not displayed in the present paper, for brevity reasons.

3.3. Bound on the variance
The variance of channel estimators remains to be bounded, using eq. (4).
From eq. (5), the FIM can be expressed more conveniently only with real
matrices as I(θ)= 2α2

σ2
D̄T P̄D̄, with

D̄,

(
Re{∂h(θ)

∂θ
}

Im{∂h(θ)
∂θ
}

)
, P̄,

(
Re{P} −Im{P}
Im{P} Re{P}

)
.

where P̄ is also a projection matrix. Finally, injecting eq. (5) into eq. (4)
assuming the FIM is invertible, gives

Tr
(
cov
(
h(θ̂)

))
≥ σ2

2α2 Tr
(
D̄(D̄T P̄D̄)−1D̄T

)
≥ σ2

2α2 Tr
(
D̄(D̄T D̄)−1D̄T

)
= σ2

2α2np=3σ
2

α2P,
(9)

where the second inequality comes from the fact that P̄ being an orthog-
onal projection matrix, P̄≤ Id⇒ D̄T P̄D̄≤ D̄T D̄⇒ (D̄T P̄D̄)−1≥
(D̄T D̄)−1⇒D̄(D̄T P̄D̄)−1D̄T ≥D̄(D̄T D̄)−1D̄T (using elementary
properties of the ordering of semidefinite positive matrices, in partic-
ular [25, Theorem 4.3]). The first equality comes from the fact that
Tr
(
D̄(D̄T D̄)−1D̄T

)
= Tr(Idnp) =np. Finally, the second equality is

justified by np=6P considering the sparse channel model.
Optimal bound. The first inequality in eq. (9) becomes an equality if
an efficient estimator is used [7]. Moreover, the second inequality is an
equality if the condition im

(∂h(θ)
∂θ

)
⊂ im(P) is fulfilled (this corresponds

to optimal observations, further discussed in section 4). Remarkably,
under optimal observations, the lower bound on the variance is directly
proportional to the considered number of paths P , and does not depend
on the specific model structure, since the influence of the derivative matrix
D̄ cancels out in the derivation. Moreover, it is inversely proportional to
the quantity α2

σ2
which can be interpreted as a transmit SNR.

Sparse recovery CRB. It is interesting to notice that the bound obtained
here is similar to the CRB for sparse recovery [28] (corresponding to
an intrinsically discrete model), that is proportional to the sparsity of the
estimated vector, analogous here to the number of paths.

4. INTERPRETATIONS
The main results of sections 3.2 and 3.3 are interpreted in this section,
ultimately guiding the design of efficient estimation algorithms.
Parameterization choice. The particular expression of the FIM allows
to assess precisely the chosen parameterization. First of all, I(θ) has
to be invertible and well-conditioned, for the model to be theoretically
and practically identifiable [26, 27], respectively. As a counterexample,
imagine two paths indexed by p and q share the same DoD and DoA, then
proportional columns appear in ∂h(θ)

∂θ
, which implies non-invertibility of

the FIM. However, it is possible to summarize the effect of these two paths
with a single virtual path of complex gain cp+cq without any accuracy
loss in channel description, yielding an invertible FIM. Similarly, two paths
with very close DoD and DoA yield an ill-conditioned FIM (since the
corresponding steering vectors are close to colinear), but can be merged into
a single virtual path with a limited accuracy loss, improving the conditioning.
Interestingly, in most channel models, paths are assumed to be grouped
into clusters, in which all DoDs and DoAs are close to a principal direction
[31, 32, 33]. Considering the MSE, merging close paths indeed decreases
the variance term (lowering the total number of parameters), without
increasing significantly the bias term (because their effects on the channel
matrix are very correlated). These considerations suggest dissociating the
number of paths considered in the model P from the number of physical
paths, denotedPφ, takingP <Pφ by merging paths. This is one motivation
behind the famous virtual channel representation [9], where the resolution
at which paths are merged is fixed and given by the number of antennas.
The theoretical framework of this paper suggests to set P (and thus the
merging resolution) so as to minimize the MSE. A theoretical study of the
bias term of the MSE (which should decrease when P increases) could
thus allow to calibrate models, choosing an optimal number of paths P∗

for estimation. Such a quest for P∗ is carried out empirically in section 5.
Optimal observations. The matrices X and W (pilot symbols and
analog combiners) determine the quality of channel observation. In-
deed, it was shown in section 3.3 that the lowest CRB is obtained when
im
(∂h(θ)

∂θ

)
⊂ im(P), with P= 1

α2

(
(X∗XT )⊗(W(WHW)−1WH)

)
.



In case of sparse channel model, using the expressions for ∂h(θ)
∂θ

derived
above, this is equivalent to two distinct conditions for the training matrix:

span

(
P⋃
p=1

{
et(
−−→ut,p),

∂et(
−−→ut,p)

∂ηt,p
,
∂et(
−−→ut,p)

∂ψt,p

})
⊂ im(X),

and for the analog combiners:

span

(
P⋃
p=1

{
er(
−−→ur,p),

∂er(
−−→ur,p)

∂ηr,p
,
∂er(
−−→ur,p)

∂ψr,p

})
⊂ im(W),

where ∂ex(
−−→ux,p)

∂ξx,p
= diag(−jAT

x
−−→vξx,p)ex(−−→ux,p) with x ∈ {r, t} and

ξ∈{η,ψ}. These conditions are fairly intuitive: to estimate accurately pa-
rameters corresponding to a given DoD (respectively DoA), the sent pilot se-
quence (respectively analog combiners) should span the corresponding steer-
ing vector and its derivatives (to “sense” small changes). To accurately es-
timate all the channel parameters, it should be met for each atomic channel.
Array geometry. Under optimal observation conditions, performance
limits on DoD/DoA estimation are given by eq. (8). The lower the diagonal
entries B−1

x , the better the bound. This implies the bound is better if the
diagonal entries of Bx are large and the off-diagonal entries are small (in
absolute value). Since the unit vectors−−→vηx,p and−−−→vψx,p are by definition
orthogonal, having AxA

T
x = β2Id with maximal β2 is optimal, and

yields uniform performance limits for any DoD/DoA. Moreover, in this
situation, β2 is proportional to 1

nx

∑nx
i=1‖
−−→ax,i‖22, the mean squared norm

of antenna positions with respect to the array centroid. Having a larger
antenna array is thus beneficial (as expected), because the furthest antennas
are from the array centroid, the larger β2 is.
Orthogonality of DoA and DoD. Section 3.2 shows that the matrix
corresponding to intra-path couplings (eq. (7)) is block diagonal, meaning
that for a given path, parameters corresponding to gain, phase, DoD and
DoA are mutually orthogonal. Maximum Likelihood (ML) estimators
of orthogonal parameters are asymptotically independent [24] (when
the number of observations, or equivalently the SNR goes to infinity).
Classically, channel estimation in massive MIMO systems is done using
greedy sparse recovery algorithms [10, 11, 12]. Such algorithms can be cast
into ML estimation with discretized directions, in which the DoD and DoA
(coefficient support) are estimated jointly first (which is costly), and then
the gain and phase are deduced (coefficient value), iteratively for each path.
Orthogonality between the DoD and DoA parameters is thus not exploited
by classical channel estimation methods. We propose here to exploit it via
a sequential decoupled DoD/DoA estimation, that can be inserted in any
sparse recovery algorithm in place of the support estimation step, without
loss of optimality in the ML sense. In the proposed method, one direction
(DoD or DoA) is estimated first using an ML criterion considering the
other direction as a nuisance parameter, and the other one is deduced using
the joint ML criterion. Such a strategy is presented in algorithm 1. It can
be verified that lines 3 and 6 of the algorithm actually correspond to ML
estimation of the DoA and joint ML estimation, respectively. The overall
complexity of the sequential directions estimation is thus O(m+ n),
compared toO(mn) for the joint estimation with the same test directions.
Note that a similar approach, in which DoAs for all paths are estimated
at once first, was recently proposed [29] (without theoretical justification).

5. PRELIMINARY EXPERIMENT
Let us compare the proposed sequential direction estimation to the classical
joint estimation. This experiment must be seen as an example illustrating the
potential of the approach, and not as an extensive experimental validation.
Experimental settings. Consider synthetic channels generated using
the NYUSIM channel simulator [30] (setting f = 28 GHz, the distance
between transmitter and receiver to d=30 m) to obtain the DoDs, DoAs,

Algorithm 1 Sequential direction estimation (DoA first)

1: Choosem DoAs to test: {−→u1,...,−→um}
2: Build the matrix Kr=

(
WHer(

−→u1)
‖WHer(

−→u1)‖2
|...| WHer(

−→un)
‖WHet(

−→un)‖
2

)
3: Find the index î of the maximal entry of diag(KH

r YYHKr),
and set −̂→ut←−→uî (O(m) complexity)

4: Choose n DoDs to test: {−→v1,...,−→vn}
5: Build the matrix Kt=

(
XHet(

−→v1)
‖XHet(

−→v1)‖2
|...| XHet(

−→vn)
‖XHet(

−→vn)‖
2

)
6: Find the index ĵ of the maximal entry of er(

−→uî)
HYKt,

and set −̂→ut←−→vĵ (O(n) complexity)

gains and phases of each path. The channel matrix is then obtained
from eq. (1), considering square Uniform Planar Arrays (UPAs) with
half-wavelength separated antennas, with nt=64 and nr=16. Optimal
observations are considered, taking both W and X as the identity. More-
over, the noise variance σ2 is set so as to get an SNR of 10 dB. Finally,
the two aforementioned direction estimation strategies are inserted in the
Matching Pursuit (MP) algorithm [10], discretizing the directions taking
m=n=2,500, and varying the total number P of estimated paths.
Results. Table 1 shows the obtained relative MSE and estimation times
(Python implementation on a laptop with an Intel(R) Core(TM) i7-3740QM
CPU @ 2.70 GHz). First of all, for P = 5,10,20, the estimation error
decreases and the estimation time increases with P , exhibiting a trade-off
between accuracy and time. However, increasing P beyond a certain
point seems useless, since the error re-increases, as shown by the MSE
for P=40, echoing the trade-off evoked in section 3.3, and indicating that
P∗ is certainly between 20 and 40 for both methods in this setting. Finally,
for any value of P , while the relative errors of the sequential and joint
estimation methods are very similar, the estimation time is much lower
(between ten and twenty times) for sequential estimation. This observation
validates experimentally the theoretical claims made in the previous section.

6. CONCLUSIONS AND PERSPECTIVES
In this paper, the performance limits of massive MIMO channel estimation
were studied. To this end, training based estimation with a physical channel
model and an hybrid architecture was considered. The Fisher Information
Matrix and the Cramér-Rao bound were derived, yielding several results.
The CRB ended up being proportional to the number of parameters in
the model and independent from the precise model structure. The FIM
allowed to draw several conclusions regarding the observation matrices
and the arrays geometries. Moreover, it suggested computationally efficient
algorithm which are asymptotically as accurate as classical ones.

This paper is obviously only a first step toward a deep theoretical
understanding of massive MIMO channel estimation. Apart from more
extensive experimental evaluations and optimized algorithms, a theoretical
study of the bias term of the MSE would be needed to calibrate models, and
the interpretations of section 4 could be leveraged to guide system design.
Acknowledgments. The authors wish to thank Matthieu Crussière for the
fruitful discussions that greatly helped improving this work.

Joint estimation Sequential estimation
Rel. MSE Time Rel. MSE Time

P=5 0.077 1.24 0.092 0.11
P=10 0.031 2.40 0.039 0.16
P=20 0.017 4.66 0.021 0.24
P=40 0.025 9.50 0.023 0.42

Table 1. Relative MSE and estimation time (in seconds), in average over
100 channel realizations, the lowest MSE being shown in bold.
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