
HAL Id: hal-01620403
https://hal.science/hal-01620403v1

Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verifying end-to-end real-time constraints on
multi-periodic models

Julien Forget, Frédéric Boniol, Claire Pagetti

To cite this version:
Julien Forget, Frédéric Boniol, Claire Pagetti. Verifying end-to-end real-time constraints on multi-
periodic models. ETFA2017 - 22nd IEEE International Conference on Emerging Technologies And
Factory Automation, Sep 2017, Limassol, Cyprus. �hal-01620403�

https://hal.science/hal-01620403v1
https://hal.archives-ouvertes.fr

Verifying end-to-end real-time constraints on multi-periodic models

Julien Forget1, Frédéric Boniol2 and Claire Pagetti2
1 Univ. Lille, France, julien.forget@univ-lille1.fr

2 ONERA-Toulouse, firstname.lastname@onera.fr

Abstract

Control-command systems must usually satisfy a set
of high-level end-to-end timing constraints to ensure
their correctness. We propose a formal approach to
verify these properties directly at the model level.
First, we introduce a small language for specifying ar-
bitrary end-to-end constraints. Then, we show how
to verify any constraint of this language for a sys-
tem represented with a multi-periodic synchronous
model, a model that retains the main concepts of
data-flow oriented programming languages (such as
Matlab/Simulink, synchronous languages or AADL).
One advantage of this approach is that it is simpler
to verify end-to-end constraints at the model level,
early in the development process, rather than at the
implementation level.

1 Introduction

Control-command applications, such as avionics em-
bedded flight control systems for instance, are sub-
ject to real-time constraints: not only do they need
to compute the correct values, they also need to com-
pute these values at the correct time. Such a system
is usually designed as a set of periodic tasks; over the
last four decades, the real-time community has devel-
oped many scheduling algorithms and analysis tech-
niques to ensure that, at system execution, each in-
stance of a task completes before its deadline. In this
paper, we focus on a different type of real-time anal-
ysis, end-to-end analysis, which analyses the time re-
quired for performing a chain of computations, from
input acquisition to output production.

Control-command systems development typically
starts by specifying a high-level model of the sys-
tem, such as a Matlab/Simulink model for instance.
The model is then translated into lower-level code,
typically C, either manually or using code genera-
tion tools. In our approach, we perform the end-to-
end analysis at the model level, which simplifies the
analysis by abstracting from implementation details.
Furthermore, we can detect an end-to-end constraint
violation during the model conception and modify the
model accordingly, which is far less time-consuming
than performing corrections on the final implementa-
tion.

Our contribution is two-folds. First, we define a
language to specify formally end-to-end constraints.
It considers an abstract representation of the sys-
tem execution, the temporal behaviour of the sys-
tem, which only provides the estimated best and
worst-case completion date of each task instance and
the data-dependencies between task instances. This
representation completely abstracts from the actual
scheduler. Using the constraints language, we pro-
vide formal definitions of common end-to-end con-
straints, such as best and worst-case latencies for in-
stance. This language enables us to devise a general
verification technique (see below) capable of checking
any constraint of the language, instead of devising a
new verification technique for each new type of con-
straint.

Second, we propose a technique for verifying con-
straints of this language for a system modelled using
a synchronous multi-periodic model. In this model,
a system consists of a set of tasks instantiated pe-
riodically and related by causal data-dependencies
(i.e. the consumer of some data cannot start be-

1

fore the producer completes). The verification tech-
nique abstracts from actual execution dates, by rea-
soning on the abstract temporal behaviour derived
from the system model. We only assume that the
system is schedulable, i.e. that execution will respect
task deadlines and task dependencies. Schedulability
analysis is out of the scope of this paper, see for in-
stance [1]. The model was designed so that it should
be simple to extract such a representation from sys-
tems programmed with data-flow oriented program-
ming languages such as Simulink, AADL [2] or the
multi-rate synchronous language Prelude [3]. The
complexity of verifying a constraint of is linear in the
number of tasks of the system multiplied by the least
common multiple of the periods of the tasks.

The paper is organized as follows. Related works
are detailed in Section 2. In order to better under-
stand the key notions on which our analyses relies, we
present an informal study of end-to-end constraints
in Section 3. The temporal behaviour model and
the end-to-end constraints language are introduced
in Section 4. The multi-periodic synchronous model
is defined in Section 5 and the verification of end-to-
end constraints for this model is detailed in Section 6.

2 Related works

First, we clarify the difference between end-to-end
analysis and other real-time analyses. Worst-case
Execution Time (WCET) analysis [4] calculates an
upper bound to the execution time of each task of a
system. This is required to perform a schedulability
analysis and guarantee that every task will meet its
deadline [1, 5]. Worst-case Response-Time (WCRT)
analysis [1, 6] computes an upper bound to the time
required for a task to complete its execution, when
executed concurrently with the rest of the tasks of the
system. It is a popular technique for checking system
schedulability, Demand Bound Function analysis [1]
being another one. In these analyses, real-time prop-
erties usually concern a single task (even though their
analysis requires to consider the whole system). By
contrast, end-to-end constraints concern several tasks
involved in a chain of computation. In [7,8], authors
propose WCRT analyses for groups of tasks, called

transactions, however all tasks in a transaction must
have the same period. Worst-Case Traversal Time
(WCTT) analysis [9] calculates an upper bound to
the time required for some input data to reach its des-
tination in a network of components. Real-time cal-
culus [10] derives schedulability analysis techniques
from network calculus [9].

Several models have been proposed to accurately
specify the timing behaviour and the timing require-
ments of a real-time system at the model level.
This includes the Timing Architecture Description
Language (TADL) [11], adopted by AUTOSAR and
EAST-ADL, and the Clock Constraint Specification
Language (CCSL) [12], designed for UML-MARTE.
General verification techniques have been proposed
for CCSL [12] (based on model checking) and for
TADL [13] (based on timed automata), but the com-
plexity is quite high.

End-to-end properties analysis at the model level
has been studied in [14–16]. These methods, targeted
for the automotive context, assume register buffer
communication, where the producer task writes in
the buffer when it completes and the consumer task
reads from it when it starts, while we consider causal
communications. Furthermore, properties analysis is
tightly related to the underlying scheduling policy.
In [17], authors proposed an end-to-end properties
analysis that is performed at the model level, which
abstracts from scheduling details, but still with regis-
ter buffer communication. End-to-end latency analy-
sis for systems with causal communications has been
studied in [18–21]. Our work provides a more general
analysis method for arbitrary end-to-end properties
(not only latency).

Real-time parameter synthesis, has a different ob-
jective, which is to compute parameters that will
enforce the satisfaction of some imposed end-to-end
constraints. Task period synthesis is presented in
[22, 23], task WCET synthesis in [24] and job-level
dependencies synthesis in [20].

3 Informal study

We illustrate the notion of end-to-end constraints on
a subset of the longitudinal flight control system (Fig-

2

Altitude Hold
Law (hHL)

Altitude
Filter (hF)

Vz Control Law
(vzL)

Elevator Control
Law (EL)

Elevator
Filter (EF)

Vz Filter
(vzF)

observed
altitude
(o h)

required
altitude

(r h)

required
vertical speed

(r vz)

observed
angle

(o angle)

observed
vertical speed

(o vz)

required
angle

(r angle)

order

angle

vz

altitude

(h)

period = 60 ms period = 40 ms period = 30 ms

Figure 1: Vertical speed control from Rosace

ure 1) extracted from the Rosace case-study [25].
This system controls the angle of the control surface
(order) based on: the current surface angle (angle),
the current aircraft vertical speed (vz), the current
aircraft altitude (altitude) and the altitude required
by the pilot (required altitude). The software ar-
chitecture consists of six tasks that make up three
computation chains. Tasks operate at three different
rates (30ms, 40ms, 60ms) and some tasks of different
rates communicate. The system must satisfy end-to-
end real-time constraints detailed below.

Latency constraint Let us consider the naviga-
tion computation chain (r h, hHL, vzL, EL, order).
To ensure a smooth reaction of the aircraft to pilot
commands, the time elapsed between a pilot order
(required altitude) and the modification of the con-
trol surface angle (order) is required to be less than
1s. Assuming that the control surface requires 400ms
to reach an ordered angle, the end-to-end latency of
the computation chain must thus be less than 600ms.

A possible temporal behaviour of this chain is
detailed in Figure 2. Arrows stand for backwards
data-dependencies, for instance the fifth surface an-
gle order order5 depends on the first pilot order
r h1. The worst-case latency of a pair of depen-
dent task instances (orderp,r hq) is when r hq is ex-
ecuted at the beginning of its period and orderp is
executed at the end of its period. Then, we con-
sider the worst-case latency for each input paired
with the first output that depends on it (e.g. we
ignore the latency of (order6,r h1)). The behaviour
described in this diagram satisfies the 600ms latency

Figure 2: Chain from r h to order

Figure 3: Chain from vz to order

constraint: the worst-case latency is 150ms, achieved
for (order5,r h1) and (order7,r h2).

Reactivity Let us consider the chain (vz, vzF ,
vzL, EL, order). A gust of wind may suddenly
increase the vertical speed of the aircraft (vz). To
preserve the aircraft structure integrity, and for pas-
sengers comfort, the control system must react to any
variation of vz that lasts longer than 120ms, by reori-
enting the control surfaces accordingly (by computing
a new value for order).

Let us assume that tasks EL and vzL incur no
delay, other than their execution time, but that vzF
incurs a logical delay of one cycle, meaning that the
vzF input at its repetition n only impacts its output
at its repetition n+1. A possible temporal behaviour
for this chain is described in Figure 3. In the worst-
case scenario, vz3 is received at date 60, it impacts
the output of vzF 4 produced after date 90 (due to
the internal delay of vzF), thus after the execution
of vzL3. Finally, the output of vzF 5 overwrites the
output of vzF 4 at date 120. As a result, vz3 impacts
no instance of the output order. This means that a
variation of vz that lasts for up to 60ms may have no
impact on order. Thus the reactivity of the chain is
no less than 60ms.

3

4 End-to-end properties speci-
fication

In this section we propose a small language dedi-
cated to the specification of end-to-end real-time con-
straints and use this language to define some classic
end-to-end constraints. Constraints are formulated
based on the system temporal behaviour, an abstract
representation of the system execution that abstracts
from the underlying real-time task model and sched-
uler.

4.1 Temporal behaviour

The informal study presented in the previous sec-
tion emphasizes the information we need to perform
end-to-end analysis: 1) the completion date of each
instance of each task; 2) the data-dependencies re-
lating task instances. We capture this information
in the temporal behaviour of a system. In the rest
of the paper we denote N∗ the set of strictly pos-
itive integer (i.e. zero excluded). A temporal be-
haviour is defined as a pair {J ,D}, where J is the
set of jobs and D is the set of job dependencies. Each
job τpi corresponds to the instantiation of some task
τi (with i, p ∈ N∗). Since the exact duration of a
job execution is usually not known, but can only be
bounded with best-case execution times (BCET) and
worst-case execution times (WCET), our end-to-end
analysis relies on bounds on completion times instead
of exact values. For each job τpi , the temporal be-
haviour of a system provides its earliest completion
time, denoted etime(τpi), and its latest completion
time, denoted ltime(τpi). We assume that we al-

ways have ltime(τpi) ≤ etime(τp+1
i). The compu-

tation of etime() and ltime() not only depends on
jobs BCET/WCET but also on the system sched-
ule. However, the temporal behaviour model merely
describes a system execution, but does not consider
how it was produced. In particular, it makes no as-
sumptions on how jobs are generated (periods, release
dates), and on whether jobs respect some deadlines or
not. Completion dates computation will be detailed
in Sections 5 and 6.

We denote τpi ← τ qj when (τpi , τ
q
j) ∈ D, which rep-

resents the fact that τ qj produces data required for
computing τpi . By extension, we write τi ← τj when
there exists some p, q, such that τpi ← τ qj . Each job
has a set of predecessors in(τpi) = {τ qj ∈ J |τ

p
i ← τ qj }

and a set of successors out(τpi) = {τ qj ∈ J |τ
q
j ← τpi }.

A job that has no predecessors is an input job or sen-
sor job. A job that has no successor is an output job
or actuator job. We denote ←∗ the transitive closure
of the dependence relation. A task τi may introduce
internal logical delays, meaning that a job of this task
produces its output based on the input received by an
older job of the task. This is specified using function
deli. The function definition is out of the scope of this
paper, but it can be obtained by a static analysis of
the task internal data-dependencies. The semantics
is as follows:

Definition 1. If τ qj ← τpi and τ rk ← τ
q+delj(τi,τk)
j ,

then τ rk ←∗ τ
p
i .

By extension, we write τi ←∗ τj when there exists
some p, q, such that τpi ←∗ τ

q
j . End-to-end properties

are imposed on a chain of computation or functional
chain, which relates a sensor to an actuator through
a series of dependencies.

Definition 2. A functional chain is a sequence of
tasks (τ1, . . . , τn), where τ1 is a sensor, τn is an ac-
tuator, and for all 1 < i ≤ n, τi ← τi−1.

In the example of Figure 3, order5 is a job of order.
We have order5 ← EL5, EL5 ← vzL4, vzL4 ← vzF 5

and vZF 4 ← vz4. Since delvzF (vz, vzL) = 1, we
have vZL4 ←∗ vz4. By transitivity, we also have
order5 ←∗ vz4 and (vz, vzF, vzL,EL, order) is a
functional chain.

4.2 End-to-end constraints language

Now, we define a language for specifying the end-to-
end constraints we want to verify on some temporal
behaviour. The language focuses on: relevant inputs
(rlv(xS)), i.e. inputs that are used by some out-
put, the first and last successors of a relevant input
(first(idx), last(idx)), the earliest/latest completion
date of a job (date), the duration that separates in-
put and output completion dates (duration) and the

4

constraint on a duration (formula). Term taskidx

corresponds to some element of the job set. We de-
note by E the set of end-to-end properties, i.e. the
set of terms corresponding to rule formula.

xS ::= x | x− 1 | x+ 1 | k ∈ N
idx ::= rlv(xS) | idx− 1 | idx+ 1

| last(idx) | first(idx)
date ::= etime(taskidx) | ltime(taskidx)
duration ::= date− date | minx∈N(date− date)

| maxx∈N(date− date)
formula ::= duration <= k ∈ N

Definition 3. Let τ ′ ←∗ τ and q ∈ N∗:

• τ rlv(q) is the q-th relevant value of τ (with respect
to τ ′) iff: ∃, p ∈ N∗|τ ′p ←∗ τ rlv(q);

• rlv(q) < rlv(q + 1) (rlv is a strictly increasing
function);

• last(rlv(q)) = max{p|τ ′p ←∗ τ rlv(q)};

• first(rlv(q)) = min{p|τ ′p ←∗ τ rlv(q)}.

For instance, in the example of Figure 3, for the
dependence vzL ← vzF , we have rlv(1) = 2, mean-
ing that vzF 1 is unused (irrelevant). Then rlv(2) =
3 and rlv(3) = 5, meaning that vzF 4 is unused.
For the dependence EL ← vzL, first(4) = 5 and
last(4) = 6, because vzL4 is first used by EL5 and
last used by EL6. Let us now consider the latency
constraint for the first input of chain (r h, ..., order)
in the example of Figure 2. The first relevant value
of r h is produced by r hrlv(1) (i.e. r h1) and the
instances that consume it are instances orderp with
p ∈ [first(rlv(1)), last(rlv(1))] (i.e. order5, order6).
Latency is computed considering the first consumer,
thus we consider the time elapsed for dependency
orderfirst(rlv(1)) ←∗ r hrlv(1). The worst-case cor-
responds to a situation where r hrlv(1) is sampled
as early as possible (date 0), while the first con-
sumer orderfirst(rlv(1)) is produced as late as pos-
sible (date 150). Using our language, the latency
constraint is expressed as: ltime(orderfirst(rlv(1)))−
etime(r hrlv(1)) ≤ 600.

When rlv(1) > 1, some instances of the consumer
task depend on a constant initial value, that is not

computed by the producer task. This is for instance
the case in Figure 3 for EL1 in dependency EL ←
vzL. We complete the previous definitions as follows
to handle the initial value.

Definition 4. We define:

rlv(0) = 0 first(0) = 1 last(0) = first(rlv(1))− 1

etime(τ0i) = ltime(τ0i) = 0

4.3 Classic end-to-end properties

We can now formulate several classic end-to-end
properties, such as those of [14], using the specifi-
cation language we just introduced.

Worst-case latency The latency of a functional
chain can be defined informally as the time needed for
an input value to propagate to an output value (also
called first to first delay in [14]). To define the worst-
case latency (WCL) of a chain, we need to consider
all of its pairs of dependent values. However, we must
also take into account input values that are consumed
by no output: in the example of Figure 3, if the value
of vz changes during its third sampling period (i.e.
for vz3) and provided it remains unchanged until the
fourth sampling period (i.e. for vz4), then order will
be impacted only at its fifth period (i.e. for order5).
This leads us to the definition below. Notice that an
input value is unused only in case rlv(x − 1) + 1 6=
rlv(x).

Definition 5. Let τn ←∗ τ1. WCL(τ1, τn) =

max
x∈N∗

(ltime(τfirst(rlv(x))n)− etime(τ rlv(x−1)+1
1))

Best-case latency Consider the chain
(r h, ..., order), the first relevant input value is r h1

and the first occurrence of order that depends on it
is order5 (i.e., rlv(1) = 1 and first(rlv(1))) = 5).
The best-case latency of this pair is achieved when
r h1 is read at the latest, i.e. just before 60,
and order5 is produced at the earliest, i.e. just
after 120. More formally: BCL(r h1, order5) =
etime(orderfirst(rlv(1)))− ltime(r hrlv(1)). Thus:

5

Definition 6. Let τn ←∗ τ1. BCL(τ1, τn) =

max(0,min
x∈N

(etime(τfirst(rlv(x))n)− ltime(τ rlv(x)1)))

Best-case and worst-case freshness Let τn ←∗
τ1. At any time t, the freshness is the difference t−t1,
where t1 is the reading date of the value of τ1 used
to compute the current value of τn (also called last
to last delay in [14]). Consequently, a freshness con-
straint Freshness(τ1, τn) ≤ ∆f requires that, at every
time t, the value of τ1 used to compute the current
value of τn has been read no earlier than t − ∆f .
Let us consider the chain (vz, ..., order) depicted Fig-
ure 3. We have order3 ← vz1. Considering that vz1

is acquired at t ∈ [0, 30) and that order3 is produced
at t′ ∈ [60, 90), then the freshness of order3, that is
t′− t, is bounded as follows: 60−30 < t′− t < 90−0.

The best-case freshness (BCF) of the chain is ob-
tained for order5, which depends on vz4. The best-
case freshness of order5 is 120 − 120 = 0, which is
achieved when vz4 is read at the latest (just before
120), and order5 is produced at the earliest (just af-
ter 120). For the worst-case freshness (WCF), we
note that order6 depends on the same input value
as order5. This means that the input is not re-
freshed for order6. The worst-case freshness of or-
der with respect to vz4 is thus 180 − 90 = 90, i.e.
the latest completion time of the last occurrence of
order that depends on vz4 minus the earliest com-
pletion time of vz4. So, we have: bcf(order, vz4) =
etime(order5) − ltime(vz4) and wcf(order, vz4) =
ltime(order6)− etime(vz4).

Formal definitions are provided below. Let us em-
phasize that, even though freshness and latency are
different notions, the definitions of BCL and BCF
coincide. However, WCL and WCF do not.

Definition 7. Let τn ←∗ τ1. The worst-case (resp.
best-case) freshness between τn and τ1 is defined as:

WCF (τ1, τn) = max
x∈N

(ltime(τ last(rlv(x))n)− etime(τ rlv(x)1))

BCF (τ1, τn) = max(0,min
x∈N

(etime(τfirst(rlv(x))n)−

ltime(τ
rlv(x)
1)))

Worst-case reactivity The reactivity of a chain
between two tasks τ1 and τn characterizes the mini-
mal duration of any value change on τ1 such that this
change is eventually propagated to τn (this property
has no equivalent in [14]). For instance, let us con-
sider the chain (vz, ..., order). Figure 3, shows that
vz3 does not impact any occurrence of order. Let
us consider the following scenario: (1) vz2 is read at
the earliest, i.e. at 30; (2) the value of vz changes
just after 30 but then gets back to its previous value
just before 120; (3) vz4 is read at the latest, i.e. at
120. In this scenario, the variation on the value of vz
goes “unnoticed” by the system, because vz3 is not
a relevant occurrence of vz.

Definition 8. Let τn ←∗ τ1. WCR(τn, τ1) =

max
x∈N

(ltime((τ
rlv(x+1)
1))− etime(τ rlv(x)1))

5 Multi-periodic synchronous
model

In this section, we define a multi-periodic synchronous
model to represent the system whose temporal be-
haviour we want to analyze. We also detail how
to obtain the temporal behaviour corresponding to
a system modelled that way.

5.1 Definition

A multi-periodic synchronous model is a pair (T ,M).
Each τi ∈ T (with 1 ≤ i ≤ |T |) is a task instantiated
periodically with period Ti ∈ N∗ (see Section 5.2
for the impact of periods on temporal behaviours).
τni denotes the nth job of τi (with n ∈ N∗). Each
Mi,j ∈ M (with 1 ≤ i ≤ |T |, 1 ≤ j ≤ |T |) is a
dependence matrix, which provides a specification of
all the pairs (p, q) such that τpi ← τ qj . Dependence
matrices, based on [26], represent dependencies that
follow patterns repeated periodically. Most indus-
trial applications and design tools that support multi-
rate systems, such as Simulink, AADL or Prelude,
use such periodic patterns. The reader is referred
to [27] for a comparison with other multi-rate data-
dependencies models. Let In denote the set of nat-

6

ural integers strictly smaller than n. Let lcm(n, n′)
denote the least common multiple of n and n′.

Definition 9. Let τi and τj be two tasks. Let
H = lcm(Ti, Tj). A dependence matrix M for τi,
τj, is such that M ⊆ IH/Ti

× IH/Tj
, where for

all (p, q), (p′, q′) ∈ M2, p = p′ ⇒ q = q′ and

p′ > p⇒ q′ ≥ q. The term τi
M← τj denotes a depen-

dence relation defined as follows:

∀(p, q) ∈Mω, τpi ← τ qj

with Mω ≡ {(n, n′)|
∃k ∈ N, (m,m′) ∈M,
(n, n′) = (m,m′) + (kHTi

, k HTj
)
}

This definition is illustrated in Figure 4. Intu-
itively, M lists all the pairs of dependent values dur-
ing the time interval corresponding to the first hy-
perperiod (H in previous definition). This interval
is depicted with a thick gray line in the figure. The
pattern is then repeated indefinitely at each hyperpe-
riod. A simple precedence (Figure 4a) corresponds to
the case where Ty = Tx and M = {(1, 1)}. The pat-
tern consists only of y1 ← x1, which is first repeated
as y2 ← x2, then as y3 ← x3, ... So we have yp ← xp

for all p ∈ N. Figure 4b corresponds to a delayed
communication: the pattern y2 ← x1 is repeated as
y3 ← x2, then as y4 ← x3, ... Here y1 depends on no
value of x, instead it depends on some constant initial
value. Notice also that in this example there is an off-
set between the intervals covered by M respectively
for x ([0, Tx)) and for y ([Tx, 2Tx)). Figure 4c corre-
sponds to an over-sampling, where each value of x is
used three times. The pattern is y1 ← x1, y2 ← x1,
y3 ← x1, it is repeated as: y1+1∗3=4 ← x1+1∗1=2,
y2+1∗3=5 ← x1+1∗1=2, y3+1∗3=6 ← x1+1∗1=2, ... Fig-
ure 4d corresponds to an under-sampling, where only
one out of two successive values of x are used. The
pattern is y1 ← x1, it is repeated as: y1+1∗1=2 ←
x1+1∗2=3, y1+2∗1=3 ← x1+2∗2=5, ...

5.2 Completion dates

Task periods and task dependencies imply timing
constraints. For a given system execution, let
start(τpi) denote the date at which τpi starts and
end(τpi) denote the date at which it completes. Fol-
lowing the synchronous model, we make the following

x1 x2 x3

y1 y2 y3

(a) M = {(1, 1)}

x1 x2 x3

y1 y2 y3

(b) M = {(2, 1)}

x1 x2 x3

y1y2y3y4y5y6y7

(c) M = {(1, 1),
(2, 1), (3, 1)}

x1 x2 x3 x4 x5

y1 y2 y3

(d) M = {(1, 1)}

Figure 4: Some classic communication patterns (y
M←

x)

assumptions, which must be respected by the final
system implementation:

• Relaxed synchronous hypothesis (or implicit
deadlines model): as in the relaxed synchronous
approach studied in [3,28] and in the classic real-
time task model [1], we require each instance
of a task to complete before the next activa-
tion of this task: start(τpi) ≥ Ti ∗ (p − 1) and
end(τpi) < Ti ∗ p;

• Causality : a task instance cannot start executing
before all its predecessors complete their execu-
tion: ∀τpi ← τ qj , start(τ

p
i) ≥ end(τ qj).

In the following, we assume that the final system
implementation respects these timing constraints,
which is typically ensured by the system compiler
(when automated code-generation is used) and by the
system scheduling policy. We abstract from actual
execution dates and from execution times, and only
consider best and worst-cases, we let etime(τpi) =
Ti ∗ (p − 1) and ltime(τpi) = Ti ∗ p. This leads to
a safe over-approximation of end-to-end properties.
In a way, this is similar to how synchronous lan-
guages [29] abstract from real-time to simplify pro-
gramming. Furthermore, as shown in [14, 30], the
contribution of task periods to end-to-end delays is
far more important than that of WCET.

7

5.3 Functional chains

To compute end-to-end properties (in Section 6), we
will need to consider the set of task instances depen-
dencies of the functional chain, that is, for a chain
(τ, ..., τ ′), the pairs (p, q) ∈ N2 such that τ ′p ←∗ τ q.
To this intent, we first define a composition operator
on precedence matrices, which is reminiscent of the
unfolding technique of [27].

Definition 10. Let M1, M2, be dependence matrices.
The composition of M1 with M2 is denoted M1 ◦M2.

The term τi
M1◦M2

←∗ τj denotes a dependence relation
defined as follows:

∀p, q ∈ N2, τpi ←
∗ τ qj iff ∃t ∈ N|(p, t) ∈Mω

1 , (t, q) ∈Mω
2

Let |M | denote the cardinality of M , i.e. the num-
ber of pairs of values in M . Algorithm 1 describes
a procedure to compute the composition of two de-
pendence matrices. We use the following auxiliary
functions:

• unfold(M,n, To, Ti) unfolds precedence matrix
M over duration n. For instance, in Figure 4c,
unfold(M, 60, 10, 30) = {(1, 1), (2, 1), (3, 1),
(4, 2), (5, 2), (6, 2)};

• pat size(M,To, Ti) returns the duration covered
by one pattern of M . It is equal to |M | ∗ To.
For instance, in Figure 2, for (r h, ..., order), we
have pat size(M, 30, 60) = 4∗30 = 120 (see Sec-
tion 5.4 to understand why |M | = 4);

• closure(M1,M2) takes two precedence matrices
M1,M2 and returns the precedence matrix con-
sisting of the pairs (p, q) such that there exists t
with (p, t) ∈M1 and (t, q) ∈M2.

In the following, we consider that the composition
is computed with Algorithm 1. To compute the de-
pendence matrix of a whole functional chain, we also
need to account for internal task delays.

Property 1. Let τa
M1

←∗ τb and τb
M2← τc. We have

τa
M

←∗ τc, with:

M = M ′1 ◦M2

M ′1 = {(p, q)|∃p′, p = p′ + delb(c, a), (p′, q) ∈M1}

Algorithm 1 Procedure C for composing M1 with
M2

Require: τi
M1◦M2← τj

hp← lcm(pat size(M1, Ti, Tj), pat size(M2, Ti, Tj))
M ′1 ← unfold(M1, hp, Ti, Tj)
M ′2 ← unfold(M2, hp, Ti, Tj)
return closure(M ′1,M

′
2)

Proof. By adding delb(c, a) to each output index of
M1 while keeping input indices unchanged, we delay
each input (the “time” needed for an input to impact
an output) by delb(c, a).

We can now bound the size of dependence matrices.

Lemma 1. Let C = (τ1, . . . , τn) a functional chain.

We have τn
M

←∗ τ1, with |M | ≤ lcmi≤n(Ti)/Tn.

Proof. By induction.

Induction base. For a single precedence τ2
M1← τ1,

due to the definition of a dependence matrix, we have
|M1| ≤ lcm(T1, T2)/T2.

Induction step. Assume τn
M

←∗ τ1 and |M | ≤

lcm(T1, ..., Tn)/Tn. Let τn+1

Mn+1

←∗ τn. Then, we have

τn+1

M ′

←∗ τ1, with M ′ = Mn+1 ◦ {1 + (delb(c, a), 1)} ◦
M . Let M ′′ = {1 + (delb(c, a), 1)} ◦ M . We have
|M ′′| ≤ lcm(T1, ..., Tn)/Tn. Finally, according to Al-
gorithm 1, |M ′| ≤ lcm(T1, ..., Tn, Tn+1)/Tn+1.

5.4 Example

Let us apply the previous notions on the flight control
system of section 3.

System model Real-time characteristics are as fol-
lows:

T T del
hHL 60 del(r h, vzL) = 1
hF 60 0
vzL 40 del(hHL,EL) = 1

del(vzF,EL) = 0
EL 30 0
EF 30 0
vzF 30 del(vz, vzL) = 1
r h 60 0
order 30 0

M Precedence matrix

hHL
M1← r h M1 = {(1, 1)}

vzL
M2← hHL M2 = {(3, 2), (4, 3), (5, 3)}

EL
M3← vzL M3 = {(5, 4), (6, 4), (7, 5), (8, 5)}

order
M4← EL M4 = {(1, 1)}

vz
M6← vzF M6 = {(1, 1)}

vzL
M7← vzF M7 = {(2, 2), (3, 3), (4, 5)}

EL
M8← vzL M8 = {(3, 2), (4, 3), (5, 4), (6, 4)}

order
M9← EL M9 = {(1, 1)}

8

Precedence matrices are more complex than
those shown before. For instance, for M2 =
{(3, 2), (4, 3), (5, 3)}, for the first pattern, we have
vzL3 ← hHL2, vzL4 ← hHL3, vzL5 ← hHL3,
then we repeat the pattern with vzL6 ← hHL4,
vzL7 ← hHL5, . . .

This example also illustrates the possibility to have
an offset between the time intervals covered by one
pattern of the precedence matrix for the input and
output tasks. For instance, let us consider depen-

dence vzL
M2← hHL. The time interval covered by

one pattern of M2 has length 120, but for hHL it
corresponds to [0, 120) while for vzL it corresponds
to [80, 200).

Functional chain r h to order The behaviour
of this chain is shown in Figure 2. Even though
the hyperperiod of r h and order is 60, the prece-
dence matrix obtained for describing their transitive
dependence relation covers an interval of duration
120. This is coherent with Lemma 1 and is due
to the period of vzL being equal to 40. For the

complete chain, we obtain: order
M

←∗ rh with M =
{(5, 1), (6, 1), (7, 2), (8, 2)}

Functional chain vz to order The behaviour
of this chain is shown in Figure 3. Since
delvzL(vzF,EL) = 0, vzL induces no delay on this
computation chain, even though it did for the pre-
vious chain. Compared to the previous example,
here some values are unused. For instance, M7 =
{(2, 2), (3, 3), (4, 5)}, so the sequence of values of vzF
consumed by vzL is 2,3,5,. . . Thus vzF 4 is unused.
However, since vzF introduces a delay, when we con-
sider the whole chain the input that is unused is
actually vz3. For the complete chain, we obtain:

order
M

←∗ vz with M = {(3, 1), (4, 2), (5, 4), (6, 4)}

End-to-end properties. The properties that
must be checked are specified as follows, us-
ing the definitions provided in Section 4.3:
WCL(r h, order) ≤ 600, WCR(vz, order) ≤ 120.

6 Verification

In this section, we detail how to verify end-to-end
constraints expressed with the constraints language
of Section 4.2, for a system specified with the syn-
chronous model of Section 5, based on its temporal
behaviour.

6.1 Computing term date

We first detail how to compute terms of the date rule
of the constraints language. To this intent, we define
an equivalence relation on elements of a dependence
matrix that will simplify the computation. For any
set S, let |S| denote its cardinality.

Definition 11. Let M be a dependence matrix. We
define an equivalence relation ∼ on M and a parti-
tioning of M into subsets [M]i as follows:

• ∀(p, q), (p′, q′) ∈M2, (p, q) ∼ (p′, q′) ≡ q = q′

• M/ ∼ is the quotient of M by ∼ (its set of equiv-
alence classes);

• ∀i, 1 ≤ i < |(M/ ∼)|,∀(p, q), (p′, q′) ∈M2:

[M]i ∈ (M/ ∼)

(p, q) ∈ [M]i ∧ (p′, q′) ∈ [M]i+1 ⇒ q < q′

Additionally:

• Let in([M]i) be such that for all (p, q) ∈ [M]i,
q = in([M]i);

• Let outs([M]i) denote the first projection of
[M]i.

For instance, for the precedence matrix M =
{(3, 1), (4, 2), (5, 4), (6, 4)} (from order ←∗ vz), we
have [M]1 = {(3, 1)}, [M]2 = {(4, 2)}, [M]3 =
{(5, 4), (6, 4)}. We also have in([M]3) = 4 and
outs([M]3) = {5, 6}.

We note that relevant inputs in the case of prece-
dence matrices correspond to the successive values of
in([M]i):

Property 2. Let τn
M

←∗ τ1: ∀x ∈ N∗, rlv(x) =
in([Mω]x)

9

Proof. Deduced from dependence matrices definition.

Then, we can compute last and first successors as
follows:

Property 3. Let τn
M

←∗ τ1, ∀q ∈ N∗ :{
last(rlv(q)) = max(outs([M]q))
first(rlv(q)) = min(outs([M]q))

Proof. Deduced from dependence matrices definition.

Based on these properties and on the definition of
etime() and ltime() in Section 5.2, we can compute
the value of terms of the language rule date.

6.2 Computing term formula

To verify that an end-to-end property holds, we need
to compute terms of the date rule of the language
for every pair of dependent values of the concerned
tasks. We will show that formula values follow a pat-
tern repeated periodically, due to the fact that we are
restricted to periodic systems with periodic commu-
nication patterns. As a consequence, we only need to
check the validity of the formula for every pair of the
pattern. First, we note some auxiliary properties:

Property 4. Let τn
M

←∗ τ1, H = lcm(Tn, T1). For
all x ∈ N:

rlv(x+H/T1) = rlv(x) +H/T1

last(x+H/T1) = last(x) +H/Tn

first(x+H/T1) = first(x) +H/Tn

Proof. Due to the definition of Mω.

Now we show that duration values (i.e. date−date)
for increasing values of x follow a periodic pattern.

Property 5. Let τn
M

←∗ τ1 and H = lcm(Tn, T1).
Let f(x) = date1(x) − date2(x), where date1(x) and
date2(x) are terms corresponding to the syntactic rule
date of our language. We have:

∀x > 0, f(x) = f(x+H/T1)

Proof. As an example, let us consider the worst-case
latency. We have WCL(x) = maxx∈N∗(date1(x) −
date2(x)) with date1(x) = ltime(τ

first(rlv(x))
n) and

date2(x) = etime(τ
rlv(x−1)+1
1). Then:

WCL(x+H/T1) =first(rlv(x+H/T1))× Tn−
(rlv(x+H/T1 − 1) + 1)× T1

=first(rlv(x))× Tn − (rlv(x− 1) + 1)× T1+

H/Tn × Tn −H/T1 × T1 = WCL(x)

The same proof principles hold for any other pair of
terms date1(x) and date2(x).

As a consequence of this property, to check a for-
mula of our language we only need to check the for-
mula for each relevant input in one pattern of |M |.
Therefore, we can state the complexity of a formula
verification as follows.

Theorem 1. Let (τ1, . . . , τn) be a functional chain
where data-dependencies are specified by dependence
matrices. Any formula of E for this functional chain
can be verified with complexity O(lcmk≤n(Tk)× n).

Proof. There are two steps in the verification: 1)
Compute the dependence matrix M for the whole
chain; 2) Check the formula for every relevant input
of one pattern of M .

For step 1, we compute M by recursive applica-
tions of Algorithm 1. The complexity of this Al-
gorithm is linear in size of the resulting matrix.
Due to Lemma 1, the size of this matrix is lower
than lcm{Ti, 1 ≤ i ≤ n}. So step 1 is linear in
lcm{Ti, 1 ≤ i ≤ n} ∗ n.

For step 2, we note that any term of rule date
requires to compute a value of rlv(x) and either
first(rlv(x)) or last(rlv(x)). Any formula requires
to compute the value of two terms of date for all
the relevant inputs of M . Since obviously we can
compute the set of all relevant inputs, first and last
successors of one pattern of M by a single traversal
of M , the complexity of step 2 is linear in the size of
M .

Note that this means that our verification has a
time-complexity linear in the size of the hyper-period
of the tasks of the functional chain (Lemma 1). The

10

hyper-period is in the worst-case exponential with re-
spect to the number of tasks of the chain [1]. How-
ever, this rarely occurs in practice, since it requires
all tasks to have co-prime periods. Furthermore, this
complexity seems inevitable, since it is hard to think
of an analysis that would not at least consider every
pair of dependent values in the hyper-period.

6.3 Implementation

The verification procedure we just presented has been
implemented in OCaml (about 300 lines of code).
We do not present detailed experiments since the pro-
cedure has linear time-complexity and thus scales re-
ally well. For instance, it takes less than 10ms on an
Intel Core i7-2.8GHz, with 4Gb of RAM, to check a
property on a chain of 1000 tasks with an hyperpe-
riod of 10000. Verifying the properties of our case
study takes less than 1ms.

7 Conclusion

In this paper we have studied the formal verification
of end-to-end real-time constraints at the model level.
We first proposed a language for specifying formally
end-to-end constraints. Then, we detailed how to
check properties of this language on a multi-periodic
synchronous model.

We plan to extend this work to support more com-
plex end-to-end properties. For instance, we wish to
check that two functional chains have similar laten-
cies (when two actuators are related to the same sen-
sor). We also plan to consider the synthesis problem:
how to choose task periods and communications so
as to satisfy a set of specified end-to-end constraints.

References

[1] A. Burns and A. Wellings, Real-Time Sys-
tems and Programming Languages: Ada, Real-
Time Java and C/Real-Time POSIX, 4th ed.
Addison-Wesley Educational Publishers Inc,
2009.

[2] P. H. Feiler, D. P. Gluch, and J. J. Hudak,
“The architecture analysis & design language
(AADL): an introduction,” Carnegie Mellon
University, Tech. Rep., 2006.

[3] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla,
and D. Lesens, “Multi-task implementation of
multi-periodic synchronous programs,” Discrete
Event Dynamic Systems, vol. 21, no. 3, pp. 307–
338, 2011.

[4] R. Kirner and P. P. Puschner, “Classification of
WCET analysis techniques,” in Eighth IEEE In-
ternational Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2005),
Seattle, USA, 2005.

[5] V. Bertin, E. Closse, M. Poize, J. Pulou,
J. Sifakis, P. Venier, D. Weil, and S. Yovine,
“Taxys=esterel+kronos. a tool for verifying real-
time properties of embedded systems,” in 40th
IEEE Conference on Decision and Control,
vol. 3, 2001.

[6] M. Kuo, R. Sinha, and P. Roop, “Efficient wcrt
analysis of synchronous programs using reach-
ability,” in Proceedings of the 48th Design Au-
tomation Conference, ser. DAC ’11, 2011.

[7] K. Tindell, “Adding time-offsets to schedulabil-
ity analysis,” Department of Computer Science,
University of York, Tech. Rep., 1994.

[8] J. C. Palencia and M. G. Harbour, “Exploiting
precedence relations in the schedulability anal-
ysis of distributed real-time systems,” in 20th
IEEE Real-Time Systems Symposium, Washing-
ton, DC, USA, 1999.

[9] J.-Y. Le Boudec and P. Thiran, Network calcu-
lus: a theory of deterministic queuing systems
for the internet. Springer Science & Business
Media, 2001, vol. 2050.

[10] L. Thiele, S. Chakraborty, and M. Naedele,
“Real-time calculus for scheduling hard real-
time systems,” in Proceedings of the IEEE 2000
International Symposium on Circuits and Sys-
tems (ISCAS), vol. 4, 2000.

11

[11] Timing Augmented Description Language
(TADL2) syntax, semantics, metamodel Ver. 2,
Aug 2012.

[12] C. André and F. Mallet, “Combining CCSL and
Esterel to specify and verify time requirements,”
in Proceedings of Conf. on Languages, Compil-
ers, and Tools for Embedded Systems, Dublin,
Ireland, 2009.

[13] A. Goknil, J. Suryadevara, M.-A. Peraldi-Frati,
and F. Mallet, “Analysis support for tadl2 tim-
ing constraints on east-adl models,” in European
Conference on Software Architecture, Montpel-
lier, France, 2013.

[14] N. Feiertag, K. Richter, J. Nordlander, and
J. Jonsson, “A compositional framework for end-
to-end path delay calculation of automotive sys-
tems under different paths semantics,” in Pro-
ceedings of the IEEE Real-Time System Sympo-
sium Workshop on Compositional Theory and
Technology for Real-Time Embedded Systems,
Barcelona, Spain, 2008.

[15] A. C. Rajeev, S. Mohalik, M. G. Dixit, D. B.
Chokshi, and S. Ramesh, “Schedulability and
end-to-end latency in distributed ecu networks:
Formal modeling and precise estimation,” in
Proceedings of the Conference on Embedded Soft-
ware (EMSOFT’10), Scottsdale, USA, 2010.

[16] S. Mohalik, D. B. Chokshi, M. G. Dixit,
A. C. Rajeev, and S. Ramesh, “Scalable model-
checking for precise end-to-end latency com-
putation,” in 2013 IEEE International Sympo-
sium on Computer-Aided Control System Design
(CACSD), Hyderabad, India, Aug. 2013.

[17] S. Mubeen, M. Sjödin, T. Nolte, J. Lundbäck,
M. G̊alnander, and K.-L. Lundbäck, “End-to-
end timing analysis of black-box models in
legacy vehicular distributed embedded systems,”
in 21st IEEE International Conference on Em-
bedded and Real-Time Computing Systems and
Applications, 2015.

[18] M. Geilen, S. Tripakis, and M. Wiggers, “The
earlier the better: A theory of timed actor in-
terfaces,” in Proceedings of the 14th Interna-
tional Conference on Hybrid Systems: Compu-
tation and Control, 2011.

[19] R. Wyss, F. Boniol, C. Pagetti, and J. Forget,
“End-to-end latency computation in a multi-
periodic design,” in Proceedings of the 28th An-
nual ACM Symposium on Applied Computing
(SAC), 2013.

[20] M. Becker, D. Dasari, S. Mubeen, M. Behnam,
and T. Nolte, “Synthesizing job-level depen-
dencies for automotive multi-rate effect chains,”
in The 22th IEEE International Conference on
Embedded and Real-Time Computing Systems
and Applications, August 2016.

[21] J. Khatib, A. Munier-Kordon, E. C. Klikpo,
and K. Trabelsi-Colibet, “Computing latency
of a real-time system modeled by synchronous
dataflow graph,” in Proceedings of the 24th In-
ternational Conference on Real-Time Networks
and Systems, 2016.

[22] R. Gerber, S. Hong, and M. Saksena, “Guar-
anteeing end-to-end timing constraints by cal-
ibrating intermediate processes,” in Real-Time
Systems Symposium, Proceedings, Dec 1994.

[23] J. Li, M. Xiong, V. Lee, L. Shu, and G. Li,
“Workload-efficient deadline and period assign-
ment for maintaining temporal consistency un-
der edf,” Computers, IEEE Transactions on,
vol. 62, no. 6, pp. 1255–1268, 2013.

[24] E. Wozniak, M. Di Natale, H. Zeng, C. Mraidha,
S. Tucci-Piergiovanni, and S. Gerard, “Assign-
ing time budgets to component functions in the
design of time-critical automotive systems,” in
Proceedings of the 29th ACM/IEEE Interna-
tional Conference on Automated Software En-
gineering, ser. ASE ’14, 2014.

[25] C. Pagetti, D. Saussié, R. Gratia, E. Noulard,
and P. Siron, “The ROSACE case study: From

12

simulink specification to multi/many-core ex-
ecution,” in 20th IEEE Real-Time and Em-
bedded Technology and Applications Symposium
(RTAS), 2014.

[26] J. Forget, F. Boniol, E. Grolleau, D. Lesens,
and C. Pagetti, “Scheduling Dependent Periodic
Tasks Without Synchronization Mechanisms,”
in 16th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, Stockholm,
Sweden, 2010.

[27] J. Forget, E. Grolleau, C. Pagetti, and
P. Richard, “Dynamic Priority Scheduling of
Periodic Tasks with Extended Precedences,”
in IEEE 16th Conference on Emerging Tech-
nologies Factory Automation (ETFA), Toulouse,
France, Sep. 2011.

[28] A. Curic, “Implementing Lustre programs
on distributed platforms with real-time con-
straints,” Ph.D. dissertation, Univ. Joseph
Fourier, Grenoble, 2005.

[29] A. Benveniste and G. Berry, “The synchronous
approach to reactive and real-time systems,”
in Readings in hardware/software co-design.
Kluwer Academic Publishers, 2001.

[30] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Sup-
port for end-to-end response-time and delay
analysis in the industrial tool suite: Issues, ex-
periences and a case study,” Computer Science
and Information Systems, vol. 10, no. 1, January
2013.

13

