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ABSTRACT 

Schizophrenia is a devastating mental disease with an apparent disruption in the highly 
associative default mode network (DMN). Interplay between this canonical network and 
others probably contributes to goal-directed behavior so its disturbance is a candidate 
neural fingerprint underlying schizophrenia psychopathology. Previous research has 
reported both hyper- and hypo-connectivity within the DMN, and both increased and 
decreased DMN coupling with the multi-modal saliency network (SN) and dorsal 
attention network (DAN). The present study systematically revisited network disruption 
in patients with schizophrenia using data-derived network atlases and multivariate 
pattern-learning algorithms in a multi-site dataset (n=325). Resting-state fluctuations in 
unconstrained brain states were used to estimate functional connectivity, and local 
volume differences between individuals were used to estimate structural co-occurrence 
within and between the DMN, SN, and DAN. In brain structure and function, sparse 
inverse covariance estimates of network structure were used to characterize healthy 
and patients with schizophrenia groups, and to identify statistically significant group 
differences. Evidence did not confirm that the backbone of the DMN was the primary 
driver of brain dysfunction in schizophrenia. Instead, functional and structural 
aberrations were frequently located outside of the DMN core, such as in the anterior 
temporoparietal junction and precuneus. Additionally, functional covariation analyses 
highlighted dysfunctional DMN-DAN coupling, while structural covariation results 
highlighted aberrant DMN-SN coupling. Our findings highlight the role of the DMN core 
and its relation to canonical networks in schizophrenia and underline the importance of 
large-scale neural interactions as effective biomarkers and indicators of how to tailor 
psychiatric care to single patients. 
 

 

Keywords: Schizophrenia | default mode network proper | neuroimaging | functional 

connectivity | structural covariance | sparse inverse covariance estimation | 

machine learning 
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INTRODUCTION 

 Schizophrenia is one of the most devastating medical conditions, affecting 

approximately 1% of the general population across cultures (Salomon et al., 2013). The 

clinical manifestations of schizophrenia reflect the disruption of a variety of higher-

order cognitive processes (D'Argembeau et al., 2008; DeLisi, 2001; Frith and Corcoran, 

1996; Haggard et al., 2003) which are likely to be subserved by the association cortex 

(Buckner and Krienen, 2013; Spreng et al., 2009; Stephan et al., 2016). A collection of 

associative cortical areas commonly linked with higher-level cognitive processes in both 

health and schizophrenia is the default mode network (DMN). 

 Several investigators have shown that dysfunction of the DMN in schizophrenia is 

linked to many of the positive symptoms, including delusional experiences and 

hallucinations, as well as negative symptoms and disorganization of thought and 

behavior (Bluhm et al., 2007; Camchong et al., 2009; Garrity et al., 2007; Rotarska-Jagiela 

et al., 2010; Whitfield-Gabrieli et al., 2009b). DMN dysregulation in schizophrenia has 

been associated with deficits in higher-order cognitive processes from different 

symptom clusters, ranging from attention to social cognition (Holt et al., 2011; Northoff 

and Qin, 2011; Whitfield-Gabrieli and Ford, 2012). While approximately 23% of 

variation in liability for schizophrenia can be explained by genetic risk variants (Lee et 

al., 2012; Ripke et al., 2014), evidence suggests that up to 40% of the inter-individual 

variance in functional connectivity patterns of the DMN is under genetic control (Glahn 

et al., 2010), suggesting patterns of DMN organization to be a clinically useful biomarker 

of schizophrenia. 

 Evolutionarily, regions of the association cortex, including the DMN, have 

increased their spatial distance from sensory-motor areas, allowing cognition to become 

more decoupled from perception-action cycles, a view known as the "tethering 
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hypothesis" (Buckner and Krienen, 2013). Indeed, the DMN was recently shown to be 

located at a maximum distance from sensori-motor regions in both functional and 

structural space (Margulies et al., 2016). These findings help explain why the DMN is 

particularly important for maintaining and manipulating abstract representations from 

downstream multi-modal brain systems (Andrews-Hanna et al., 2014; Buckner et al., 

2008; Konishi et al., 2015; Raichle, 2015). Based on this integrative account of DMN 

function, its importance as a diagnostic measure for many of the features of 

schizophrenia may emerge through its abnormal interactions with other neural systems. 

 Understanding how large-scale networks subserve and control higher-order 

cognition is an emerging agenda in psychiatric research (Jang et al., 2017; Medaglia et 

al., 2015) . In particular, reorganization of the coupling modes between the DMN, 

saliency network (SN), and dorsal attention network (DAN) has been repeatedly 

proposed to carry information about the cognitive states that is complementary to task-

related neural activity increases and decreases in the same network (Bzdok et al., 

2016b; Margulies et al., 2016). Therefore, the present study systematically explored the 

dysfunctional couplings between the DMN, SN, and DAN in schizophrenia (White et al., 

2010; Woodward et al., 2011). Abnormal connectivity between large-scale networks and 

the DMN can provide insight into the longstanding "dysconnection hypothesis" that 

explains schizophrenia pathophysiology as coupling impairments due to context-

dependent synaptic modulation (Friston et al., 2016; Friston and Frith, 1995; Stephan et 

al., 2009b; Weinberger et al., 1992). According to this pathophysiological concept, 

interregional functional coupling might be aberrant in schizophrenia because of 

impaired connectional pathways. For instance, it has been proposed that the strength of 

dopaminergic projections between the prefrontal cortex (related to the DMN) and the 

DLPFC (related to the DAN) is weakened in schizophrenia (Lewis and Gonzalez-Burgos, 
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2006; Stephan et al., 2009a). Such dysconnection between large-scale networks may 

contribute to positive symptoms through the failure of attentional reallocation and 

monitoring processes, but also to cognitive symptoms through impaired perceptual 

inference and disturbance of associative learning, as well as to negative symptoms due 

to inability of learning from and adapting to social environments. Together, these 

converging lines of evidence highlight that coupling patterns between canonical 

networks and the DMN may be an important biomarker for many aspects of the 

psychopathology of schizophrenia. 

 Although prior studies have highlighted the DMN as important in schizophrenia, 

the results have revealed a multifaceted and often inconsistent picture of how this large-

scale network links to the major psychiatric disorder. Several studies have reported 

hypo-connectivity between regions of the DMN, such as between the posteromedial 

cortex and the temporoparietal junctions (Bluhm et al., 2007; Camchong et al., 2011; 

Pankow et al., 2015). Other investigators instead reported hyper-connectivity within the 

DMN, such as between the medial prefrontal cortex and the posteromedial cortex 

(Whitfield-Gabrieli et al., 2009b; Zhou et al., 2007). Frequently inconsistent findings 

have also been published on pathological connectivity between the DMN and other 

commonly observed multi-modal networks. For example, coupling of the DMN with the 

DAN as well as coupling between the DMN and the SN were reported as pathologically 

decreased by some (White et al., 2010; Woodward et al., 2011) and as pathologically 

increased by others (Manoliu et al., 2013). Contradictory neural coupling findings have 

therefore been reported within the DMN of schizophrenia patients, as well as between 

the DMN and the other major brain networks including SN and DAN. 

 Given their intimate functional relationships and importance for disease, we 

studied the DMN and its pattern of coupling with the multi-modal DAN and SN in 

Page 5 of 50

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Bzdok 6 

schizophrenia adopting a comprehensive analysis strategy. First, because richer brain 

signals will be measured by taking into account the functional heterogeneity within the 

DMN at the subregional level, we deployed fine-grained topographical definitions from a 

recently completed DMN atlas as the regions of interest (Bzdok et al., 2016a; Bzdok et 

al., 2015; Bzdok et al., 2013; Eickhoff et al., 2016). Second, we extended the previous 

functional connectivity analyses between network parts to sparse inverse covariance 

estimation (Friedman et al., 2008), which has recently been adapted for use in 

neuroimaging (Varoquaux et al., 2010). This under-exploited statistical framework, 

combined with benefits of using a large data-set, (i) offered increased interpretability by 

removing unimportant coupling relations, (ii) acknowledged the entire set of coupling 

relations instead of considering only pairs in isolation, and (iii) could account for the 

impact of third-party influences on each coupling relation. Third, the modeling approach 

is sufficiently abstract to allow for analogous analyses of the relationship between 

networks in both the functional (resting-state connectivity) and the structural (inter-

individual differences in brain volume) domain. Quantifying these aspects of structure-

function correspondence underlying DMN aberration in schizophrenia aimed to 

complement previous connectivity investigations. We hypothesized that structural and 

functional interactions of DMN subnodes with two major brain networks provide 

insights into the mechanisms underlying schizophrenia psychopathology. That is, we 

expected the comparable quantification of neural network coupling in brain volume and 

function to allow zooming in on the multi-level disturbances underlying schizophrenia. 

This comprehensive analysis agenda allowed the formalization of complex 

correspondence between the neurobiological endo-phenotype and the clinical exo-

phenotype in schizophrenia spectrum disorders. 
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MATERIALS AND METHODS 

Data resources 

 This study considered magnetic resonance imaging (MRI) data from 5 different 

population samples acquired in Europe and USA: Aachen, Goettingen, Groeningen, Lille, 

and COBRE. Resting-state functional connectivity (RSFC) and voxel-based morphometric 

(VBM) data were collected from a total of 482 participants, 241 patients with 

schizophrenia and 241 healthy controls. Given the present goal to directly compare 

functional brain recordings and structural brain scans, we further considered only those 

participants who provided both RSFC and VBM in the database. These control and 

disease groups (n=325) were matched for age within and across sites (see 

Supplementary Table 1 for details). No participant in the healthy group had a record of 

neurological or psychiatric disorders. Each participant in the schizophrenia group had 

been diagnosed by a board-certified psychiatrist in accordance with the clinical criteria 

of the International Classification of Diseases (ICD-10) or the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-IV-TR). All acquisition sites used 3T MRI scanners 

(see Supplementary Table 2 for details). For the acquisition of functional brain maps 

(i.e., RSFC), fMRI scans of blood-oxygen-level-dependent (BOLD) signal were recorded 

from the participants who were instructed to lie still during the scanning session and to 

let the mind wander. A post-scan interview confirmed that participants adhered to these 

instructions and did not fall asleep. For the acquisition of structural brain maps (i.e., 

VBM), 3D T1 MRI scans were recorded from each participant. All participants gave 

written informed consent to participate in the study, which was approved by the ethics 

committee of the RWTH Aachen University, Germany. Note that all phenotypic 

information has been anonymized for tabulation. 
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Brain function: Resting-state fMRI 

 To measure functional activity of brain regions, we analyzed resting-state EPI 

(echo-planar imaging) scans from standard BOLD acquisitions (see Supplementary 

Table 2 for details). The preprocessing was performed in SPM8 (Statistical Parametric 

Mapping, Wellcome Department of Imaging Neuroscience, London, UK, 

http://www.fil.ion.ucl.ac.uk/spm/) run under MATLAB R2014a (Mathworks, Natick, 

MA, US). The first 4 brain scans were discarded to allow for magnetic field saturation. 

The EPI images were corrected for head movement by affine registration using a 2-pass 

procedure. To further reduce spurious correlations induced by motion, variance that 

could be explained by the head motion was removed from each voxel’s time series. In 

particular, in adherence to previously published evaluations (Chai et al., 2012; 

Satterthwaite et al., 2013), we removed nuisance signals according to: a) the 6 motion 

parameters derived from the image realignment, b) their first derivatives, and c) the 

respective squared terms (i.e., 24 parameter regression). These corrections have been 

shown to increase specificity and sensitivity of functional connectivity analyses and to 

detect valid signal correlation at rest. Motion correction was applied in all analyses. We 

did not perform global signal regression. Finally, the signal time series were band-pass 

filtered to preserve frequencies between 0.01 and 0.08 Hz which have previously been 

associated with fluctuations of neuronal activity (Fox and Raichle, 2007; Lu et al., 2007), 

and are least impacted by physiological artifacts such as heart rate and respirations. 

 

Brain structure: Voxel-based morphometry MRI 

 To measure the local brain volume across individuals, a high-resolution 

anatomical image was acquired from each participant using conventional scanning 

sequences. Anatomical scans were preprocessed with the VBM8 toolbox 
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(https://dbm.neuro.uni-jena.de/vbm) in SPM8 using standard settings (DARTEL 

normalization to the ICBM-152 template, affine and non-linear spatial normalization). 

Within a unified segmentation model (Ashburner and Friston, 2005), the brain scans 

were corrected for bias-field inhomogeneities. The brain tissue was segmented into gray 

matter, white matter, and cerebrospinal fluid, while adjusting for partial volume effects. 

We performed nonlinear modulation of segmented images to account for the amount of 

expansion and contraction applied during normalization using the nonlinear only 

modulation function within the VBM8 toolbox. The ensuing adjusted volume 

measurements represented the amount of gray matter corrected for individual brain 

sizes. 

 

Regions of interest 

 The DMN is essentially composed of four areas (which we refer to throughout as 

network nodes), including the dorsomedial prefrontal cortex (DMPFC), the 

posteromedial cortex (PMC), as well as the left and right temporoparietal junctions 

(TPJs) (Buckner et al., 2008; Raichle et al., 2001). We note that the common approach is 

to examine the DMN with these nodes as targets of investigation (Du et al., 2016; 

Greicius et al., 2003; Whitfield-Gabrieli and Ford, 2012), assuming that the nodes of the 

DMN are functionally homogeneous. Nevertheless, the functional contribution of each 

individual node to the various abstract cognitive processes maintained by the overall 

network remains inconclusive (cf. Andrews-Hanna et al., 2010; Bado et al., 2014; Braga 

and Buckner, 2017). Indeed, there is recent empirical evidence that the individual nodes 

of the DMN segregate into distinct subnodes (Schurz et al., 2014). These data support 

the notion that neurobiologically meaningful subdivisions within each node of the DMN 
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exist and could be profitably studied in the context of both healthy and abnormal human 

brain function. 

 Indeed, in a series of recent data-driven studies, the individual nodes of the DMN 

have been segregated into distinct subnodes based on local differences in functional 

interaction patterns with the rest of the brain, an established analysis technique called 

connectivity-based parcellation (Behrens et al., 2003; Eickhoff et al., 2015). This 

technique assumes that a ROI may be divided into distinct subregions based on its 

whole-brain connectivity profiles. For each considered DMN node, connectivity-based 

parcellation has previously demonstrated a subdivision of the ROI into cluster with 

topographical boundary definitions which can be reused in other studies. 

 Based on coherent connectivity profiles, the DMPFC was decomposed into two 

caudal and two rostral subnodes (Eickhoff et al., 2016). The PMC was partitioned into a 

ventral and dorsal subnode in the posterior cingulate cortex and one in the retrosplenial 

cortex and one in the precuneus (Bzdok et al., 2015). Finally, the left and right TPJs of 

the DMN were decomposed into an anterior and a posterior subnode (Bzdok et al., 

2016a; Bzdok et al., 2013). Adopting such a fine-grained perspective on DMN 

organization may provide new insights into the pathophysiology of schizophrenia. These 

node and subnode definitions of the DMN were used as 3 different ROI sets (cf. 

Supplementary Table 3): 

• First, we used the DMN atlas with the DMPFC, PMC, and both TPJs as composite 

nodes (4 ROIs), each recombining its constituent subnodes (Fig. 1.A.). The 

covariation analyses based on this ROI set examined the DMN at the conventional 

level of granularity: that is of network nodes. This served as a point of 

comparison for how this major brain network has most frequently been studied 

in previous brain-imaging research.  
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• Second, we used the full DMN atlas (12 ROIs) where the DMPFC, PMC, and the 

TPJs are represented as more fine-grained subnodes (Fig. 1.B.). The DMPFC was 

segregated into a left and right caudal subnode and a rostro-ventral and rostro-

dorsal part (left and right cDMPFC, rvDMPFC and rdDMPFC). Note that among the 

midline structures of the DMN, only the DMPFC yielded a division along the right 

versus left hemisphere in the DMN subnode atlas. The left and right TPJs were 

partitioned into an anterior and posterior subnode (left and right aTPJ and pTPJ). 

The PMC was parcellated into 4 subnodes, including the precuneus (PREC), the 

ventral and dorsal posterior cingulate cortex (vPCC and dPCC), and the 

retrosplenial cortex (RSC). The corresponding covariation analyses examined the 

hypothesis that the DMN can be shown to reveal richer structure in brain signals 

when measured by conventional MRI scanners at the level of network subnodes. 

• Third, the DMN subnode atlas (12 ROIs) was supplemented by nodes from two 

multi-modal networks (Fig. 1.C): (i) the saliency network (Bzdok et al., 2012), 

including the midcingulate cortex (MCC), the bilateral anterior insula (AI) and the 

amygdala (AM), and (ii) the dorsal attention network (Rottschy et al., 2012), 

including the dorsolateral prefrontal cortex (DLPFC) and the intraparietal sulcus 

(IPS) bilaterally (9 additional ROIs outside of the DMN). Covariation analyses 

examined the hypothesis that the DMN subnodes also display characteristic 

interactions with the nodes of other canonical brain networks. Indeed, the DAN 

and the SN have been implicated in attentional switching and reallocation of 

focus, processes that are markedly disrupted in schizophrenia (Luck and Gold, 

2008; Maruff et al., 1996; Menon and Uddin, 2010; Potkin et al., 2009; Sato et al., 

2003). 
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In sum, the covariation analyses of functional coupling and volumetric coupling 

performed in the present study were based on 3 different sets of previously established 

regions of interest. Collectively, the analyses are used to probe the DMN at different 

spatial resolutions and to systematically evaluate their relations to other major brain 

networks. All of the regions of interest used in this study are available online for 

transparency and reuse via a NeuroVault permanent link 

(http://neurovault.org/collections/2216/). 

 

Signal extraction 

 Using the three sets of ROIs described above, quantitative measures of functional 

activity and grey-matter volume were extracted within the DMN, DAN, and SN ROIs in 

every participant. Note that all analyses were constrained to these regions of interest. 

For extracting relevant signal from the functional or structural brain scan, the ROIs 

served as topographic masks used to average the MRI signal across the voxels belonging 

to a given ROI. In RSFC, each target region was represented by the average BOLD signal 

across all voxels of that ROI. This feature-engineering strategy yielded as many 

functional brain variables as target regions in the ROI set for the participants. In VBM, 

each target region in the respective set of ROIs was represented by the average gray 

matter volume across all ROI voxels. Analogously, this way of engineering morphological 

brain features yielded as many volumetric brain variables per participant as the total 

number of ROIs in the current set. All ROI-wise functional or structural time series were 

transformed into z-scores by mean centering and unit-variance scaling. As part of the 

confound-removal procedure, variance that could be explained by the factors “site,” 

“age,” and “gender” as well as their two-way interactions was regressed out from the 

corresponding features. 
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Measuring network covariation: Sparse inverse covariance estimation. Covariance 

has been argued to be a key notion when estimating the statistical dependencies 

characteristic of small-scale neural circuits and large-scale brain networks (Horwitz et 

al., 1995). In the present study, we have performed formal inference of salient 

covariance relations in functional (i.e., RSFC) and volumetric (i.e., VBM) networks (or 

graphs, mathematically speaking) using sparse inverse covariance estimation. The 

automatic identification of networked organization in graphical models is an important 

step supporting the transition from descriptive statistics such as Pearson's correlation 

coefficient to generative models that capture higher-order interactions. Here, the 

employed statistical estimator represents an adaptation of Lasso-like regression models 

(Tibshirani, 1996) to Gaussian graphical models (Friedman et al., 2008), an approach 

that has recently been adapted for application into neuroimaging data (Varoquaux et al., 

2010). The predictive validity of the derived probabilistic descriptions of the coupling 

properties in DMN function and volume was ascertained by cross-validation (3 folds). 

These schemes ensured pattern generalization by measuring the goodness of fit in 

unseen data as a proxy for extrapolation to the general population (Shalev-Shwartz and 

Ben-David, 2014). This approach facilitated model selection for hyper-parameter choice 

with an iteratively refined grid based on the log-likelihood score on left-out brain data 

(default parameters were chosen according to Varoquaux et al., 2010). 

 In a first step, we have computed the empirical covariance matrix (Fig. 2A). This 

simple second-order statistic reflects how strongly the times series of ROI pairs covary 

(in terms of functional coupling in the RSFC analysis or volumetric coupling in the VBM 

analysis). The empirical covariance matrix is given by 
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∑������� 	= 	
1

�
	�, 

 

where  ∈ ℝ�	�	� denotes the input dataset with � variables (i.e., functional brain signals 

averaged per ROI for the RSFC analysis and structural brain signals averaged per ROI for 

the VBM analysis) and � samples (i.e., brain scans). �  denotes the inner product, the 

multiplication of the matrix  with its transpose � . The signed values in the covariance 

matrix indicate the direction of the linear relationship between two variables. This way 

of capturing the covariation in signal amplitude between any two ROIs was computed 

without statistically acknowledging the possible influence from the other ROIs. Every 

individual value in the covariance matrix can be viewed as a Pearson's linear correlation 

between each pair of ROIs, provided that the time series X were mean-centered and 

unit-variance scaled. Although the strengths of correlation between time series of ROI 

pairs were considered in isolation, these covariation strength estimates were likely to be 

confounded with each other. For instance, a strong influence of ROI 1 on both ROI 2 and 

ROI 3 would entail high estimates of covariation between ROI 2 and ROI 3. This 

confound in the correlation structure between any two given target regions may 

therefore not accurately indicate the underlying population-level interaction strength. 

 In a second step addressing this confound and enhancing neurobiological 

interpretability, we computed the partial correlations via the mathematical inverse of 

the covariance matrix, the so-called precision matrix (Fig. 2B). The optimization 

objective is expressed by 

 

��ℓ� 	= 	 �������	≻	 	!�(�	∑�������) 	− 	%&�	'(!	�	 + 	*‖�‖�, 

 

where ∑�������  is the empirical covariance matrix, ‖	∙	‖�  denotes the regularization 
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constraint of putting an ℓ� norm on the matrix elements lying off the diagonal of the 

precision matrix �, and * controls the amount of this sparsity constraint. In contrast to 

ordinary linear correlation matrix or to the empirical covariance matrix described 

above, this matrix estimates the covariation between every two ROIs while conditioning 

on the potential influence of the remaining regions. In other words, the precision matrix 

obtains the direct covariation between two nodes within and between the DMN, SN, and 

DAN by accounting for partial correlations (Marrelec et al., 2006); unlike common linear 

correlation approaches, it does not privilege polysynaptic coupling patterns. Coming 

back to our toy example, we would thus obtain the conditionally independent proportion 

of covariation strength between ROI 2 and ROI 3 that is not explained by the conjoint 

influence from ROI 1. Despite its utility, this statistical approach is often challenging to 

apply in small samples (which is particularly the case of the VBM data in the present 

study). In any dataset	 ∈ ℝ�	�	�, considerable estimation errors can arise when the 

number of unknown model parameters exceeds the number of samples by �	 < 	
�

.
	�	(� +

1).  

 To overcome erroneous eigenstructure, statistical conditioning was improved by 

imposing sparsity assumptions by means of ℓ� penalization (Fig. 2C) of the inverse 

covariance estimation (Friedman et al., 2008; Hastie et al., 2015). In the case of 

multivariate Gaussian models, conditional independence between ROIs is given by the 

zero entries in the precision (i.e., inverse covariance) matrix. Incorporating this 

frequentist prior automatically reduces the model complexity by identifying the most 

important pairs of network nodes and ignoring the remainder. In the case of graphs, 

selecting those covariance parameters in the space of possible covariance models with 

sparse support (i.e., many zero-valued parameters in the graph) equates to limiting the 

number of graph edges. This sparse model estimation automatically balances the 
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compromise between biasing towards model simplicity (hence, neurobiological 

interpretability) and obtaining optimal model fits to brain data. The degree of ℓ� 

penalization, controlled by the coefficient *, was evaluated and selected in the cross-

validation procedure. One important consequence of ℓ� penalization is that searching 

the covariance structure reduces to a convex problem with a unique solution. Hence, 

rerunning the sparse inverse covariance estimation with different random initializations 

of the model parameters will yield an identical solution each time. 

 In sum, detailed probabilistic models of network coupling were automatically 

derived from multi-site brain data by using sparse inverse covariance estimation in both 

groups (i.e., healthy subjects and patients with schizophrenia). Models derived from 

RSFC data could be interpreted as summarizing the most important functional 

connections, while models derived from VBM data could be interpreted as summarizing 

the most important volumetric co-occurrence. 

 

Testing for significant disturbance in DMN covariation 

 Sparse inverse covariance estimation based on RSFC and separately on VBM was to 

be conducted separately in the healthy group and the group of patients with 

schizophrenia. Separate precision matrices were thus obtained in normal controls and 

people with schizophrenia. Statistical significance for group differences (Fig. 2D) was 

assessed based on (family-wise error, multiple-comparison corrected) p-values for the 

multivariate DMN covariation based on bootstrapping for non-parametric hypothesis 

testing (Miller et al., 2016; Smith et al., 2015). A series of bootstrap samples (n=1000) 

were drawn with replacement from the healthy brain data (i.e., RSFC data for functional 

connectivity and VBM data for the volumetric co-occurrence). For each of the thus 

generated 1000 alternative dataset realizations, we performed all above steps of the 
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sparse inverse covariance estimation (Efron and Tibshirani, 1994). This computation 

generated a null distribution of possible covariation estimates for every ROI-ROI 

relation in healthy individuals. Bootstrapping thus provided interval estimates that 

indicated how each coupling strength of the DMN was expected to be distributed in the 

general population (Hastie et al., 2001). 

 Statistically significant differences between the healthy group and the group of 

patients with schizophrenia were then tested at the threshold corresponding to p < 

0.001 by assessing whether the true coupling strength in individuals with schizophrenia 

was higher or lower than 99.9% of the coupling strengths in the healthy population. 

Note that, in VBM data, we have applied a more lenient threshold corresponding to p < 

0.05, which led to statistical significance when structural covariation in schizophrenia 

exceeded the healthy distribution in 95% of the bootstrap samples. This is because the 

VBM analyses were performed in a small-sample scenario (i.e., as many brain images as 

participants), whereas the RSFC analyses were performed in a large-sample scenario 

(i.e., tens of thousands of brain images). In so doing significance testing for group 

differences, first in the functional covariation and then in the structural covariation, has 

been explicitly corrected for multiple testing, searching across all ROI pairs estimated 

(Miller et al., 2016; Smith et al., 2015). 
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RESULTS 

Impact of studying nodes versus subnodes in the DMN. Based on brain 

measurements of functional connectivity (i.e., RSFC) in one set of analyses and structural 

co-occurrence (i.e., VBM) in another set of analyses, we initially examined whether 

subdividing traditionally studied DMN nodes into subnodes would provide richer 

information in brain signals. Based on 4 DMN nodes (Fig. 1.A.) versus 12 DMN subnodes 

(Fig. 1.B), we therefore computed sparse inverse covariance estimates (i.e., precision 

matrices) and their statistically significant group differences (Fig. 2).  

 In brain function as measured by RSFC, only the functional covariation between 

the right and the left temporoparietal junction (TPJ) of the DMN was determined to be 

significantly different between the healthy control and people with schizophrenia (Fig. 

3A). We then enhanced topographical granularity. Dividing the main nodes of the DMN 

into their constituent subnodes confirmed the observed effect (Fig. 3B). We further 

observed that significant aberration did not involve the functional connectivity between 

the left anterior TPJ (aTPJ) and right posterior TPJ (pTPJ) subnodes. Importantly, a 

number of additional significant effects were not captured by the subnode-naive 

connectivity analyses of the DMN.  

 In brain structure as measured by VBM, only the structural covariation between 

the posteromedial cortex (PMC) and the left TPJ node was significantly different 

between the control and disease groups (Fig. 3C). Segmenting the composite DMN nodes 

into their distinct subnodes revealed that the observed effect could be more specifically 

credited to the morphological coupling between the left aTPJ and the precuneus (PREC) 

subnodes (Fig. 3D). Once more, a number of additional differences in structural 

covariation were observed.  
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 These preparatory analyses converged to the conclusion that neurobiologically 

meaningful information contained in fMRI and MRI signals is likely to remain hidden 

when using a general-purpose atlas to define the human DMN. Adopting a more fine-

grained subnode atlas allowed detailing previously shown and discovered new 

covariation effects in the DMN. This observation held true for both assessing functional 

coupling patterns (i.e., RSFC) and structural coupling patterns (i.e., VBM) in the DMN. 

Consequently, the remainder of the results section will focus on statistical analyses 

based on DMN subnodes. 

 

 The subsequent functional and structural covariation analyses were performed in 

two complementary flavors. Intra-network analyses performed sparse inverse 

covariance estimation based on the 12 subnodes from the DMN atlas (Fig. 1.B.). Across-

network analyses performed the same multivariate modeling of network coupling but 

extended the 12 DMN subnodes with 9 nodes from the DAN and the SN, which are two 

multi-modal networks known to closely interact with the DMN (Fig. 1.C). Hence, intra-

network analyses exposed the coupling differences in the DMN between healthy 

controls and people with schizophrenia at the subnode level. This work was extended in 

across-network analyses to characterize the interplay between the DMN and two other 

multi-modal large-scale networks. 

 

 

Intra-network covariation in brain function. We systematically detailed the neural 

coupling fluctuations within the DMN in people with schizophrenia and healthy controls 

during the resting-state (i.e., RSFC). The functional intra-network analyses (Fig. 5 and 

SFig. 1 upper row) revealed the right aTPJ as the subnode with the highest number of 
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significantly disrupted functional connections in the DMN. 8 out of 11 connectivity 

targets of the right aTPJ were disturbed, including connections to three subnodes in the 

DMPFC, the right pTPJ, both subnodes in the left TPJ, as well as the PREC and the 

retrosplenial cortex (RSC). The subnode with the second highest number of functional 

disturbances was the rostro-dorsal DMPFC (rdDMPFC) subnode. 7 out of 11 of its 

connection targets were significantly affected in people with schizophrenia including the 

right and left caudal DMPFC (cDMPFC), the rostro-ventral DMPFC (rvDMPFC), the RSC 

subnode as well as both subnodes in the left TPJ and the right aTPJ. Further, the right 

cDMPFC and the left pTPJ subnodes in the DMN exhibited 6 out of 11 affected 

connections. Both shared common aberrations to the RSC, to the rdDMPFC, and to the 

two right TPJs as connectivity targets. Conversely, the ventral and dorsal posterior 

cingulate cortex (vPCC and dPCC) in the DMN showed only 2 out of 11 significantly 

altered functional connections to other DMN subnodes. Both were restricted to 

connectivity targets in the PMC. 

 Regarding the direction of aberrant functional coupling, the right aTPJ was hyper-

connected with the left TPJs and the rvDMPFC, while it was hypo-connected toward the 

RSC, PREC, rdDMPFC, and left pTPJ. DMPFC subnodes were hypo-connected with each 

other in patients compared to the healthy group. A set of further hypo-connections were 

observed involving significant aberrations of the right pTPJ and the PREC with other 

subnodes.  

 In sum, multivariate connectivity analyses based on functional resting-state 

fluctuations illustrated statistically significant disturbances in 27 out of 60 connections 

between subnodes of the DMN in patients with schizophrenia. Among these, the right 

aTPJ exhibited the highest and the vPCC and dPCC the lowest number of affected 

coupling strengths with other parts of the DMN. 

Page 20 of 50

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Bzdok 21

 

Across-network covariation in brain function. We then tested for group differences 

in the functional coupling between the DMN and the multi-modal networks DAN and SN 

(Fig. 4A; Fig. 5 and SFig. 1, second row). Importantly, after adding the nodes from the 

other two macroscopic brain networks for computing precision matrices, the overall 

pattern of covariation remained similar. In the intra-network versus across-network 

analyses, the differences in functional covariation between DMN subnodes were not 

statistically significant at p < 0.05 (dependent t-test). These observations support the 

notion that the functional connectivity patterns delineated by sparse inverse covariance 

estimation on RSFC data are relatively robust to changes in the size and definition of the 

network graph (that is, which nodes are included). 

 Regarding the DAN, the left intraparietal sulcus (IPS) displayed the highest 

number of edges that were significantly disturbed in patients. 9 out of 20 connectivity 

targets were affected. These included six subnodes in the DMN (rdDMPFC, dPCC, both 

left TPJs, right aTPJ, and PREC) and nodes in the other two networks including the mid-

cingulate cortex (MCC), the right amygdala (AM) and the right IPS. The left dorsolateral 

prefrontal cortex (DLPFC) in the DAN also showed disrupted connectivity with 8 out of 

20 targets. These included six DMN subnodes (right cDMPFC, rvDMPFC, rdDMPFC, RSC 

and both left TPJs) as well as nodes of the SN including the left anterior insula (AI) and 

MCC. The right IPS, in turn, showed seven affected connections, including DMN 

subnodes (rdDMPFC, left aTPJ, both right TPJs, PREC) and DAN nodes (left IPS and right 

DLPFC), but no part of the SN. Similar to its left-hemisphere counterpart, the right 

DLPFC showed six affected connections, including nodes of the SN (MCC, right AI), only 

one node of the DAN (right IPS), as well as several DMN subnodes (rdDMPFC, both left 

TPJs). 
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 Regarding the SN, the MCC displayed 6 out of 20 functional connections disturbed 

in schizophrenia patients, including several DMN subnodes (left and right cDMPFC, and 

RSC) and nearly the entire DAN (left and right DLPFC, left IPS), but no other part of the 

SN. The left AI was the second most affected node with four aberrant connections, 

including only one DMN subnode (left cDMPFC), one DAN node (left DLPFC), and two SN 

nodes (right AI, left AM). The right AM in turn showed only three affected connections 

with the DMN (right cDMPFC, RSC) and DAN (left IPS). The right AI showed three 

affected connections with the DMN (dPCC), the DAN (right DLPFC), and the SN (left AI). 

Finally, the left AM had only two affected connections with the DMN (rvDMPFC) and the 

SN (left AI). As a general observation, the highest number of functional disruptions 

therefore appeared between the DMN and the DAN. 

 Regarding the directionality of functional coupling aberration, the right DLPFC of 

the DAN was hypo-connected with the DMN, whereas the left DLPFC and the default 

network were hyper-connected except with the rdDMPFC. As a similar pattern, the right 

IPS of the DAN was mostly hypo-connected with the DMN, except with the left aTPJ, 

while the left IPS was mostly hyper-connected except with the left pTPJ and the PREC. 

As to the SN, only the MCC and the right AM exhibited hypo-connectivities with the DMN, 

with the right cDMPFC and the RSC, respectively. 

 Summing up the present findings in functional connectivity data within and from 

the DMN, we made several observations. First, the right aTPJ emerged as a potential 

driver of perturbations to network coupling observed in schizophrenia, especially when 

focusing on functional covariation within the DMN (i.e., intra-network analysis). 

Importantly, this subnode of the DMN has been repeatedly reported not to be part of the 

functional core of this canonical network (Bzdok et al., 2013; Mars et al., 2012). Second, 

many of the subnodes, here identified to drive dysfunction in schizophrenia, are not part 
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of what is emerging to be a default-mode network proper. According to previous studies, 

such a stricter topographical definition of the DMN core does most likely not include the 

left and right anterior TPJs, the PREC (Bzdok et al., 2015; Margulies et al., 2009), the left 

and right cDMPFC (Eickhoff et al., 2016), or the RSC (Bzdok et al., 2015). Indeed, parts of 

the DMN core, the vPCC and dPCC, were among the least dysfunctional target regions in 

both intra- and across-network analyses. Third, the functional abnormalities in 

schizophrenia frequently manifested between commonly observed macroscopic 

networks, especially between the DMN and the DAN. 

 

Intra-network covariation in brain structure. We conducted an analysis in the 

domain of brain structure using the VBM data that was analogous to the assessments of 

brain function. We thus investigated the inter-individual morphological variability 

within the DMN in healthy subjects and patient with schizophrenia. The structural co-

occurrence results from covariation analyses on VBM data were then also evaluated for 

statistically significant group differences. 

 The structural intra-network analyses (Fig. 5 and SFig. 1, third row) revealed 

DMN subnodes in the PREC and the rdDMPFC as the target regions with highest 

structural disturbances in people with schizophrenia. For the PREC, 4 out of 11 

volumetric co-occurrence relations were affected, including the medial frontal pole 

(rvDMPFC and rdDMPFC), dPCC, and left aTPJ. The rdDMPFC in turn showed four 

affected volumetric relations, including the right cDMPFC, both left TPJ subnodes, and 

the PREC. Conversely, only a single disturbed structural relation with other parts of the 

DMN was found for the right aTPJ, left cDMPFC, vPCC, and RSC. 

 The large majority of structural coupling aberrations were hyper-covariations 

between DMN subnodes. Specifically, all PMC subnodes, including the PREC, both pTPJs, 
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the right aTPJ and cDMPFC exhibited only hyper-covariations. Further, the left aTPJ was 

hypo-connected with the rdDMPFC and the right cDMPFC was hypo-connected with the 

rvDMPFC. 

 In sum, the intra-network analyses of structural co-occurrence illustrated that 

the DMN subnode atlas was instrumental in identifying fine-grained differences in 

morphological deviations in a large group of people diagnosed as schizophrenic. Healthy 

and diagnosed subjects showed statistically significant differences in a fifth of the 

volumetric coupling relations within the DMN (12 out of 60). This result stands in 

contrast to the higher number of functional aberrations found in the corresponding 

analyses in the functional imaging arm of the study (RSFC). 

 

Across-network covariation in brain structure. We finally tested for group 

differences in structural covariation between the DMN and the DAN and SN (Fig. 4.B.; Fig. 

5 and SFig. 1, lowest row). Concurrent with the functional covariation analyses, the 

overall pattern of structural coupling was similar when computing the precision 

matrices after taking into account the nodes of the DAN and SN. In the intra-network 

versus across-network analyses, the differences in structural covariation between DMN 

subnodes were not statistically significant at p < 0.05 (dependent t-test). As another 

global observation, none of the structural analyses showed any negative covariation in 

the healthy or disease group, in contrast to the various positive and negative coupling 

results observed in the functional covariation analyses. Moreover, we again showed a 

lower overall number of statistically significant volume differences in people with 

schizophrenia (31 significant abnormalities) compared to the corresponding group 

differences in brain function (61 significant abnormalities). 
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 Regarding the DAN, we identified the left DLPFC as exhibiting statistically 

significant differences between healthy controls and people with schizophrenia in 3 out 

of 20 volumetric relations. These included the right aTPJ, MCC and right AI. Congruently, 

the DLPFC in the right hemisphere also exhibited affected volumetric relations with the 

right aTPJ and the right AI. Further, the right and left IPS both showed impaired 

volumetric coupling with the AM of the same hemisphere. While the right IPS was also 

disrupted in its volumetric relation with the MCC, the left IPS displayed another 

impaired relation with the left cDMPFC.  

 Regarding the SN, the MCC as well as left and right AI of this same commonly 

observed multi-modal network showed the highest number of impaired volumetric 

couplings (besides rvDMPFC). All three SN nodes showed disturbed relations with 

subnodes in the DMPFC. More specifically, left AI exhibited 4 affected relations, 

including the right cDMPFC, the rvDMPFC, the vPCC, the left pTPJ, and the right AI. The 

AI in the right hemisphere instead showed affected relations with rvDMPFC, left AI, left 

AM, as well as the right and left DLPFC. The MCC had 5 affected volumetric relations 

including the rdDMPFC, the PREC, the left DLPFC, as well as the IPS and pTPJ in the right 

hemisphere. Finally, both AM showed dysfunctional structural coupling among each 

other as well as to the IPS in the same hemisphere, while the left AM showed additional 

abnormalities with the right AI and the left pTPJ. As a general observation, the highest 

number of structural disruptions emerged between the DMN and the SN. 

 Consistent with the intra-network analysis in brain structure, patients mostly 

exhibited significant hyper-covariations between the DMN and the other canonical 

networks. Specifically, both the MCC and the right AI, the most disrupted SN nodes 

towards the DMN, exhibited only hyper-covariations while the SN exhibited hypo-

covariations with the DMN only from the left AM and the right AI. 
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 In sum, major brain networks, such as the DAN and SN, demonstrated specific 

volumetric coupling relations with distinct subnodes of the DMN that were shown to be 

impaired in schizophrenia. Importantly, only a few subnodes of the DMN proper showed 

statistically significant group differences. Similar to the present finding in brain function, 

the morphological properties of the DMN proper were found to be more intact than 

many other parts of the graph. Moreover, nodes of the SN were most impaired among all 

three networks and featured most aberrations with coupling partners of the DMN 

proper.  
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DISCUSSION 

 Our study suggests that dysconnectivity and dysregulation anchored in the 

default mode network is a neurobiological hallmark of schizophrenia spectrum 

disorders. Adopting a systems neuroscience approach, we aimed at reconciling coupling 

within the highly associative DMN and its coupling with the multi-modal saliency and 

dorsal attention networks. We combined meta-analytically defensible network 

definitions and recently developed machine learning methods for multivariate discovery 

of primary covariation patterns. Network coupling was investigated in two domains, 

first, based on brain measurements of functional resting-state fluctuations (i.e., RSFC) 

and second, based on structural brain morphology (i.e., VBM). Applying an identical 

modeling strategy to observed functional fluctuations and volumetric differences 

facilitated conclusions across neurobiological levels, including their third-party coupling 

influences. Functional covariation analyses revealed extended disturbances related to 

the right anterior temporoparietal junction and the DAN. In contrast, structural 

covariation analyses emphasized disturbances related to the precuneus in the 

posteromedial cortex and the SN. These findings emphasize disturbed coupling between 

the DMN and other large-scale networks rather than exclusive dysregulation of core 

parts within the DMN. Collectively, our results suggest that some previously inconsistent 

findings may be reconciled by using a DMN atlas with subnode resolution to recover 

currently under-appreciated, physiologically meaningful covariation patterns in 

schizophrenia. 

 

Covariation patterns mostly altered by cortical areas that are not part of the "DMN 

proper". Covariation analyses applied to resting-state fluctuations within and from the 

DMN identified the right anterior TPJ subnode as featuring a particularly high number of 
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coupling perturbations in people diagnosed as schizophrenic, especially in the functional 

intra-network analyses. Recent brain parcellation studies have associated the anterior 

portions of the TPJs with externally focused evaluation of visual, auditory, tactile, and 

other preprocessed sensory input as well as maintenance of perception-action cycles 

associated with the SN (Bzdok et al., 2016a; Bzdok et al., 2013; Glasser et al., 2015; 

Humphreys and Ralph, 2015; Mars et al., 2012). Hence, the present investigation at 

subnode resolution points to an aberration of multi-modal integration of perception-

action cycles, more closely linked to DAN and SN function, rather than to imagination-

based thought processes, more closely linked to DMN function (Hassabis et al., 2007; 

Wang et al., 2017). This quantitative evidence potentially relates to several clinical 

manifestations of schizophrenia, such as false subjective beliefs (delusion), perceiving 

unreal stimuli (hallucinations), awkward sensations (paresthesia), concentration 

difficulties, as well as disorganized speech and motor movement. 

 Across structural covariation analyses, the PREC emerged as one of the most 

impaired DMN nodes. The PREC is anatomically located in the parietal lobe and is 

thought to subserve visuomotor processes, such as those necessary for attentional 

shifting, reaching movements, and hand-eye coordination (Margulies et al., 2009; 

Mesulam, 1981; Stephan et al., 1995). These cognitive associations ascribed to the PREC 

can indeed be related to several schizophrenia symptoms, especially loss of train of 

thought, impairments in executive function, working memory, and memory retrieval, as 

well as psychogenic motor abnormalities (catatonia). Both anterior TPJs and the PREC 

are similarly believed to govern context-dependent reorganization of large-scale 

networks (Bzdok et al., 2013; Cavanna and Trimble, 2006; Downar et al., 2000; Seghier, 

2013). 
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 As a general conclusion, functional and structural findings agreed in emphasizing 

that (i) the communication within the medial core of the DMN in prefrontal and 

cingulate regions was relatively preserved in the examined patients and (ii) the 

dysfunction of schizophrenia substantially involves subnodes that do not belong to what 

is emerging to be a default-mode network proper. Such a stricter topographical definition 

of the DMN excludes the anterior left and right TPJ, the PREC (Bzdok et al., 2015; 

Margulies et al., 2009), the retrosplenial cortex closer to the limbic system (Braga and 

Buckner, 2017; Bzdok et al., 2015; Vogt and Laureys, 2005), and the caudal DMPFCs 

closer to the anterior cingulate cortex (Eickhoff et al., 2016; Vogt and Pandya, 1987). 

Instead, a definition of the DMN core includes the ventral and the dorsal PCCs, the left 

and right posterior TPJs, and the rostroventral and rostrodorsal DMPFC. Both the 

ventral and dorsal PCCs were identified among the least dysfunctional areas across all 

present analyses. 

 Collectively, these data suggest that dysfunctions in the DMN that underpin 

schizophrenic pathology do not emerge from the core of the network, but are reflected 

in the coupling of the subnodes of the larger network, regions that prior work has 

implicated as participating in large-scale networks other than the DMN. In particular, 

our study highlights disturbed inter-network communication, focused on the right 

anterior TPJ and PREC, as candidate drivers of the disease process that underpins 

schizophrenia. 

 

Discrepancies between volumetric and functional aberration patterns in 

schizophrenia. In the context of schizophrenia, network analyses have frequently been 

performed on either functional brain measurements (Liu et al., 2008; Lynall et al., 2010; 

Yu et al., 2013) or structural brain measurements (Konrad and Winterer, 2008; van den 
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Heuvel et al., 2010). Direct investigations of the volume-function correspondence in 

long-distance coupling have been less frequent (But see: Clos et al., 2014; Honey et al., 

2009; Kelly et al., 2012).  

 The present study departs from previous single-modality investigations by 

applying identical covariation analyses to RSFC and VBM data to facilitate 

neurobiological conclusions independent of differences in the employed statistical 

models. We did not find strong evidence that these domains show analogous patterns 

when considering the DMN in isolation or its interplay with the DAN and SN. In the 

functional domain, for instance, the right anterior TPJ was the overall most affected 

subnode, while the PREC and the right dorsal DMPFC exhibited the strongest 

disruptions in the structural domain. These findings suggest that neural disturbances in 

schizophrenia are a result of heterogeneous changes in cortex architecture that do not 

map in a simple way to patterns of neural communication. In addition, these regularities 

emphasize abnormalities in schizophrenia between networks rather than within the 

DMN core. 

 Given that the DMN is believed to exert control over the subordinate DAN and SN 

(Carhart-Harris and Friston, 2010; Margulies et al., 2016), it is exciting that our results 

revealed a dissociation in their disrupted links in the structural and functional network 

analyses. DMN interactions with the SN were more consistently altered in brain 

morphology (VBM), whereas DMN interactions with the DAN emerged as more 

consistently altered in brain function (RSFC) in patients with schizophrenia. 

Congruently, previous quantitative meta-analysis on schizophrenia and other 

psychiatric populations highlighted aberration in the SN across volumetric 

neuroimaging studies (Goodkind et al., 2015) and dysfunction in the DAN in large 

amounts of functional neuroimaging studies (McTeague et al., 2017). Both inter-
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individual differences in local brain volume (e.g., Draganski et al., 2004) and fluctuations 

in resting-state patterns (e.g., Rosenberg et al., 2015) have been shown to offer reliable 

correlates of success and failure in specific cognitive performances (Kanai and Rees, 

2011). Differences in the executive control performance between healthy individuals 

were related to cortical thickness differences in the SN extending into parts of the DMN 

(Westlye et al., 2011). The present pathological increases in structural DMN-SN coupling 

may therefore provide insight into a longer-term compensatory mechanism due to 

impaired executive function in patients with schizophrenia. In contrast, the present 

patterns of pathological increases and decreases in functional DMN-DAN coupling may 

uncover a multifaceted dysbalance in allocating attentional resources to internal 

thought and emotion (cf. Shim et al., 2010; Whitfield-Gabrieli et al., 2009a). Thus, 

previous isolated findings are reconciled by our across-modal approach that situated 

detailed disruption patterns in the context of top-level DMN control on intermediate 

multi-modal networks. 

 Although we did not find a close mapping between structure and function, in both 

domains we found evidence that corroborates the dysconnection hypothesis of 

schizophrenia (Friston et al., 2016; Friston and Frith, 1995; Stephan et al., 2009b; 

Weinberger et al., 1992) as a central pathophysiological component that could underlie 

schizophrenia spectrum disorders. Together, our findings support an account of the 

pathophysiology of schizophrenia in which abnormal integrity of long-range 

connections prevent integration of information from systems that support the 

maintenance of cognitive sets, such as mediated by the SN, or the dynamic allocation of 

cognitive resources, such as mediated by the DAN (Dosenbach et al., 2006; Seeley et al., 

2007).  
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Future directions. More globally, the overwhelming majority of mental disorders are 

known to show disturbance of the DMN (Broyd et al., 2009; Whitfield-Gabrieli and Ford, 

2012). Yet, we deem it unlikely that brain disorders with diverging clinical phenotypes 

are caused by identical neurobiological disease mechanisms. Rather, the numerous 

brain disorders affecting the DMN are perhaps more realistically framed to underlie a 

stratification of partly overlapping pathophysiologies (cf. Calhoun et al., 2011; Meda et 

al., 2012; Öngür et al., 2010). Investigating the DMN at an increased level of topographic 

granularity may be a prerequisite for identifying the DMN dysregulation specific to each 

major psychiatric disorder. A variety of neurobiologically distinct types of DMN 

aberration may expose brain phenotypes that enable effective stratification of patients 

with schizophrenia in clinical practice (Brodersen et al., 2011). If successful in 

schizophrenia, the present analysis framework may scale to other major psychiatric 

disorders. 

 Moreover, the sparse inverse covariation approach has several advantages, 

including enhanced interpretability, statistically privileging direct network influences, 

and inter-operability across different brain-imaging modalities. However, the employed 

statistical model is inherently blind to interaction partners outside of the network graph 

and disregards higher-order interaction between the nodes in the network graph 

(Ganmor et al., 2011; Giusti et al., 2016; Giusti et al., 2015). That is, our analysis strategy 

was able to consider all targeted inter-nodal relations simultaneously but assumed 

network interaction to be only composed of a set of dyadic partners. Going beyond pair-

wise covariation in network analysis would be an exciting future extension of the 

present work (Bassett and Sporns, 2017). 
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Conclusion. Conventional brain-imaging measurements of the highly associative DMN 

were shown to carry fine-grained information about its coupling relation to other 

macroscopic brain networks. We could thus conclude that schizophrenia may not be 

explained by a primary dysfunction in the backbone of the DMN (“default-mode 

proper”). Schizophrenia psychopathology may not only be due to deficits within the 

DMN but especially also to deficits between the DMN and other multi-modal networks 

including the SN and DAN. Further, by leveraging state-of-the-art machine learning 

techniques for a direct juxtaposition of functional and structural covariation patterns, 

we provide empirical evidence for complementary disease mechanisms in schizophrenia 

patients. These first steps towards a more integrative approach to study DMN 

disturbance may be critical to chisel out the "dysconnection" pathophysiology 

potentially underlying schizophrenia. 
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FIGURES LEGENDS 

Figure 1. Target network definitions. 

The regions of interest (ROIs) are rendered on the MNI standard brain with frontal, 

diagonal, and top views. A The DMN is represented by 4 ROIs, according to how the main 

network nodes are frequently studied in neuroimaging research. These comprise the 

dorsomedial prefrontal cortex (DMPFC), posteromedial cortex (PMC), and right/left 

temporoparietal junction (TPJ). B The DMN nodes are subdivided into 12 ROIs 

accounting for the distinct subnodes in the DMN that were recently established (Bzdok 

et al., 2016a; Bzdok et al., 2015; Bzdok et al., 2013; Eickhoff et al., 2016). According to 

this prior work, the functional core of the DMN ("DMN proper") likely corresponds 

especially to its blue and red subnodes (the ventral and the dorsal PCCs, the left and 

right posterior TPJs, and the rostroventral and rostrodorsal DMPFC). C The DMN 

subnodes are supplemented by 9 ROIs for the dorsal attention network (DAN, light 

green) and saliency network (SN, purple), drawn from published quantitative meta-

analyses (Bzdok et al., 2012; Rottschy et al., 2012). The DAN was composed of the 

dorsolateral prefrontal cortex (dlPFC) and intra-parietal sulcus (IPS) bilaterally. The SN 

included the midcingulate cortex (MCC) and the bilateral anterior insula (AI) as well as 

amygdala (AM). NeuroVault permanent link to all ROIs (21 in total) used in the present 

study: http://neurovault.org/collections/2216/. 

 

Figure 2.  Network analysis workflow. 

Exemplary results illustrate the rational of the statistical modeling framework. A The 

covariance matrix was computed with brain signals extracted from the DMN atlas. Each 

entry in this matrix indicates the linear relationship of each specific pair of target DMN 

nodes. B The precision matrix was computed by inverse covariance estimation (in this 
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case without sparsity constraint). In contrast to the covariance matrix, the precision 

matrix captures the multiple relations between each of the pairs of target nodes while 

conditioning on the potential influence from the respective other nodes. C The sparse 

precision matrix was computed by sparse inverse covariance estimation with sparsity 

constraint. The additional modeling constraint improves interpretability by 

automatically reducing the network graph to the important network edges (non-zero 

strength, red or blue) and ignoring the irrelevant ones (zero strength, white). D The 

sparse precision matrices were computed separately in healthy controls and 

schizophrenic patients. Statistically significant group differences in coupling strengths 

(brown squares) were determined by non-parametric hypothesis testing. A significance 

test assessed group differences between all network relations at once. The entire 

analysis process was repeated for different network graph definitions (4 versus 12 

versus 21 target nodes) and different imaging modalities (resting-state connectivity 

versus structural morphology). 

 

Figure 3.  Studying node versus subnodes in the default mode network. 

Significant differences in functional connectivity (left column, resting-state functional 

connectivity [RSFC]) and structural co-occurrence (right column, voxel-based 

morphometry [VBM]). Schizophrenic patients and healthy controls were compared 

based on the usual DMN nodes (upper row) and the topographically more fine-grained 

DMN subnode atlas (lower row). Richer brain signals have been captured by the recent 

parcellation of the DMN nodes, resulting in a higher number of statistically significant 

group effects. Analysis approaches based on collapsed DMN nodes may therefore 

obfuscate disease-specific patterns in fMRI signals as indexed by resting-state 
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connectivity and in MRI signals as indexed by voxel-based morphometry. The glass 

brains were created using the nilearn Python package (Abraham et al., 2014). 

 

Figure 4. Dysfunctional connectivity and aberrant structural covariation across 

networks. 

Depicts the significant increase (red lines) or decrease (blue lines) in functional 

connectivity (A) or in structural co-occurrence (B) comparing schizophrenic to healthy 

subjects in the across-network RSFC analyses (cf. SFig. 1). Circles represent regions of 

interest in the default mode network (DMN, orange), the "DMN proper" (yellow), 

the saliency network (SN, purple) and the dorsal attention network (DAN, light green). 

The left column shows the differences within each network, while the right column 

displays differences between two networks. The connectivity findings show that the 

dysfunctional connectivities within the DMN include several subnodes that are not part 

of the "DMN proper". While the functional coupling between the DMN and the SN is 

partly disrupted, the functional connectivity between the DMN and the DAN is 

particularly disturbed. Furthermore, the connectivities within and between the SN and 

the DAN remain largely intact. The covariance findings show that the deviant structural 

covariations within the DMN involve several subnodes not part of the "DMN proper". 

The volumetric relationships between the DMN and the SN are also more disrupted than 

between any other network pair. Collectively, the findings emphasize inter-network 

dysregulation rather than exclusive disturbance of the DMN core parts. Flat brains were 

generated using PyCortex (Gao et al., 2015). 

 

Figure 5. DMN aberrations in schizophrenia are specific to subnodes. 
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Functional connectivity (RSFC) and structural co-occurrence (VBM) measurements were 

used to compute sparse inverse covariance estimation separately in healthy and 

schizophrenic individuals (left column). We conducted intra-network analyses (i.e., DMN 

subnode atlas) and across-network analyses (i.e., DMN subnode atlas augmented by 

nodes of the DAN and SN). Statistically significant group differences (brown squares in 

middle column) between the normal and diagnosed individuals are shown in the 

precision matrix of the schizophrenic group. The number of subnode-specific 

dysregulations is shown as counts when viewed from the DMN proper (yellow), other 

DMN parts (orange), DAN (light green), and SN (purple). The findings make apparent 

that schizophrenia pathophysiology may be relatively more driven by across-network 

effects and effects outside of the DMN proper. The glass brains were created using the 

nilearn Python package (Abraham et al., 2014). 
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Figure 1. Target network definitions.  
The regions of interest (ROIs) are rendered on the MNI standard brain with frontal, diagonal, and top views. 
A The DMN is represented by 4 ROIs, according to how the main network nodes are frequently studied in 

neuroimaging research. These comprise the dorsomedial prefrontal cortex (DMPFC), posteromedial cortex 
(PMC), and right/left temporoparietal junction (TPJ). B The DMN nodes are subdivided into 12 ROIs 

accounting for the distinct subnodes in the DMN that were recently established (Bzdok et al., 2016a; Bzdok 
et al., 2015; Bzdok et al., 2013; Eickhoff et al., 2016). According to this prior work, the functional core of 
the DMN ("DMN proper") likely corresponds especially to its blue and red subnodes (the ventral and the 
dorsal PCCs, the left and right posterior TPJs, and the rostroventral and rostrodorsal DMPFC). C The DMN 
subnodes are supplemented by 9 ROIs for the dorsal attention network (DAN, light green) and saliency 

network (SN, purple), drawn from published quantitative meta- analyses (Bzdok et al., 2012; Rottschy et 
al., 2012). The DAN was composed of the dorsolateral prefrontal cortex (dlPFC) and intra-parietal sulcus 

(IPS) bilaterally. The SN included the midcingulate cortex (MCC) and the bilateral anterior insula (AI) as well 
as amygdala (AM). NeuroVault permanent link to all ROIs (21 in total) used in the present study: 

http://neurovault.org/collections/2216/.  
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Figure 2. Network analysis workflow.  
Exemplary results illustrate the rational of the statistical modeling framework. A The covariance matrix was 
computed with brain signals extracted from the DMN atlas. Each entry in this matrix indicates the linear 
relationship of each specific pair of target DMN nodes. B The precision matrix was computed by inverse 
covariance estimation (in this case without sparsity constraint). In contrast to the covariance matrix, the 

precision matrix captures the multiple relations between each of the pairs of target nodes while conditioning 
on the potential influence from the respective other nodes. C The sparse precision matrix was computed by 
sparse inverse covariance estimation with sparsity constraint. The additional modeling constraint improves 

interpretability by automatically reducing the network graph to the important network edges (non-zero 
strength, red or blue) and ignoring the irrelevant ones (zero strength, white). D The sparse precision 

matrices were computed separately in healthy controls and schizophrenic patients. Statistically significant 
group differences in coupling strengths (brown squares) were determined by non-parametric hypothesis 
testing. A significance test assessed group differences between all network relations at once. The entire 

analysis process was repeated for different network graph definitions (4 versus 12 versus 21 target nodes) 
and different imaging modalities (resting-state connectivity versus structural morphology).  
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Figure 3. Studying node versus subnodes in the default mode network.  
Significant differences in functional connectivity (left column, resting-state functional connectivity [RSFC]) 
and structural co-occurrence (right column, voxel-based morphometry [VBM]). Schizophrenic patients and 

healthy controls were compared based on the usual DMN nodes (upper row) and the topographically more 
fine-grained DMN subnode atlas (lower row). Richer brain signals have been captured by the recent 

parcellation of the DMN nodes, resulting in a higher number of statistically significant group effects. Analysis 
approaches based on collapsed DMN nodes may therefore obfuscate disease-specific patterns in fMRI signals 
as indexed by resting-state connectivity and in MRI signals as indexed by voxel-based morphometry. The 

glass brains were created using the nilearn Python package (Abraham et al., 2014).  
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Figure 4. Dysfunctional connectivity and aberrant structural covariation across networks.  
Depicts the significant increase (red lines) or decrease (blue lines) in functional connectivity (A) or in 
structural co-occurrence (B) comparing schizophrenic to healthy subjects in the across-network RSFC 

analyses (cf. SFig. 1). Circles represent regions of interest in the default mode network (DMN, orange), the 
"DMN proper" (yellow), the saliency network (SN, purple) and the dorsal attention network (DAN, light 
green). The left column shows the differences within each network, while the right column displays 
differences between two networks. The connectivity findings show that the dysfunctional connectivities 
within the DMN include several subnodes that are not part of the "DMN proper". While the functional 

coupling between the DMN and the SN is partly disrupted, the functional connectivity between the DMN and 
the DAN is particularly disturbed. Furthermore, the connectivities within and between the SN and the DAN 
remain largely intact. The covariance findings show that the deviant structural covariations within the DMN 
involve several subnodes not part of the "DMN proper". The volumetric relationships between the DMN and 
the SN are also more disrupted than between any other network pair. Collectively, the findings emphasize 
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inter-network dysregulation rather than exclusive disturbance of the DMN core parts. Flat brains were 
generated using PyCortex (Gao et al., 2015).  
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Figure 5. DMN aberrations in schizophrenia are specific to subnodes.  
Functional connectivity (RSFC) and structural co-occurrence (VBM) measurements were used to compute 
sparse inverse covariance estimation separately in healthy and schizophrenic individuals (left column). We 

conducted intra-network analyses (i.e., DMN subnode atlas) and across-network analyses (i.e., DMN 
subnode atlas augmented by nodes of the DAN and SN). Statistically significant group differences (brown 

squares in middle column) between the normal and diagnosed individuals are shown in the precision matrix 
of the schizophrenic group. The number of subnode-specific dysregulations is shown as counts when viewed 
from the DMN proper (yellow), other DMN parts (orange), DAN (light green), and SN (purple). The findings 

make apparent that schizophrenia pathophysiology may be relatively more driven by across-network effects 
and effects outside of the DMN proper. The glass brains were created using the nilearn Python package 

(Abraham et al., 2014).  
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