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Abstract—Producing feasible motions for highly redundant
robots, such as humanoids, is a complicated and high-
dimensional problem. Model-based whole-body control of such
robots, can generate complex dynamic behaviors through the
simultaneous execution of multiple tasks. Unfortunately, tasks
are generally planned without close consideration for the
underlying controller being used, or the other tasks being
executed, and are often infeasible when executed on the robot.
Consequently, there is no guarantee that the motion will be
accomplished. In this work, we develop an optimization loop
which automatically improves task feasibility using model-
free policy search in conjunction with model-based whole-body
control. This combination allows problems to be solved, which
would be otherwise intractable using simply one or the other.
Through experiments on both the simulated and real iCub
humanoid robot, we show that by optimizing task feasibility,
initially infeasible complex dynamic motions can be realized —
specifically, a sit-to-stand transition. These experiments can be
viewed in the accompanying video.

Index Terms—policy search, whole-body control, humanoids

I. INTRODUCTION

Highly redundant robots, such as humanoids, have enor-
mous potential industrial and commercial utility. Unfortu-
nately producing feasible and useful behaviors on real robots
is a challenging undertaking, particularly when the robot
must interact with the environment. This is caused, in large
part, by the fact that there are always errors between what
is planned, or simulated, and what is executed on a real
robot due to modeling errors and perturbations. Conse-
quently, an automatic method of resolving these errors on
real platforms is absolutely necessary for robots to attain
true autonomy. Model-based control alone cannot resolve
these issues because the many possible causes could not
be practically modeled for a general case. Similarly, even
the most sample efficient end-to-end learning methods (e.g.
[1]) would also fail because training a model on a real
robot would require an inordinate number of evaluations, or
rollouts. In this study, we show that by combining control
and learning techniques, we can create low-dimensional high-
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Fig. 1: A modern control hierarchy for highly redundant robotic
systems, e.g. humanoid robots. At the lowest level is whole-body
control, which determines the torques needed to accomplish a set
of tasks. At the intermediate level, these tasks are controlled by the
servoing/MPC level where task trajectory errors are compensated
using feedback. Finally the task trajectories are provided by high-
level planning, which is usually a combination of operator expertise
and automated planning. The task feasibility optimization loop pro-
posed in this paper is designed to correct infeasible tasks produced
by this architecture.

level abstractions of whole-body behaviors and efficiently
correct initially infeasible motions on real robots.

Modern control architectures employ multiple control lev-
els in order to decouple complex behaviors into manageable
control problems. At the lowest level is reactive whole-body
control, where joints torques are calculated at high frequency
(∼ 1kHz) given one or more tasks [2]. The control problem
can be written as a constrained convex optimization, where
the objective function is a combination of task errors, and
the constraints are the equations of motion, articulation and
actuation limits, and contacts [3], [4], [5]. Task errors are
dictated by desired task values which come from the next
level of task servoing. At this level, closed loop controllers
are used to servo task trajectories using state feedback
(PID) and/or Model Predictive Control (MPC) schemes at
frequencies between 100Hz and 10Hz [6], [7]. These task
trajectories generate the reference values, which are used
by task servoing, and come from the higher-level open-loop
planning which takes seconds to minutes, and generally com-
bines operator expertise and automated planning algorithms
[8], [9]. This control hierarchy of planning, servoing, and
whole-body control is presented in Fig. 1.

Because the control problem is abstracted in the task
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Fig. 2: In (a), (b), and (c), we show a time-lapse of a feasibility-
optimized standing motion executed on an iCub robot.

servoing and planning levels, there is no guarantee that
the task trajectories will be executed properly by the lower
control layers. Furthermore, tasks may conflict with one
another and/or the system constraints [10], [11]. The end
result is typically unstable or undesirable whole-body behav-
iors, and we qualify these tasks as infeasible. Prioritization
techniques are used to manage perturbations engendered by
infeasible tasks at the whole-body control level, but are
difficult to tune and only circumvent the problem. Moreover,
tasks infeasibilities change over the course of the movement
so applying static priorities may be overly restrictive [12],
[13]. Likewise, tuning/scheduling the task servoing gains
not only modifies the task trajectories, but also changes
the controller’s impedance, which may be undesirable for
the application. Hence, decoupling the impedance problem
from the trajectory shaping problem is not only prudent, but
simplifies each because well designed task trajectories should
alleviate the need for priority and gain tuning.

Given that it is the task reference values which generate
the infeasible control solutions, the task trajectories must
be altered. To do so, the errors induced by infeasibilities
can be measured and the task trajectories may be modified
to reduce them. Additionally, the servoing and whole-body
control levels with all of their parameters, as well as the
robot’s dynamics and environment, need to be taken into
account. Given the complexity of these requirements, it is
impractical to analytically model the relationship between
task trajectories and feasibility. One solution is therefore
to use model-free policy search (PS) techniques to modify
the trajectories through trial and error by minimizing a cost
function [14].

The objective of this study is to establish the task fea-
sibility optimization loop, shown on the left in Fig. 1, by
iteratively improving task trajectories using PS and exploiting
the model-based control layers. Building on the work in
[15], we first formalize the relationship between task trajec-
tories and parameterized policies in the whole-body control
architecture. We then develop a task feasibility cost, the
penalty function, from simple principles which measure the
infeasibility of a task. This feasibility cost is then minimized.
In robotics, it is advantageous, from both a time and monetary
standpoint, to perform PS with the fewest possible rollouts.
To this end, we use Bayesian Optimization (BO) for its

sample efficiency. BO solvers usually require fewer trials to
obtain an optimal solution and have become a popular choice
in robotics because of this efficacy [16], [17], [18], [19].

To study task feasibility optimization, we explore the
dynamically challenging activity of moving from sitting to
standing for the humanoid robot iCub, both in simulation
and on the real robot. This motion requires contact switching
and potentially unstable dynamic equilibrium to succeed. In
addition to a postural impedance task, a Center of Mass
(CoM) task is used to manage the sit-to-stand transition. The
trajectory of the CoM task is optimized to minimize the task
feasibility cost. Through these experiments, we demonstrate
that by combining analytical model-based controllers with
data-driven model-free PS techniques, we are able to solve
problems which would be otherwise intractable using simply
one or the other — e.g. producing feasible dynamically
complex motions on real robots, like the example shown in
Figs. 2a-2c.

II. METHODS

In this section, we describe the methods and tools used
to develop task feasibility optimization. We begin with an
overview of the underlying whole-body control architecture
and conclude with a description of PS. Here the policy to be
optimized is parameterized by the CoM task trajectory.

A. Control Architecture
Model-based whole-body controllers determine at each

control instant, k, the joint torques, τ (k), necessary to
accomplish some set of nT tasks, for all of the degrees
of freedom of the given robot, while respecting physical
constraints such as the equations of motion, articulation
and actuation limits, and contacts. These controllers can be
formulated using analytical null-space projection methods
[20], or multicriterion convex optimization problems using
weighted [3], [4] and/or hierarchical objective scalarization
[21]. Regardless of the formalism, any of these controllers
can be abstracted to the following generic function,

τ (k) = controller
(
s(k), C(k), Ti(k)

)
∀i ∈ {1, 2, . . . , nT } ,

(1)
which takes the robot’s state, s(k), its constraints, C(k), and
some tasks Ti(k), as inputs and outputs the joint torques.
The robot state, contains q(k), the generalized coordinates,
and ν(k), its derivative. The variable C(k) contains any
active constraints, e.g. joint and actuator limits, contacts, etc.
Tasks may be described in any number of ways in either
operational-space or joint-space, but all are governed by
desired task values provided by task servoing.

In an earlier version of this method, presented in [15], the
whole-body controller described in [3] is used. In this work,
the whole-body control algorithm used is the momentum-
based hierarchical controller developed in [22], [23], which
has momentum tracking, Tm, and joint impedance tasks, Tj,
— the most important of which is the former. Equation (1)
can then be written,

τ (k) = controller
(
s(k), C(k), Tm, Tj

)
. (2)



For the momentum task, the desired value is entirely de-
termined by the desired CoM acceleration, ẍdes

CoM, and is
provided by a proportional-integral servoing controller,

ẍdes
CoM = ẍref

CoM−Kp(ẋCoM−ẋref
CoM)−Ki(xCoM−xref

CoM) , (3)

where Kp and Ki are the proportional and integral gain
matrices respectively. The CoM reference values, xref

CoM,
ẋref

CoM, and ẍref
CoM are provided by a CoM trajectory. The

choice of this reference is thus crucial for a successful whole-
body motion, and without it the controller would serve little
purpose.

In the context of the sit-to-stand example explored here,
a finite-state-machine (FSM) composed of two states, coor-
dinates the standing motion in the controller. In the “Sit”
state, the robot is seated on the bench, and the two contacts
at the left and right upper legs are controlled to keep the
equilibrium. When a resultant ground reaction force greater
than 150N is detected, the FSM switches to the “Stand” state,
moving the bench contacts to the left and right heels in the
whole-body controller.

B. States, Actions, and Policies

Policy search methods are black-box optimization tech-
niques for iteratively learning control policies rather than
programming them by hand [24]. Model-free parameterized
PS lends itself to robotics as it precludes the need for
an analytical transition dynamics model and allows high-
dimensional problems to be handled with few parameters. In
keeping with reinforcement learning nomenclature, we define
the agent of this system, the humanoid robot (iCub), and
its discrete-time states are s(k). The actions of the agent,
a(k), are then the actuator torques, developed at each control
instant, a(k) = τ (k). The control policies, π

(
a(k)|s(k)

)
,

determine the action at time k given the current state. The
policies are mappings from task reference inputs, xref

i , ẋref
i ,

and ẍref
i ∀i ∈ {1, 2, . . . , nT }, to τ , using the whole-body

reactive controller described in Sec. II-A. It should be noted
that this mapping is not bijective and cannot be described
by a differentiable function. Assuming fixed whole-body
controller parameters, we can consider that the mapping
depends only on s(k) and the task control objectives at
each time step. Therefore, in order to modify π(k) we must
modify the task reference values, i.e. the task trajectories.

C. Policy Parameterization: Task Trajectories

Given the high dimensionality of the system’s states and
actions, we opt for a parameterized policy representation.
As presented in Sec. II-B, task trajectories uniquely de-
termine the evolution of the system, and therefore provide
a condensed representation of π for a given motion. The
task trajectories, and hence π, are parameterized by a se-
ries of keyframes/waypoints, which represent task coordi-
nates of particular importance. A single position waypoint
is given by θi, while a set of nθ waypoints is denoted
Θ =

[
θ1 θ2 . . . θnθ

]
. From Θ, a policy must be formed

using a parameterized function, πθ = ρ(Θ), where the ρ(Θ)

function can be chosen from a variety of parameterized tra-
jectory generators: e.g. splines, polynomials, optimal control
methods, etc. Here, we use the formulation proposed by [25],
which produces a time-optimal trajectory through Θ, with
a duration, tπ , dependent on the velocity and acceleration
limits imposed on the movement. For this study, we focus
on the CoM task trajectory, which will guide the robot from
a seated state to a standing state and therefore write the policy
as, π = ρ(ΘCoM), where ΘCoM are the CoM waypoints. Note
that any task trajectories can be used in the parameterization
of π.

Because of the nature of the standing motion studied here,
we may further restrict the parameterization. Since the robot
starts in a seated posture and finishes in a standing posture,
the initial, θstart, and final, θend = θnθ , waypoints of the
movement remain constant. As such, only the intermediate
waypoints are used to modify πθ. Here, we consider only
one intermediate CoM waypoint, θmid, simplifying the policy
parameterization to,

πθ = ρ(θmid) . (4)

D. Policy Rollouts: Task-Set Execution
Given a parameterized policy, πθ, we wish to determine

the evolution of the robot’s states and actions. The policy is
therefore rolled-out, meaning that the task-set is executed on
the robot, either in simulation or reality, and the state and
action data are recorded,

{S,A} = rollout(πθ) , (5)

where S and A are the concatenations of the states and ac-
tions over the entire rollout. This implies that the full control
architecture, as described in Sec. II-A, is employed until the
task execution is complete, meaning that the execution must
occur in a finite amount of time and should be finished in the
duration dictated by the CoM policy ρ(ΘCoM), tCoM

π . How-
ever, if the robot falls, then πCoM will not be completed in
tCoM
π . The policy rollouts are therefore assigned a maximum

execution time, tmax > tCoM
π , to allow for possible delays

in the task execution but to avoid recording failed rollouts
indefinitely. Here, we arbitrarily select tmax = 1.5× tCoM

π .

E. Penalty Function: Task Feasibility Cost
In order to evaluate the policy rollouts, we use a penalty

function based on three component cost functions, which
evaluate the performance of the policy and are based on
generic optimal control principles. These costs are calculated
a posteriori on the rollout data determined in (5). While de-
fined with respect to the CoM task, these costs are applicable
to any other form of control task.

Using the state information S, we can determine how the
CoM evolved over the course of a single rollout. We first
examine how well the CoM position, xCoM(k), tracked the
references, xref

CoM(k), provided by πθ, during the rollout and
develop the tracking cost,

jt =

N∑
k=0

‖xCoM(k)− xref
CoM(k)‖2 , (6)



where N is the total number of time steps. We define the
actual total duration of the rollout, tend = N∆t, where ∆t
is the control sampling period, and tCoM

π ≤ tend ≤ tmax. If
a task error is perfectly minimized by the controller, then
it goes to zero, meaning that the robot perfectly executes
πθ. Any error in the position tracking then reflects imperfect
optimization and consequently a task infeasibility associated
with the current policy. We assume that the ultimate objective
of the standing motion, and any point-to-point trajectory for
that matter, is to reach its final waypoint. With this in mind
a goal cost is developed,

jg =

N∑
k=0

k∆t

tπ
‖xCoM(k)− θend‖2 , (7)

where xCoM(k) − θend is the difference between the CoM
task position at time step k and the final waypoint in its
trajectory. The weight of this difference increases linearly
from zero with time. This means that the distance to the goal
waypoint becomes more important as time elapses. Finally,
we wish to determine the most energetically optimal motion,
by minimizing the actions, a (i.e. the control inputs, τ ) using
an energy cost,

je = β

N∑
k=0

‖τ (k)‖2 . (8)

Energy cannot be directly compared with Cartesian distances,
so the β parameter must be introduced to scale je for mean-
ingful comparison with jt and jg . Here, we use β = 1.0e−4.
The penalty function, or feasibility cost can be calculated by
summing the component costs, and averaging over tend to
account for rollouts with different timescales,

jf = penalty
(
{S,A}

)
=
je + jt + jg

tend
. (9)

With (9) we can estimate the feasibility of πθ. However, this
estimate has no absolute significance on its own. There is
no threshold value for determining analytically if πθ was
successful in a high-level sense (i.e. the robot stood up).
Given this ambiguity, we take the j0f of the initial π0

θ as
the reference with which all other πiθ are compared using,

ĵif =
jif
j0f

, where i indicates the rollout number. This means

that the initial, π0
θ, has a feasibility cost equal to 1.0 and any

πiθ which produces a ĵif < 1.0 represents an improvement in
task feasibility, and vice versa for ĵif > 1.0.

F. Optimizing The Policies: Bayesian Optimization

Since the transition dynamics, P(s(k+1)|s(k),a(k)), are
governed by the equations of motion with changing contacts,
P is a discontinuous and time-varying non-linear function.
Therefore, in order to optimize the policy parameters given
a scalar reward or penalty, non-convex black-box solvers
must be used. The downside to these solvers is that they
typically require many rollouts (parameter, θimid, and cost,
ĵif , samples) to converge on a local optimum. In humanoid
robotics, rollouts are time consuming and dangerous. As a
consequence, sample efficiency is of the highest importance

in PS. This, in addition to the low dimensionality of the
parameter space, permits the use of BO to optimize, θmid.
BO derives its sample efficiency from explicitly modeling the
latent parameter to cost mapping using a Gaussian Processes
(GP), and then using this model, or surrogate function, to
explore the parameter space. The actual minimization is
performed on an acquisition function which combines the
cost means and variances provided by the GP to balance
exploitation with exploration [26]. In this study, the Lower
Confidence Bound (LCB) acquisition function is used (see
[27]) and minimized with a Covariance Matrix Adapta-
tion Evolutionary Strategy solver (see [28]). The parameter
search space is bounded using box constraints around a
3-dimensional cube of possible θimid, positions as shown
in Fig. 3a. The incumbent solution is taken as the best
parameter and cost observation from the rollouts, θ∗mid and j∗f ;
therefore, the optimization does not depend on the sequence
in which the rollouts are performed. One drawback to BO is
that it does not guarantee convergence in most cases. Here,
convergence is assumed when BO proposes a new θimid which
satisfies, ∥∥∥θimid − θ

∗
mid

∥∥∥ ≤ γ , (10)

where γ is a distance threshold, or the number of iterations
has exceeded some maximum value.

Algorithm 1 Task Feasibility Optimization

1: Given initial policy parameters: θimid = θ0mid.
2: do
3: πiθ = ρ(θimid) . generate policy from parameters
4: {S,A}i = rollout(πiθ) . rollout the policy
5: jif = penalty

(
{S,A}i

)
. calculate the feasibility cost

6: ĵif =
jif
j0
f

. scale the cost

7: GP.Train
({

θimid, ĵ
i
f

})
. train the BO surrogate function

8: θ∗
mid = arg min

{
ĵ1f , ĵ

2
f , . . . ĵ

i
f

}
. get incumbent solution

9: θimid = arg min LCB . minimize acquisition function
10: while (10) 6= True or i < Max Iter. . convergence criteria
11: return θ∗

mid . return incumbent solution

G. Task Feasibility Optimization
Finally, the task feasibility optimization loop can be written

as shown in Algorithm 1. Starting from policy parameters
θimid = θ0mid, πiθ is generated using (4), and rolled out
on either the simulated or real robot. The resulting states
and actions are used to calculate a feasibility cost with (9),
which is subsequently scaled. The GP of the BO surrogate
function is then trained with the new parameter and cost data,{
θimid, ĵ

i
f

}
, and the next θimid is determined by minimizing

the LCB acquisition function. The new θimid is then compared
to the incumbent solution θ∗mid to determine if convergence
has been achieved. If so then the incumbent is returned.

III. EXPERIMENTS

The task feasibility optimization is tested using a dynami-
cally complex scenario in which the robot starts from a seated



(a) θmid bounds (b) bootstrapped (c) torso pitch torques

(d) 0.0s (e) 8.0s (f) 6.0s (g) non-bootstrapped

Fig. 3: (a) shows the bounds initially used for the BO in simulation. For the real rollouts, these bounds are then further restricted to a
10cm cube around the initial θmid. (b) show the feasibility cost percentages (bootstrapped case) from the rollouts in both simulation and
on the real robot. (c) shows the evolution of the torso pitch joint torques for the rollouts 25 and 33 in the bootstrapped case. The rollouts
which produced a failure (falling) are indicated by the red hatched backgrounds. The optimal (best observed costs) policy parameters,
θ∗

mid, are indicated for both real rollout cases. (g) shows the costs for the non-bootstrapped case. (d) shows the initial posture of the iCub
robot. (e) and (f) show the final standing posture of the optimized motions for the bootstrapped and non-bootstrapped cases respectively.

position on a stationary bench and must transition to standing.
The bench contacts are 22cm from the ground and on the
back of the iCub’s upper thigh links. The toes are in contact
with the ground. The initial posture is chosen to ensure that
the ground-plan (x-y) projection of starting CoM position is
within the Polygon of Support (PoS) defined by the bench
and ground contact locations. The contacts are managed by
the FSM described in Sec. II-A. The initial policy parameters,
θ0mid, are chosen between θstart and θend, resulting in a straight
line CoM trajectory. A full execution of the whole-body
controller constitutes a single policy rollout. The rollout is
completed when the robot reaches θend to within 3.0cm of
accuracy, or if tend > tmax.

The rollouts are first carried out in simulation using
Gazebo as the simulation environment with the ODE physics
engine. PS is iterated until one of the convergence criteria
detailed in Sec. II-F is met. In this study γ = 1.0cm, and
the maximum number of iterations is 30 in simulation and
10 on the real robot. The optimal policy parameters, θ∗mid
are then used to generate π∗θ which is rolled out on the real
iCub. This rollout is used to demonstrate that task feasibility
can be initially optimized in simulation and produce feasible
motions on the real robot. With the π∗θ from simulation as
a starting point, the PS is continued by performing rollouts

on the real iCub. For these rollouts we look at two cases. In
the first, the BO surrogate function training is bootstrapped
with training data from the simulated rollouts and further
trained on data from the real rollouts. In the second non-
bootstrapped case, the surrogate function is trained only
using the real rollout data. For both cases, the π∗θ from
the simulation rollouts is used as as the initial policy for
the real rollouts, warm starting the PS. To limit the number
of falls, the BO search space bounds are restricted to a
10cm cube around the initial θ∗mid, for the real rollouts.
Ten rollouts are performed for both cases. All code and
data for these experiments is open-source and can be found
here: https://github.com/rlober/ task-optim. Please see the
accompanying video for a detailed look at the rollouts.

IV. RESULTS

In Fig. 4, we see the evolution of the CoM for the original
policy, B 0, and the policies optimized in simulation, B 25,
the bootstrapped case, B 33, and the non-bootstrapped case,
NB 2. The initial straight line CoM trajectory produces an
unstable whole-body motion, which causes the robot to lose
balance. The failing (i.e. falling) rollouts are indicated by
the hatched red backgrounds in Figs. 3b and 3g. Because
the initial policy fails, the measured CoM position values for
B 0 are not shown after 2.5 seconds due to noise, and the Fz

https://github.com/rlober/task-optim


Fig. 4: The evolution of the CoM trajectories generated by the
original and optimized policies. “B” indicates the bootstrapped case,
and “NB” the non-bootstrapped case. B 0 is the original policy
executed in simulation. The optimal policy found in the simulated
rollouts comes from B 21, or the 21st rollout of the bootstrapped
case. B 25 and NB 0, i.e the first real rollouts for the bootstapped and
non-bootstrapped cases, use the B 21 policy. This policy is indicated
by the yellow stars in the cost curves in Fig. 3b and Fig. 3g. B 33
is the optimal policy found during the real bootstrapped rollouts.
NB 2 is the optimal policy found during the real non-bootstrapped
rollouts. The solid lines are the reference values generated by πθ
and the lighter dashed lines are the real measured values. The
original, B 0, real lines are cut off after 2.5s when the robot falls.
The noisy B 0 force profile is omitted from the force plot, to not
obfuscate the other force profiles.

values are omitted completely for clarity. After 24 rollouts
in simulation (see Fig. 3b), the task feasibility optimization
converges to a policy which produces a successful sit-to-
stand transition in both simulation and on the real robot.
The rollouts can be watched in the accompanying video. This
policy comes from the rollout 21 in simulation, and is used as
the policy for the initial real rollouts in both the bootstrapped
and non-bootstrapped cases, B 25 and NB 0 respectively. This
is confirmed by the real and reference CoM trajectories for
B 25 in Fig. 4. Had the motion failed, the real values would
not have tracked the reference values as is the case for B 0.

Looking at the z-axis and Fz plots in Fig. 4, we see that
the optimal strategy, found in B 21, is to move the CoM
downwards initially to increase the ground reaction force, and
shift the robot’s weight to the feet. This shift must come early
in the execution of the CoM trajectory in order to achieve
a contact switch in the FSM, and thus allow the CoM to
continue tracking the trajectory references. When this policy
is executed on the real robot in B 25 and NB 0, the results
are successful, but higher jf , than predicted by simulation,
are observed for both cases. These discrepancies come as no
surprise, but indicate that some unpredicted factors come into
play on the real robot and must therefore be accounted for.

Looking at NB 2 and NB 3, we have an example of an
optimal policy and a costly policy which produces a fall.
In these two rollouts, the policy parameters being tested
are θ∗mid = θ2mid =

[
0.12 −0.124 0.115

]>
and

θ3mid =
[
0.12 −0.02 0.115

]>
, respectively. These param-

eters differ by only 10cm in the y-axis, which in theory,
should not affect a sagittal plane motion. However, this
subtle change in the trajectory makes the difference between
optimality and catastrophic failure. We can see in the y-axis
plot of Fig. 4 that the optimal policies found both with and
without bootstrapping possess this y-axis motion, contrary
to the policy optimized in simulation, and clearly attempt to
compensate for un-modeled infeasibilities in the real system.
Given the sensitive nature of the sit-to-stand motion, hand-
tuning the trajectory parameters would be a difficult chore
even for an expert.

Figures 3b and 3g show the component costs for each
rollout with and without bootstrapping. The percentage im-
provement, ĵif×100, of each cost shows how PS improves the
motion with respect to the initial policy. The overall evolution
of the total feasibility costs shows the almost binary nature
of the sit-to-stand scenario — either the robot stands or it
falls. Given this, and the nature of the BO used here, we
do not observe smooth convergence. Furthermore, in both
the bootstrapped and non-bootstrapped cases the convergence
criterion from (10) is not attained. Nevertheless, the initial
policies are improved using task feasibility optimization. The
majority of this improvement arises thanks to a decrease
in energy consumption. The energy savings come primarily
from the large sagittally actuated pitch joints, and most
notably that of the torso pitch. In Fig. 3c, we see the torques
from B 25 and B 33. Both policies produce a successful sit-
to-stand motion, but the optimized policy solicits this actuator
less than the initial policy and reaps large gains in the energy
cost. As expected, the rollouts without bootstrapping show
more aggressive exploration, with two policy failures at NB 3
and NB 8, than the rollouts with bootstrapping. This comes
from the higher variance associated with the un-explored
regions of the policy parameter search space. The exploration
however, leads to an optimized motion which moves more
quickly from the starting seated posture (see Fig. 3d) to
a standing posture, as shown by the trajectory in Fig. 4,
allowing it to spend less time in configurations which require



large torques, than the solution found using bootstrapping.
The decreased goal costs come from the fact that the robot
is already standing after only 6.0s (see Fig. 3f) rather than
8.0s as is the case with the less aggressive movement found
by the bootstrapped optimization (see Fig. 3e). Around the
solution space of feasible sit-to-stand CoM trajectories, the
tracking cost has little impact on the total cost, but becomes
more prominent when the policy fails.

V. CONCLUSION

The main takeaway from this work is that by exploiting an
underlying model-based control architecture, we are able to
abstract the problem of producing feasible motions to only
a few task-space variables, which can affect drastic changes
in the overall behavior. Given the low-dimensionality of the
variables, PS can be applied in a sample efficient manner,
making it viable for real robots which must learn quickly
and efficiently with minimal failures (e.g. humanoids). This
result should not be understated because motions planned in
simulation, or using approximate models, are never executed
perfectly on the real robot, and the infeasibilities must be
corrected or tuned in most cases. Making this correction
automatic, is a crucial step towards truly autonomous robots,
and cannot practically be achieved on a real system with
model-based control [7] or learning [1] alone. Our generic
model-free approach allows any underlying whole-body con-
troller to be used, as shown here and in [15], and requires
only the existence of task trajectories with which to opti-
mize policies. Through the example sit-to-stand scenario, we
show that task feasibility optimization provides an efficient
interface between control and learning, which can resolve
task infeasibilities and produce viable whole-body motions
in both simulation and reality. In future work, we hope to
find automated ways of determining the policy parameters
which need to be optimized, rather than having to specify
them by hand. An advancement such as this would render
task feasibility optimization entirely self-sufficient.

REFERENCES

[1] S. Gu, T. Lillicrap, Z. Ghahramani, R. E. Turner, and S. Levine, “Q-
Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic,”
2017.

[2] O. Khatib, L. Sentis, J. Park, and J. Warren, “Whole-body dynamic
behavior and control of human-like robots,” International Journal of
Humanoid Robotics, vol. 1, no. 01, pp. 29–43, 2004.

[3] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: A focus on sequencing and tasks transitions,”
in IEEE International Conference on Robotics and Automation, May
2011, pp. 1283–1290.

[4] L. Saab, O. E. Ramos, F. Keith, N. Mansard, P. Soueres, and J.-Y.
Fourquet, “Dynamic whole-body motion generation under rigid con-
tacts and other unilateral constraints,” IEEE Transactions on Robotics,
vol. 29, no. 2, pp. 346–362, 2013.

[5] K. Bouyarmane and A. Kheddar, “Using a multi-objective controller
to synthesize simulated humanoid robot motion with changing contact
configurations,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2011, pp. 4414–4419.

[6] A. Ibanez, P. Bidaud, and V. Padois, “Emergence of humanoid walking
behaviors from Mixed-Integer Model Predictive Control,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, Chicago,
USA, Sept 2014, pp. 4014 – 4021.

[7] J. Koenemann, A. D. Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body model-predictive control ap-
plied to the HRP-2 humanoid,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Sept 2015, pp. 3346–3351.

[8] K. Bouyarmane and A. Kheddar, “Humanoid robot locomotion and
manipulation step planning,” Advanced Robotics, vol. 26, no. 10, pp.
1099–1126, 2012.

[9] Q.-C. Pham, “A general, fast, and robust implementation of the
time-optimal path parameterization algorithm,” IEEE Transactions on
Robotics, vol. 30, no. 6, pp. 1533–1540, Dec 2014.

[10] K. Bouyarmane and A. Kheddar, “On Weight-Prioritized Multi-Task
Control of Humanoid Robots,” IEEE Transactions on Automatic Con-
trol, in revision 2015.

[11] P.-B. Wieber, A. Escande, D. Dimitrov, and A. Sherikov, “Geometric
and numerical aspects of redundancy,” in Geometric and Numerical
Foundations of Movements, 2017.

[12] R. Lober, V. Padois, and O. Sigaud, “Variance modulated task prioriti-
zation in Whole-Body Control,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Sept 2015, pp. 3944–3949.

[13] V. Modugno, G. Neumann, E. Rueckert, G. Oriolo, J. Peters, and
S. Ivaldi, “Learning soft task priorities for control of redundant robots,”
in IEEE International Conference on Robotics and Automation, May
2016, pp. 221–226.

[14] F. Stulp and O. Sigaud, “Robot Skill Learning: From Reinforcement
Learning to Evolution Strategies,” Paladyn Journal of Behavioral
Robotics, vol. 4, no. 1, pp. 49–61, Aug. 2013.

[15] R. Lober, V. Padois, and O. Sigaud, “Efficient reinforcement learning
for humanoid whole-body control,” in IEEE-RAS 16th International
Conference on Humanoid Robots, Nov 2016, pp. 684–689.

[16] R. Calandra, N. Gopalan, A. Seyfarth, J. Peters, and M. P. Deisenroth,
“Bayesian gait optimization for bipedal locomotion,” in International
Conference on Learning and Intelligent Optimization. Springer, 2014,
pp. 274–290.

[17] R. Antonova, A. Rai, and C. G. Atkeson, “Sample efficient optimiza-
tion for learning controllers for bipedal locomotion,” in IEEE-RAS
International Conference on Humanoid Robots, Nov 2016, pp. 22–28.

[18] Cully, A., Clune, J., Tarapore, D., and Mouret J.-B., “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, may
2015.

[19] P. Englert and M. Toussaint, “Combined Optimization and Reinforce-
ment Learning for Manipulations Skills,” in Robotics: Science and
Systems, 2016.

[20] A. Dietrich, C. Ott, and A. Albu-Schäffer, “An overview of null space
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