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Abstract—In this paper, we investigate the impact of mobility
on user performance in the context of dense LTE-A networks.
To this end, we propose simple analytical models that capture
mobility through the distribution of the mobile users sojourn
time, i.e., the time a mobile user is physically present in a given
cell. We use these models to derive the throughput of users who
remain spatially static during their whole data transmission and
the amount of handovers generated by moving users. We analyze
the impact on performance of some key parameters such as the
size of the small cell, the speed and proportion of mobile users
and the distribution of their sojourn time. Numerical evaluation
and simulation results are provided to assess the accuracy of the
latter model and gain insight into the global system performance.

I. INTRODUCTION

To cope with the continuous increase in mobile data traffic,
network operators envisage massive deployment of small cells
so as to enhance the capacity and/or coverage of LTE-A
networks [1]. In such dense LTE-A networks, the proportion
of mobile users and their impact on system performance is
expected to increase. Indeed, moving users will experience var-
ious transmission conditions in the overlapping zones between
macro-cells and small cells. As a consequence, increased
overhead has to be handled due to a higher handover frequency
between neighboring cells. In the meantime, static users may
benefit from the fact that mobile users traverse the cell. Indeed,
the effective load decreases when moving users leave the cell.

Accounting for such complex mobility effects in a sim-
ple manner represents an important challenge. As motivated
above, this can be formulated as a trade-off between an
enhanced performance for static users versus an increase of
handovers generated by mobile users. In this context, the
present paper addresses the impact of user mobility on the
performance of small cells in LTE-A networks. Specifically,
we study the influence of mobile users on the performance of
static users and the amount of generated handovers.

Although revisited in the present context of LTE-A net-
works, various user mobility patterns for wireless networks

* This work has been carried out in the framework of IDEFIX project,
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have been previously proposed in order to define the relevant
modeling characteristics [8]. Two main categories of models
can be identified. First, geometric models explicitly represent
the random paths of moving users in the plane, e.g., by means
of the so-called Random Waypoint (RW) model. In [9], the
RW model enables the authors to show that the handover
rate is proportional to the square root of the cell density.
However, these geometric models do not typically account for
the dynamicity of communication traffic (i.e., flow arrivals and
departures). On the other hand, non-spatial models address this
dynamicity at the expense of a simplified mobility description.
Indeed, mobility is simply modeled by assuming that moving
users jump between distinct capacity zones according to a
Markov process. The capacity gain due to mobility is then
estimated through upper and lower bounds associated with
fluid limits and quasi-stationary regimes, respectively [3], [4],
[5]. Instead of deriving bounds, approximate expressions for
the mean flow throughput are derived in [7] by means of a
Markovian model for the moving users’ displacement.

In this paper, we propose to decompose the mobility
problem as follows. We first capture mobility through the
distribution of the mobile users sojourn time in a given cell,
i.e., the time a mobile user is physically present in the cell.
Such a distribution is the output of a chosen mobility model,
be it RW, discrete or continuous Markovian, etc. Given this
distribution, we then construct a queuing model that allows
us to derive performance metrics at the flow level for each
user class, namely the mean throughput of static users and the
handover probability for mobile users.

II. NETWORK MODEL

Consider a macro-cell containing several small cells. Each
small cell being of limited range,we consider here that its
transmission capacity C (Mbit/s) is spatially constant, which
represents a reasonable assumption for small cells. The case
of macrocells with varying capacity will be considered in
future work. The macro-cell is visited by both static and
mobile users; the latter move inside the macro-cell and may
cross one or several small cells before completing a data
transmission. We address the impact of these mobile users on



the performance of users who remain static inside the small
cell, and the amount of generated handover. In the following,
we interchangeably use the terms “small cell” and “cell”.

A. Assumptions and notation

The transmission capacity C of each small cell is equally
shared among all users present in its service area. This can
be implemented by means of a Round-Robin discipline and
the occupancy of this service system can be modeled by a
Processor-Sharing (PS) queue [2]. In other words, at any time
t, each user is given the instantaneous service rate C/N(t) if
the total number of active users in the cell is N(t).

Considering downlink traffic only, we assume that static
and mobile users generate requests for transmission in the
cell according to independent Poisson processes with rates λs
and λm, respectively. Note that λm accounts for users that
become active inside the considered cell as well as already
active users coming from neighbouring cells. Both kinds of
requests have an identically distributed volume Σ of data to
be transferred. As soon as a new request arrives (either from
a static or a mobile user), it triggers the start of a new data
transmission. For a static user, this transmission lasts until the
completion of the whole data transfer; the volume eventually
transferred thus equals Σ. For a mobile user, this transmission
can end either because the user has completed its transfer
before leaving the cell, or because he has left the cell before
completing its transfer. As a result, the volume transferred to
a mobile user is always less than (or equal to) Σ. We denote
by Θ the remaining sojourn time of an active mobile user,
that is, the time duration he physically stays in the cell once
the transmission has started; note that Θ can be expressed as
Θ = D/v where D is the random distance the mobile user
travels in the cell (from its activation point) and v is the speed
of the user, here assumed to be constant. Finally, we denote
by µ = C/E(Σ) (s−1) the service rate of the cell, i.e., the
departure rate of full transmissions that the cell can handle. A
“full transmission” refers either to the transmission of a static
user or to that of a mobile user that has not left the cell before
completing its transfer. Due to mobility, µ does not correspond
to the actual number of transfers in the cell.

B. Markovian model

Given the above description, the occupation state of
the cell can be described by the bi-dimensional process
(Ns(t), Nm(t))t≥0, where Ns(t) (resp. Nm(t)) is the number
of static (resp. mobile) ongoing data transfers in the cell at
time t. The evolution of this process is exactly represented by
a so-called Processor-Sharing queue with impatience [6], the
“impatient” customers here corresponding to mobile users that
may leave the system before their service completion.

To simply characterize the evolution of this PS queue with
impatience, we now assume that the volume Σ is exponentially
distributed with parameter 1/E(Σ) and that the duration Θ

is exponentially distributed with parameter θ = 1/E(Θ), the
impatience rate. The process (Ns(t), Nm(t))t≥0 is then clearly
Markovian with transition diagram illustrated in Figure 1; from
any state (ns, nm), ns > 0, nm > 0, we can reach state
(ns + 1, nm) with transition rate λs, or state (ns − 1, nm)

with transition rate nsµ/(ns + nm), corresponding to the
completion of the transmission of one of the ns static users
among a total of ns +nm users. Similarly, we can reach state
(ns, nm + 1) with transition rate λm, or state (ns, nm − 1)

with transition rate nmµ/(ns + nm) + nmθ; the second term
corresponds to one of the nm mobile users leaving the cell
before completing its transfer.
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Fig. 1. Transition diagram for the Markov process (Ns(t), Nm(t))t≥0

By using an appropriate Lyapunov function, it can be simply
shown that the occupancy process (Ns(t), Nm(t))t≥0 has a
stationary regime if ρs = λs/µ < 1. Note that this stability
condition does not depend on the traffic intensity of mobile
(i.e., impatient) users. Intuitively, this can be understood by
the fact that the latter always leave the cell after a finite time
and therefore cannot cause a system overload. Now fixing
ρs < 1, it is easily verified from the transition diagram in
Figure 1 that the process (Ns(t), Nm(t))t≥0 is not reversible
and thus its stationary distribution p(ns, nm), ns, nm ≥ 0, is
not amenable to a simple product form. We can nevertheless
determine this stationary distribution by solving numerically
its associated system of global balance equations, truncating
both dimensions of the state space and using any appropriate
numerical technique (e.g. Gauss-Seidel or Least mean square).
From this distribution, we can derive the performance indica-
tors of interest. First, we calculate the average throughput γ



obtained by any static user; by Little’s law, E(Ns)/λs is the
mean time to transfer the average volume E(Σ) hence

γ =
λsE(Σ)

E(Ns)
. (1)

We further derive the proportion H of mobile users that exit
the cell before the completion of their transmission (H stands
for “Handover”), that is,

H =
∑

ns≥0,nm≥1

q(ns, nm)
(ns + nm)θ

µ+ (ns + nm)θ
, (2)

where q(ns, nm) = p(ns, nm)/P(Nm ≥ 1).

C. A Fixed-Point approximation

Although the Markovian model can be solved numerically,
it does not lend itself to explicit expressions for either the
mean throughput γ or the handover probability H . Moreover,
it is limited to exponentially distributed variables Σ and Θ.
We now propose an alternative approximate model that allows
deriving such expressions in a wider assumption framework.

Instead of viewing mobile users as impatient customers
for the Processor-Sharing queue, we can consider them as
belonging to another class similar to that of static users
but with a distinct service rate µm 6= µ which accounts
for the early departures due to their mobility. Specifically,
we represent the cell occupancy by a multi-class Processor-
Sharing queue with 2 classes of customers, a static class and
a mobile class, as illustrated in Figure 2. As in Section II-A,
static (resp. mobile) users still generate requests according to
a Poisson process with a rate λs (resp. λm) and the service
rate of static users is µs = µ = C/E(Σ).

Fig. 2. Multi-class PS queue with Fixed-Point approximation

We are now left to estimate the equivalent service rate of
mobile users µm 6= µ. Let us first assume that the average
number of bits x transferred by a mobile user before he
physically leaves the cell is known. As argued in Section II-A,
we have x ≤ E(Σ); this quantity is obviously related to the
total load of the cell and to the physical sojourn time Θ of
mobile users in the cell. From that value of x, we can write
the service rate of mobile users in the PS queue as

µm =
C

x
. (3)

Given parameters λs, λm, µs and µm, standard results for the
stationary multi-class Processor Sharing queues can be readily
applied to calculate the average throughput γ obtained by both
static and mobile users during their transfer, that is,

γ = C(1− ρ) (4)

where ρ = ρs + ρm, with

ρs =
λs
µ

=
λsE(Σ)

C
, ρm =

λm
µm

=
λmx

C
. (5)

Recall that the stability condition for that multi-class PS queue
is ρ < 1, and it is thus necessary that ρs < 1 to ensure the
system stability. The sufficiency of condition ρs < 1 is less
straightforward. However, as argued below, x and therefore ρm
will be defined as a function of ρs, say ρm = f(ρs). Based
on the numerical evaluations of γ in Section III-A below, we
can conjecture that ρs < 1 is sufficient to ensure that γ > 0.

We now provide an estimation for the missing parameter x,
required in the expression of µm. Consider a mobile user with
a given volume Σ = y to transfer. If he stays in the cell a time
t ≥ y/γ, he can complete a full transfer. On the other hand,
if he stays in the cell a time t < y/γ, this time only enables
him to download γt bits in average. Given Σ = y, the mean
transferred volume x(y) can therefore be expressed as

x(y) =

∫ y
γ

0

γt fΘ(t) dt+

∫ +∞

y
γ

y fΘ(t) dt (6)

where fΘ is the probability density of the time Θ spent by a
mobile user in the cell after the transmission has started. Now,
deconditioning expression (6) with respect to the distribution
of Σ (with probability density fΣ), we obtain

x =

∫ +∞

0

x(y)fΣ(y) dy (7)

with x(y) expressed in (6). We thus end up with a system of
four dependent equations (3)-(4)-(5)-(7) that provide a Fixed-
Point equation for unknown µm, or equivalently γ. Once
γ is determined by the Fixed-Point equation, the handover
probability H can then be estimated in turn by

H =

∫ +∞

0

P
[
Θ ≤ y

γ

]
fΣ(y) dy. (8)

Despite its simplicity, the above Fixed-Point approach is,
however, an approximation in that we implicitly assume in
both relations (7) and (8) that a mobile user always receives
an average throughput γ̄ along its entire sojourn in the cell.

If we assume, as previously, that Σ and Θ are exponentially
distributed; integral (7) then readily gives

x =
σγ

σθ + γ
, (9)

where σ = E(Σ) and θ = 1/E(Θ). This relation enables us
to easily reduce the latter set of equations (3)-(4)-(5)-(7) to a
simple quadratic equation in γ with a unique positive solution,
thus providing the average throughput

γ =
C − σ(λs + λm + θ) +

√
∆

2
, (10)

where ∆ = (C − σ(λs +λm + θ))2 + 4θσ(C −λsσ). Finally,
applying (8) to exponentially distributed Σ and Θ gives

H =
σθ

σθ + γ
. (11)



Note however that, unlike the first Markovian model, this
second PS queue model can account for wider range of
assumptions for the distributions of both the sojourn time Θ

of a mobile user in the cell and the volume Σ of data a user
has to transfer, while staying very easy to implement.

III. PERFORMANCE RESULTS

We have proposed two models that account for the mutual
impact of static and mobile users in a radio cell, namely a
Markovian model and a Fixed-Point approximation. As long
as the assumptions of Section II-B are satisfied, the Markovian
model is exact. However, if one of the above-mentioned
assumptions is not satisfied anymore (e.g., one of the random
variables is no longer exponentially distributed), exact results
can no longer be derived using the Markovian model and we
need to resort to simulation to validate both models.

A. Model validation

We first compare the results provided by the two models
in the case where Θ and Σ are both exponentially distributed.
We set C = 40 Mbit/s for the cell capacity and σ = 10

MB for the mean flow volume. The mobile users speed is set
to v = 50 km/h and the mean distance crossed by mobile
users is E(D) = 100 m, yielding a mean exit rate θ =

v/E(D) = 0.14 s−1. Figure 3 compares the mean throughput
of static users γ obtained by the two models, in terms of
the load ρs induced by static users. The continuous (resp.
dotted) lines correspond to the results of the exact Markovian
model (resp. the Fixed-Point approximation). Each of the three
sets of curves corresponds to a proportion of mobile users
p ∈ {0.2, 0.5, 0.8}. We observe that the results provided by
the Fixed-Point approximation match the exact results with a
good accuracy (with a relative error less than 10% in most
cases), and provide a lower bound (i.e., conservative) for the
static user throughput in all cases. From these results we
note, as expected, that the throughput of static users degrades
considerably as the proportion of mobile users increases, thus
increasing the total load ρ = ρs + ρm.

Figure 4 represents the handover probability H of mobile
users, still as a function of the load ρs of static users. We use
the same numerical values for all parameters, but for sake of
clarity we just represent two sets of curves corresponding to
a proportion of mobile users p ∈ {0.2, 0.5}. When the load
of static users is very low, i.e., ρs → 0, then γ → C and in
view of (11), we have H → σθ/(σθ+C); with the considered
parameters this yields H → 0.22 when ρs → 0. The handover
probability then increases from this initial value as the load of
the static users increases and H tends to 1 when ρs approaches
1. Note that the Fixed-Point approximation is fairly accurate
at relatively low loads and becomes slightly less accurate as
the load increases.
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Fig. 3. Static user throughput as a function of load ρs for different proportions
of mobile users (v = 50 km/h and mean crossed distance E(D) = 100 m)
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Fig. 4. Handover probability as a function of load ρs

We now evaluate the robustness of models with regard to
the distribution of the sojourn time Θ of mobile users in
the cell. The exponential distribution previously considered
for Θ is probably not a realistic assumption. Indeed, if we
consider a mobile user moving in the cell along a diameter
at constant speed and whose initial position is uniformly
distributed on that diameter, it can be easily shown in this
case that Θ is uniformly distributed. Figure 5 thus depicts
the throughput of the static users as a function of the static
user load for different distributions of the mobile user sojourn
time. Values for the uniform and deterministic distribution are
obtained through simple event-driven flow-level simulations,
while those for the exponential distribution are obtained by
numerically solving the Markovian model. We note that the
throughput performance is only marginally impacted by the
sojourn time distribution indicating that derived results remain
valid for more realistic sojourn time distributions.

B. Impact of key parameters

We now use the Fixed-Point approximation to discuss the
impact of some key system parameters such as the speed of
mobile users or the cell size. Figure 6 depicts the variations of
γ with respect to the cell crossing speed v for different values



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Load ρ
s

T
hr

ou
gh

pu
t (

M
bi

t/s
)

 

 

Deterministic
Uniform
Exponential

Fig. 5. Static user throughput as a function of load ρs for different
distributions of mobile users’ sojourn duration

of the static load ρs ∈ {0.2, 0.5, 0.8} (from top to bottom) and
a fixed proportion of mobile users p = 0.5. Note from (4) that
the bounds γ(0) ≤ γ ≤ γ(+∞) hold, where γ(0) = C(1−ρ)

with ρ = (λs + λm)σ/C corresponds to the case when all
users are static (θ = 0), and γ(+∞) = C(1−ρs) corresponds
to mobile users with infinite speed (θ = +∞) and a vanishing
impact on static users. The variations of the throughput in
terms of θ are therefore significant for relatively small values
of ρs. Note also that, as expected, the throughput γ of static
users increases when the speed v increases, validating the fact
that static users benefit from increased mobility.
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Fig. 6. Static user throughput as a function of mobile users’ speed for different
loads ρs ∈ {0.2, 0.5, 0.8} (from top to bottom)

In Figure 7, we assess the impact of the cell size by
considering a typical Micro, Pico or Femto cell with a diameter
of 1 km, 100 m or 10 m, respectively; we also consider that
the mean sojourn durations are proportional to these values (v
is fixed to 5 km/h, e.g. typical of a pedestrian). As expected,
users in Femto cells experience the highest throughput since
they benefit from the least interaction with the mobile users.

IV. CONCLUSION

We have analyzed the impact of mobility on user per-
formance in LTE-A networks with small cells. Two simple
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Fig. 7. Static user througput as a function of load ρs for different cell sizes

analytical models have been proposed that capture mobility
through the distribution of the sojourn time of mobile users:
a Markovian model and a Fixed-Point approximation model.
The first one is exact as long as all distributions involved in
the modeling process are assumed to be exponential, but relies
on a bi-dimensional Markov process that has to be solved
numerically. The second one can manage a wider range of
assumptions for the distributions of variables and is very easy
to implement, but remains an approximation even when all
distributions are exponential. In cases where the first model is
exact, we have shown that the second one is able to predict
user performance with a good accuracy. Based on the proposed
models, we were able to quantify the impact of key mobility
parameters such as speed, proportion of mobile users and cell
size. By means of simulations, we have shown that the derived
results are robust with respect to different distributions of the
mobile users’ sojourn time.
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