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Chapter 9: Multiview approaches to event
detection and scene analysis

Slim Essid, Sanjeel Parekh, Ngoc Q. K. Duong, Romain Serizel, Alexey Ozerov,
Fabio Antonacci and Augusto Sarti

1 Introduction

We now extend the study of sound scene and event classification to settings where
the observations are obtained from multiple sensors, which we refer to as multiview
data, each sensor contributing a particular view of the data. Instances of this include
both multi-channel audio data, as acquired by microphone arrays, or more generally,
multimodal data, i.e. heterogeneous data that involves two or more modalities such
as the audio or visual modalities in video recordings.

Be it for applications in machine perception—at the heart of robots’ and virtual
agents’ intelligence systems—or video description—as part of video surveillance or
multimedia indexing systems— multiview approaches can lead to a significant boost
in performance in challenging real world situations. Indeed, multiplying the sources
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of information, through different views, should result in a more robust overall “pic-
ture” of the scene being analyzed, where sensors, and consequently views, which
are not reliable, e.g. noisy, at a particular time instant, are hopefully backed-up by
others. This is for instance the case in video recordings where sound-emitting target
events are not visible onscreen because of poor lighting conditions or occlusions.

Such an endeavor is unfortunately as promising as challenging, primarily because
of the significant increase in the volume of the data to be analyzed, but also owing
to the potential heterogeneity of the different streams of information (e.g. audio
and visual streams), which additionally may not be perfectly synchronized. Another
difficulty is that it is usually not possible to determine which streams are not reliable
at every time instant. To see this, consider the scenario of scene analysis using a
robot’s sensors. The data views available may then be composed of the multiple
audio streams acquired by the robot’s microphone array, as well as RGB and depth-
image streams captured by its cameras, possibly along with other signals recorded
by inertial measurement units. As the cameras are pointed at an interactant, events of
interest may appear only partially in their field of view, and be present in the audio
recording only at a very low signal-to-noise ratio, both due to background noise
(including the robot’s internal noise, the so-called ego-noise, typically produced by
its cooling fans or its actuators) and the voice of the interactant, or the robot itself,
in the foreground.

In this chapter, we briefly introduce some of the techniques that can be exploited
to effectively combine the data conveyed by the different views under analysis for a
better interpretation. Numerous good surveys have been written on the general topic
of multimodal data fusion, notably the paper by Atrey et al. [10] which is quite
comprehensive. Therefore, we hereafter merely provide a high-level presentation
of generic methods that are particularly relevant in the context of multiview and
multimodal sound scene analysis. We then more specifically present a selection of
techniques used for audiovisual event detection and microphone array-based scene
analysis.

1.1 Background and Overview

1.1.1 Multiview Architectures

Multiview data can be fused at the representation-level i.e. combining features from
multiple views or at decision-level implying integration of partial classifier-outputs.
Another important strategy, referred to as joint subspace learning in this chapter,
does not fall within the stated categories. Herein the aim is to learn or non-trivially
transform the representations based on inter-relationships across the views. Each of
these methods have been discussed further in section 2.
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1.1.2 Visual Features

As video modality is central to the content of this chapter, a short note on com-
monly employed visual features is in order. Features extracted from video streams
can be broadly classified into two categories; appearance-based and motion-based
features. For the former, several local and global descriptors representing appear-
ance attributes namely, color, texture and shape are extracted. While some works
utilize the raw pixel data or color histograms, others rely on standard features such
as scale-invariant feature transform (SIFT) [100] and histograms of oriented gra-
dients (HOG) [42]. Lately, features extracted from convolutional neural networks
have dominated [92].

Motion-based features are typically computed using optical flow or tracking data.
It is possible to represent temporal changes of segmented regions, objects and shapes
by calculating velocity and acceleration i.e. optical flow and its derivative. Other
popular features include histograms of optical flow (HOF) [158] and motion bound-
ary histograms (MBH) [158]. As MBH is computed from optical flow derivatives,
it is not affected by constant motion. This makes it robust to camera motion. The
reader is referred to [80, 105] for an extensive review of visual representations used
for multimodal analysis.

In multiview settings temporal synchronization across views is quite challeng-
ing. Notably, in the audiovisual case, since video frame rate, typically around 25-30
frames per second is significantly different from audio, features from both modal-
ities must be appropriately sampled for temporal correspondence. Moreover, the
natural asynchrony that exists between the two modalities must also be taken into
account. This is to say that cues for an audiovisual event might not appear simulta-
neously in both modalities.

2 General techniques for multiview data analysis

Generally, such techniques operate either at the representation-level or the decision-
level as further described in the next sections.

2.1 Representation and feature integration/fusion

This is the process of combining different types of features or low-level data rep-
resentations from different views into a common representation (usually to be ex-
ploited by a prediction system).
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In practice, this can be primarily achieved by concatenating the feature vectors
hm,i, extracted from views m, 1 ≤ m ≤ M, at the same time positions i, to build

integrated feature vectors h̄i =
[
hT

1,i, . . . ,h
T
M,i

]T
.1

However, the dimensionality of the resulting representation is often too high,
leading researchers to resort to dimensionality reduction methods. A common ap-
proach is then to use feature transform techniques (see Chapter 4, Section ??), pos-
sibly principal component analysis (PCA) [32], independent component analysis
(ICA) [144], or linear discriminant analysis (LDA) [32]. An interesting alternative,
is feature selection (see Chapter 4, Section ??). Indeed, when applied to the feature
vectors h̄i, the selection will hopefully retain a subset of the most “relevant” features
across the various views (with respect to the selection criterion).

Nevertheless, in multimodal settings, the previous methods often turn out to be
limited owing to the different physical nature of the features to be combined. In
particular, the features do not necessarily live in the same metric spaces, and are not
necessarily extracted from the same temporal segments. Consequently, there has
been a number of proposals attempting to address these limitations.

An interesting approach, within the framework of multiple kernel learning, con-
sists in considering separate kernels for different features, to build optimal convex
combinations of these in order to use them for classification, as done for example
in [31, 161].

Another approach that is worthy of note is the construction of joint multimodal
representations, as done in video analysis applications, where various types of au-
diovisual representations have been envisaged. Examples include the creation of
audiovisual atoms [78], or audiovisual grouplets [79], both exploiting audiovisual
correlations. A joint audiovisual representation may in particular be built using one
of the multimodal subspace methods described hereafter.

2.2 Joint subspace learning

2.2.1 Feature-space transformation

A number of techniques has been suggested to map the observed feature vectors
from two modalities to a low dimensional space where a measure of “dependency”
between them can be computed. Let us assume the N observed feature vectors from
two modalities, y1,n ∈RJ1 and y2,n ∈RJ2 (n = 1, . . . ,N), are assembled column-wise
in matrices Y1 ∈ RJ1×N and Y2 ∈ RJ2×N respectively.2 The methods we describe

1 provided that the data analysis-rate and cross-view synchronization issues have been previously
addressed.
2 The underlying assumption is that the (synchronized) features from both modalities are extracted
at the same rate. In the case of audio and visual modalities this is often obtained by downsampling
the audio features or upsampling the video features, or by using temporal integration techniques
[82].
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here aim to find two mappings f1 and f2 (that reduce the dimensions of feature
vectors in each modality), such that a dependency measure S12( f1(Y1), f2(Y2)) is
maximized. Various approaches can be described using this same formalism. The
advantages of doing so are two-fold: (i) it appropriately modifies the feature spaces
to uncover relationships between views specified by the measure of dependency
and (ii) by projecting data into the same space, dimensionality difference between
views is eliminated and direct comparison across views is made possible. Fisher
et al. [53] choose the mutual information [37] as a dependency measure and seek
single-layer perceptrons f1 and f2 projecting the audiovisual feature vectors to a
2-dimensional space. Other more popular approaches (for which closed-form solu-
tions can be found) use linear mappings to project the feature streams:

• canonical correlation analysis (CCA), first introduced by Hotelling [69], aims at
finding pairs of unit-norm vectors t1 and t2 such that

(t1, t2) = argmax
(t1,t2)∈RJ1×RJ2

corr
(

tT1 Y1, tT2 Y2

)
(1)

CCA can be considered equivalent to mutual information maximization for the
particular case where the underlying distributions are elliptically symmetric [85].
Several variants have been proposed to incorporate sparsity and non-negativity
into the optimization problem to resolve issues with interpretability and ill-
posedness, respectively [86, 143]. In the context of multimodal neuronal data
analysis, temporal kernel CCA [15] has been proposed to take into account the
temporal dynamics.

• An alternative to the previous methods (expected to be more robust than CCA) is
co-inertia analysis (CoIA). It consists in maximizing the covariance between the
projected audio and visual features:

(t1, t2) = argmax
(t1,t2)∈RJ1×RJ2

cov
(

tT1 Y1, tT2 Y2

)
(2)

A possible reason for CoIA’s stability is that it is a trade-off between CCA and
PCA, thus it benefits from advantages of both [21].

• Yet another configuration known as cross-modal factor analysis (CFA), and
found to be more robust than CCA in [96], seeks two matrices T1 and T2, such
that

(T1,T2) = argmax
(T1,T2)

(
1−‖T1Y1−T2Y2‖2

F
)
= argmin

(T1,T2)

‖T1Y1−T2Y2‖2
F (3)

with T1TT
1 = I and T2TT

2 = I. ‖V‖F denotes the Frobenius norm of matrix V.

Note that all the previous techniques can be kernelized to study non-linear cou-
pling between the modalities considered (see for instance [66, 94]).

The interested reader is referred to [66, 69, 96] for further details on these tech-
niques, and to [60] for a comparative study.
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2.2.2 Multimodal dictionary learning

While previous approaches relied on modeling the association between the fea-
tures across modalities, this class of techniques targets the extraction of meaning-
ful multimodal structures to jointly represent all the modalities. This is useful be-
cause feature transformation techniques like CCA impose simplifying assumptions
such as linearity and are adversely affected by lack of data. To this end, Monaci
et al. [109] propose to learn multimodal dictionaries wherein the dictionary ele-
ments are learned using an algorithm that enforces synchrony between modalities
and decorrelation between the learned dictionary elements. The learned templates
can then be used for performing various tasks. Monaci et al. improve upon this foun-
dational work by proposing a bimodal matching pursuit algorithm which integrates
dictionary learning and coding [111]. The sparse shift-invariant generative model
used for the audiovisual case can be given by defining multimodal dictionary ele-
ments {φd}D

d=1 =
(
φ a

d (t),φ
v
d (x,y, t)

)
consisting of audio, φ a

d , and visual, φ v
d , parts

and a spatio-temporal shift operator T(p,q,r)φd =
(
φ a

d (t− r),φ v
d (x− p,y−q, t− r)

)

such that the multimodal signal s is approximated by the following equation:

s≈
D

∑
d=1

nd

∑
i=1

cdiT(p,q,r)diφd (4)

where nd is the number of instances of φd and cdi specifies the weights for AV
components of φd at the ith instance. Several limitations of this approach have been
improved upon by proposing a new objective function and algorithm to balance the
two modalities, reduce computational complexity and improve robustness [98].

2.2.3 Neural networks and deep learning

Lately, rapid progress in the application of deep learning methods to represen-
tation learning has motivated researchers to use them for fusing multiview data
[3, 116, 145]. The primary advantage of neural networks is their ability to model
very complex nonlinear correlations that exist between multiple views. Early in-
sights into their use for multiview data were provided by Yuhas et al. [167] who
trained a network to predict audio using visual input. Subsequently, Cutler et al. [41]
proposed to learn audiovisual correlations for the task of speaker detection using a
time-delayed neural network (TDNN). Recently, various multimodal autoencoder
architectures for learning shared representations have been proposed, even for the
case where only a single view is present at training and testing time [116]. Another
interesting work extends CCA to learning two deep encodings, one for each view,
such that their correlation is maximized [3]. Regularized deep neural networks [162]
have also been proposed to construct shared representations taking into account the
feature inter-relationships. Each of these methods has been developed independently
in different settings. Their application to event analysis and detection still remains
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to be explored. This is a rapidly growing area of research; we refer the interested
reader to [58, 70] for recently proposed multimodal fusion architectures.

2.2.4 Co-factorization techniques

Matrix factorization techniques can be profitably used to extract meaningful repre-
sentations for the data being analyzed.

When dealing with multiview or in case of audio multi-channel data, observa-
tions from multiple views or channels may be profitably assembled in multi-way
arrays, aka tensors, before being modeled by tensor factorization methods. As for
multi-channel audio data, a popular approach consists in collecting the spectro-
grams of signals from different channels (originating from different microphones)
in a 3-way tensor, as illustrated in Figure 1, before processing it with the so-called
PARAFAC (PARAllel FACtor analysis) decomposition method, possibly with non-
negativity constraints. This can be interpreted as an attempt to explain audio spectra
vim observations as being linear combinations of elementary spectra wk, temporally
weighted by activation coefficients hki up-to spatial modulation coefficients qmk.

≈ =

W

H

=

h1

w1

h2

w2

h3

w3+ +

Q

q1 q2 q3

time

V

channel

fr
eq

ue
nc

y

Fig. 1: PARAFAC decomposition of multi-channel audio spectra.

Such decompositions were found particularly useful in multichannel audio source
separation [54, 122]. For more information about tensor factorization methods, we
refer the reader to [34, 91, 163].

In contrast to the previous setting, data from different modalities usually live in
feature spaces of completely different topology and dimensionality (think of audio
as opposed to video), preventing the possibility of “naturally” representing them by
the same tensor.

In this case, one may resort to so-called co-factorization techniques, that is tech-
niques performing two (or more) factorizations in parallel, which are linked in a
particular way. Because of the different nature of the modalities, this link has usu-
ally to be characterized through temporal dependencies between the temporal acti-
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vations in cross-modal correspondence, and unlikely through dependencies between
dictionary elements of different modalities.

Assuming that appropriate nonnegative features have been extracted at the same
rate from the two modalities being analyzed3—say the audio and images of a
video—so that two observation matrices V1 ∈RJ1×N

+ and V2 ∈RJ2×N
+ are available,

for the audio and visual data. One may seek a model (W1,W2,H) such that:




V1 ≈W1H
V2 ≈W2H
W1 ≥ 0, W2 ≥ 0, H≥ 0;

(5)

in such a way that the temporal activations be the same for both modalities. This is
referred to as hard co-factorization, an approach that has been followed in a number
of works (see e.g. [55, 164, 165]). Clearly, this approach is limited in that it does
not account for possible local discrepancies across the modalities. This happens for
example when there is a mismatch between the audio and the images information,
say because of a visual occlusion in video analysis scenarios. This motivates the
soft co-factorization model of Seichepine et al. [139], which merely encourages
the temporal activations corresponding to each modality to be close, as opposed to
equal, according to:





V1 ≈W1H1

V2 ≈W2H2

H1 ≈H2

W1 ≥ 0, W2 ≥ 0, H1 ≥ 0, H2 ≥ 0.

(6)

The model (6) is estimated by solving the following optimization problem:




min
θ

Cc(θ) ; θ
∆
= (W1,H1,W2,H2)

W1 ≥ 0, W2 ≥ 0, H1 ≥ 0, H2 ≥ 0;
(7)

Cc(θ)
∆
=D1(V1 |W1H1)+ γD2(V2 |W2H2)+δP(H1,H2) ; (8)

where:

• D1(. | .) and D2(. | .) are the measures of fit respectively relating to the first and
second modalities; note that they may be chosen to be different divergences, each
well suited to the corresponding feature space;

• P(., .) is a penalty on the difference between (properly rescaled) activation val-
ues occurring at the same instant; they can be either the `1 or `2-norm of the
difference between the rescaled activations;

3 To simplify, we consider the case of two modalities, but clearly the methods described here can
be straightforwardly generalized to more than two data views by considering the relevant pairwise
associations.
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• γ and δ are regularization parameters controlling, respectively, the relative im-
portance of each modality and the coupling penalty.

The interested reader is referred to [139] for more details on the algorithms.4

The soft co-factorization scheme has proven effective for multichannel [139] and
multimodal audio source separation [124], as well as multimodal speaker diarization
[138]. It is believed to be promising for audiovisual event detection tasks.

2.3 Decision-level integration/fusion

Decision-level fusion, aka late integration refers to the idea of combining interme-
diate decisions, i.e. partial classifier-outputs, in order to achieve a more accurate
multimodal characterization of a content has been explored extensively, under vari-
ous configurations. This can be seen as a particular case of ensemble learning [130]
where the base classifiers (to be combined) operate on different views of the data.

Numerous works rely on majority voting procedures whereby final global deci-
sions are made based on a weighted sum of individual voters, each typically cor-
responding to a decision taken on a particular view. The weights are often chosen
using either heuristics or trial-and-error procedures (see for example [97]). This idea
can be better formalized using a Bayesian framework that allows for taking into ac-
count the uncertainty about each classifier decisions [73, 107].

2.3.1 Probabilistic combination rules

When using classifiers providing local probabilistic outputs p(Gc | hm,i) for the i-th
observation of the m-th view, hm,i, a simplistic decision strategy assumes feature-
vector observations from different views to be independent, and the the decision
rule consequently takes the form:

Ĝ = argmax
c

log[p(Gc | hm,i, . . . , hm,i)] = argmax
c

M−1

∑
m=0

log p(Gc | hm,i) . (9)

It is worth mentioning that alternative simple combination rules have also been em-
ployed that are discussed in Kittler et al. [88].

The previous approach does not allow for incorporating prior knowledge about
the dependency structure in the data, in particular the cross-modal and temporal de-
pendencies. To this end, sophisticated dynamic classifiers have been utilized, rang-
ing from variants of (multi-stream) HMM [7, 62, 87, 115], through more general
dynamic Bayesian networks [33, 61, 113], to even more general graphical models
such as conditional random fields (CRF) [20].

4 Matlab implementations are available online at http://plato.telecom-paristech.
fr/publi/26108/.
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2.3.2 Neural networks

Neural networks can also be used for late integration. Some works have utilized
them to adaptively learn the weights for fusing multiple classifiers or system out-
puts [76, 117]. This is typically carried out by training the network to minimize the
error between estimated and oracle weights [76]. Besides, in order to take into ac-
count the temporal and multi-view dependencies, a frequently used strategy is to
perform end-to-end training with “fusion” integrated as a layer (usually close to the
output layer) into the architecture [51, 84]. Such methods cannot be termed as late
fusion in the conventional sense as feature learning and decision fusion stages are
not independent.

2.3.3 Other methods

Another widespread strategy consists in using the monomodal classifier-outputs as
features, on the basis of which a new classifier, that is expected to optimally perform
the desired multimodal fusion, is learned [13, 160].

Also, solutions to deal with the potential imprecision of some views have been
proposed using the Dempster-Shafer theory [56].

Finally, it is important to note that the techniques described in this section
are not mutually exclusive: in practice one may jointly consider different integra-
tion strategies for different features and views (possibly being driven by some ex-
pert knowledge), and different analysis time-horizons. This raises the difficult is-
sue of effectively and efficiently exploiting, at the final prediction stage, heteroge-
neous representations: low-level instantaneous features, possibly over varying time-
scales, intermediate prediction results—sometimes seen as outputs of event or con-
cept detectors— bags-of-words or bags-of-systems extracted over longer texture-
windows, etc.

3 Audiovisual event detection

3.1 Motivation

The target of audiovisual event detection (AVED) is to detect specific events that oc-
cur in an audiovisual recording or realtime stream, and to identify the class of those
events. Though the task is more widely addressed through the analysis of the video
images, information conveyed by the sound track may become key for a proper de-
tection. Indeed, the visual information may not be sufficient since occlusions may
occur and events may be localized in space, hence not visible in the images given
that the camera field of view is necessarily restricted. Also the images may not be



Chapter 9: Multiview approaches to event detection and scene analysis 11

usable because of poor lighting conditions, or fast camera motion. AVED then en-
ables a more reliable detection of these events, by combining audio and visual cues.

3.1.1 Examples in video content analysis and indexing

Researchers continue to explore various techniques for improving video content
analysis and indexing for better navigation and user experience. In this context,
AV event analysis at various levels of granularity provides useful insights into the
composition of such data in terms of objects, activities and scenes. This not only
improves retrieval but also provides a representation closer to our understanding of
the physical world. For example, a user could search a database for activity videos
such as “dribbling a basketball” or “playing a violin”. Evidently, these are two very
distinct tasks where the differences can be readily detected based on auditory and
motion information. Moreover, joint analysis could reveal the presence of various
objects (e.g. violin, basketball) and also the surroundings (e.g. concert hall, court).

Such an analysis makes object detection and segmentation [74], concept classi-
fication [77–79], scene segmentation and change detection [153], activity analysis
and various other related tasks possible. Several systems submitted to TRECVID
video content analysis tasks of multimedia event detection, story segmentation and
search rely on AV analysis [2, 81].

3.1.2 Examples in AV Surveillance and robot perception

Video has recently become an increasingly important resource for forensics and
surveillance [108, 129]. Video captured by CCTV systems or video recorded from
mobile devices (and possibly shared on multimedia platforms) can provide essen-
tial clues in solving criminal cases. For example when considering an investigation
about a missing person, video documents can help to localize the missing person
or a suspect, providing crucial information about their whereabouts. The analysis
of videos linked with a missing person or her/his social network can also help to
understand the conditions of the disappearance (was it a kidnapping, a runaway. . . )
and largely influence the investigation.

An investigator looking for a video in a large dataset may want to retrieve in-
formation based on the type of scene where the video was recorded or also, at a
finer granularity level, based on specific events that occurred during the recording.
In addition, the detection of specific events can help to confirm (or deny) the fact
that a video was recorded in a particular scene. Some events are indeed represen-
tative of particular scenes for example train noise in all probability indicates the
scene takes place in a train station or plates and cutlery noises indicate the scene
is probably taking place in a restaurant [22]. On the other hand, some events are
unlikely to happen in particular scenes. AVED can then help tracking anomalies to
detect abnormal events (gunshots, crowd panic. . . ) [101] or to identify a recording
scene where information has voluntary been concealed. This is the case, for exam-



12 Authors Suppressed Due to Excessive Length

ple, when a kidnapper sends a ransom video recorded from inside a building but a
church bell or a train passing nearby can be heard during the video. This type of in-
formation that is not present visually can help to localize the place where the video
was recorded [140].

3.2 AV event detection approaches

3.2.1 AV event detection and concept classification

Approaches to AV event detection have been very varied and data dependent. Many
works for traditional event detection utilize Markov model variants such as the dura-
tion dependent input-output Markov model (DDIOMM) [114], multistream HMM
or coupled HMM [71]. The former uses a decision level fusion strategy and the latter
two do it at an intermediate level. These methods have been shown to perform bet-
ter than single modality-based approaches with coupled-HMMs being particularly
useful for modeling AV asynchrony.

Specifically, with regard to event detection in surveillance videos, Cristiani et
al. [39] propose to use the AV concurrence matrix to identify salient events. The
idea is to model the audio/video foreground and construct this matrix based on the
assumption that simultaneously occurring AV foreground patterns are likely to be
correlated. Joint AV analysis has also been employed extensively for sports video
analysis and for broadcast analysis in general. In one approach, several feature de-
tectors are built to encode various characteristics of field sports. Their decisions are
then combined using a support vector machine (SVM) [132]. Several approaches
for structuring TV news videos have also been proposed.

On the other hand, joint codebook-based approaches have been quite popular
for the task of multimedia concept classification.5 In essence, each element of these
multimodal codebooks captures some part of a salient AV event. Work on short-term
audiovisual atoms (S-AVA) [78] aims to construct a codebook from multimodal
atoms which are a concatenation of features extracted from tracked short-term
visual-regions and audio. To tackle the problem of video concept classification, this
codebook is built through multiple instance learning. Following this work, AV grou-
plets (AVG) [79] were proposed, where separate dictionaries are constructed from
coarse audio and visual foreground/background separation. Subsequently, AVGs are
formed based on the mixed-and-matched temporal correlations. For instance, an
AVG could consist of frames where a basketball player is seen in the foreground
with the audio of the crowd cheering in the background. As an alternative, Jhuo et
al. [77] determine the relations between audio and visual modalities by construct-
ing a bi-partite graph from their bag-of-words representation. Subsequently, spectral
clustering is performed to partition and obtain bi-modal words. Unlike S-AVA and
bimodal words, AVG has the advantage of explicitly tackling temporal interactions.

5 Here the term “concept classification” refers to generic categorization in terms of scene, event,
object or location [78].
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However, like S-AVA, it relies on video region tracking, which is quite difficult for
unconstrained videos.

3.2.2 AV object localization and extraction

AV object localization and extraction refers to the problem of identifying sources
visually and/or aurally. This section serves to show how objects responsible for
audiovisual events can be extracted from either of the modalities through joint anal-
ysis. The general approach is to first associate the two modalities using methods
discussed in section 2. The parameters learned during the former step can then be
utilized for object localization and segmentation (visual part), audio source sepa-
ration (audio counterpart) or unsupervised AV object extraction in both modalities.
We now discuss approaches to each of these application scenarios.

Object localization and segmentation has been a popular research problem in the
computer vision community. Various approaches have leveraged the audio modality
to better perform this task with the central idea of associating visual motion and
audio. Fisher et al. [53] proposed to use joint statistical modeling to perform this
task using mutual information. Izadinia et al. [74] consider the problem of moving-
sounding object segmentation, using CCA to correlate audio and visual features.
The video features consisting of mean velocity and acceleration computed over
spatio-temporal segments are correlated with audio. The magnitude of the learned
video projection vector indicates the strength of association between corresponding
video segments and the audio. Several other works have followed the same line of
reasoning while using different video features to represent motion [86, 143]. Effec-
tiveness of CCA can be illustrated with a simple example of a video with a person
dribbling a basketball [74] (see Fig. 2). Simplifying Izadinia et al. ’s [74] visual
feature extraction methodology, we compute the optical flow and use mean velocity
calculated over 40× 40 blocks as the visual representation and mel-spectra as the
audio representation. The heat map in Fig. 2 shows correlation between each image
block and audio. Areas with high correlation correspond to regions with motion. If
we instead use a soft co-factorization model [139], it is indeed possible to track the
image blocks correlated with the audio in each frame.

Another approach worth mentioning is one that uses Gestalt principles for locat-
ing sound sources in videos [110]. Inspired by Gestalt principle of temporal prox-
imity the authors propose to detect synchronous audiovisual events. A particularly
different approach was taken by Casanovas et al. [30] who proposed an audio-visual
diffusion coefficient to remove information from video image parts which are not
correlated with the audio.

Audio source separation is the audio counterpart of the previously discussed
problem. The aim is to extract sound produced by each source using video infor-
mation. As done for videos, mutual information maximization has been used to
perform source separation in a user-assisted fashion by identifying the source spa-
tially. Recent methods perform this within the NMF-based source separation frame-
work [124, 137].
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Fig. 2: CCA Illustration: Heat map showing correlation between video image re-
gions and audio. Black squares indicate highest correlation.

Several other approaches deal with both object segmentation and source sepa-
ration together in a completely unsupervised manner. Work by Barzeley et al. [11]
considers onset coincidence to identify AV objects and subsequently perform source
separation. A particular limitation of this method is the requirement of setting mul-
tiple parameters for optimal performance on each example. Blind AV source sepa-
ration work has also been attempted using nonnegative CCA [143] and sparse rep-
resentations [29]. Independent component analysis over concatenated features from
both modalities also extracts meaningful audio-visual objects [144]. However its
application is limited to static scenes. Finally, multimodal dictionary learning has
also been utilized in this context [98].

While the methods discussed in this section have been shown to work well in
controlled environments, their performance is expected to degrade in dense audio-
visual scenarios. Moreover, they make a simplifying assumption that all the objects
are seen on-screen. It must be emphasized that most of these techniques can be con-
sidered symmetric, in the sense that they can be applied to tasks in either of the
modalities with appropriate representations.

4 Microphone array based sound scene analysis

In complex sound scenes the sounds coming from different sources can be over-
lapping in both time and frequency. Single channel processing discriminates them
mainly based on frequency. Therefore trying to separate sounds that are overlapping
in frequency with single channel techniques will inevitably introduce degradations
such as spectral distortion and randomly fluctuating noises (usually refered to as
musical noise artefacts that can manifest themselves as, e.g., spurious bursts of en-
ergy or “tin can” like sound). Microphone arrays enable the usage of multichannel



Chapter 9: Multiview approaches to event detection and scene analysis 15

techniques that exploit not only spectral diversity between sources but also spatial
information about their location.

4.1 Spatial cues modeling

In order to exploit spatial information about the sound sources, audio scene analysis
algorithms usually first model the spatial cues and then estimate the corresponding
parameters. Both deterministic and probabilistic modeling of such spatial cues have
been widely considered in the literature. The former case usually relies on (a) the
point source assumption, where sound from a source is assumed to come from a
single position, and (b) the narrowband approximation, where a mixing process
from an audio source to the microphone array is characterized by a mixing frequency
dependent vector [102]. Probabilistic modeling is usually applied for reverberated
or diffuse sources, where sound from a source may come from many directions due
to the reverberation, in e.g. source localization [18,65,120], separation [48,75,104],
and beamforming systems [17, 50]. This section will discuss some typical spatial
cue models, in both a deterministic and a probabilistic sense, for different audio
scene analysis applications.

4.1.1 Binaural approach

Humans generally combine cues from several audiovisual streams to localize sound
sources spatially. The main cues for localization in the horizontal hemisphere are
related to binaural hearing (relying on the difference between the signal reaching
the right ear and the signal reaching the left ear). All these cues are encoded in the
so-called interaural transfer function (ITF) that includes the following:

• The interaural time difference (ITD) is the difference between the time-of-
arrival of a signal at the left ear and the right ear. It is useful to localize sounds
based on their onset and at low frequency (below 1.5 kHz) [93] (see also Fig. 3a).

• The interaural phase difference (IPD) is the phase difference between the sig-
nal at the left ear and the right ear. It is useful to localize on-going sound as long
as the wavelength is larger that the diameter of the head (below 1.5 kHz) [166]
(see also Fig. 3b);

• The interaural intensity difference (IID) is the difference in level between the
signal at the left ear and the right ear due to the acoustic shadow produced by
the head for sounds above 3 kHz (below the so-called head shadow effect is not
present) [112] (see also Fig. 3c).

All the concepts mentioned above can be extended to general microphone array
setups. These spatial cues are then extensively exploited to extract a signal of interest
from the mixture using beamforming approaches described in Sect. 4.2 (for example
the delay-and-sum beamformer directly relies on ITD and ILD). Spatial cues can
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Fig. 3: Artificial representation of the binaural cues.

also be used directly for sound source localisation (see also Sec. 4.2.3) and, by
proxy, for source separation (see also Sec. 4.2.1) and sound event detection (see
also Sec. 4.2.2).

4.1.2 Beamforming methods

Fixed beamformers compose a first simple class of multichannel algorithms which
can separate signals coming from different directions. A fixed beamformer tries to
steer toward the direction from where the desired sound signal comes and to reject
signals coming from other directions. The main categories of fixed beamformers in-
clude: delay-and-sum beamformers, filter-and-sum beamformers [68], superdirec-
tive microphone arrays [38] or the original formulation of the minimum variance
distortion-less beamformer (MVDR) [26].
Adaptive beamformers try to steer toward the direction of the desired sound sig-
nal and to adaptively minimize the contributions from the undesired sources com-
ing from other directions. This typically yields a constrained optimization problem.
Frost introduced the linearly constrained minimum variance beamformer (LCMV)
as an adaptive framework for MVDR [57].

The generalized side lobe canceler (GSC), also known as the Griffiths-Jim beam-
former, is an alternative approach to the LCMV where the optimization problem is
reformulated as an unconstrained problem [64]. The GSC can be decomposed as a
fixed beamformer steering toward the desired source, a blocking matrix and a mul-
tichannel adaptive filter [67].
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The multichannel Wiener filters (MWF) represent another class of multichannel
signal extraction algorithms which are defined by an unconstrained optimization
problem [47]. MWF-based algorithms can be implicitly decomposed into a spa-
tial filter and a spectral filter; and can indeed be considered as beamformers [141].
Besides, a reformulation of MWF allows for explicitly controlling the spectral dis-
tortion introduced [47, 141].

4.1.3 Nonstationary Gaussian model

The nonstationary Gaussian framework has emerged in audio source separation
[48,52,118,123] as a probabilistic modeling of the reverberated sources. It was then
also applied in e.g. multichannel acoustic echo cancellation [148] and multichan-
nel speech enhancement [149]. In this paradigm, the short-time Fourier transform
(STFT) coefficients of the source images c j(t, f ), i.e. the contribution of the j-th
source (1 ≤ j ≤ J) at the microphone array, are modeled as a zero-mean Gaussian
random vector whose covariance matrix R̂ j(t, f ) = E

(
c j(t, f )cH

j (t, f )
)

can be fac-
torized as

R̂ j(t, f ) = v j(t, f )R j(t, f ), (10)

where v j(t, f ) are scalar time-varying variances encoding the spectro-temporal
power of the sources and R j(t, f ) are I× I spatial covariance matrices encoding
their spatial position and spatial width. This model does not rely on the point source
assumption nor on the narrowband assumption, hence it appears applicable to re-
verberated or diffuse sources. In the general situation where the sound source can
be moving, the spatial cues encoded by R j(t, f ) are time-varying. However, in most
cases where the source position is fixed and the reverberation is moderate, the spa-
tial covariance matrices are time-invariant: R j(t, f ) = R j( f ). Different possibilities
of parameterizing R j( f ) have been considered in the literature resulting in either
the rank-1 or the full-rank matrices, where the later case was shown to be more ap-
propriate for modeling the reverberated and diffuse sources as it accounts directly
for the interchannel correlation in the off-diagonal entries of R j( f ) [48].

4.2 Spatial cues based sound scene analysis

This section will discuss the use of spatial cue models presented in the previous sec-
tion in some specific applications, namely sound source separation, acoustic event
detection, and moving sound source localization and tracking.
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4.2.1 Sound source separation

In daily life, recorded sound scenes often result from the superposition of multi-
ple sound sources which prevent both human and machines from well localizing
and perceiving the target sound sources. Thus, source separation plays a key role in
sound scene analysis, and its goal is to extract the signals of individual sound sources
from an observed mixture [102]. It offers many practical applications in e.g. com-
munication, hearing-aid, robotics, and music information retrieval [6, 14, 103, 156].

Most source separation algorithms operate in the time-frequency (T-F) domain
with the mixing process formulated as

x(t, f ) =
J

∑
j=1

c j(t, f ) (11)

where x(t, f ) ∈ CI×1 denotes the STFT coefficients of the I-channel mixture at T-F
point (t, f ), and c j(t, f ) ∈ CI×1 is the j-th source image. As c j(t, f ) encodes both
spectral information about the sound source itself and the spatial information about
the source position, a range of spectral and spatial models has been considered in the
literature resulting in various source separation approaches. In the determined case
where I ≥ J, non-Gaussian modeling such as frequency-domain independent com-
ponent analysis (FDICA) has been well-studied [126,133]. In the under-determined
situation where I < J, sparse component analysis (SCA) has been largely investi-
gated [19, 63, 83]. As a specific example of the nonstationary Gaussian modeling
presented in Section 4.1.3, the parameters are usually estimated by the expecta-
tion maximization (EM) algorithm derived in either the maximum likelihood (ML)
sense [48] or the maximum a posteriori (MAP) sense [49, 121, 123]. Then source
separation is achieved by the multichannel Wiener filtering. Readers are referred
to e.g. [99, 154] for the survey of recent advances on both blind scenarios, and
informed scenarios which exploit some prior knowledge about the sources them-
selves [123] or the mixing process [49] to better guide the source separation.

4.2.2 Sound event detection

As different sound events usually occur at different spatial locations in the sound
scene, spatial cues obtained from microphone array processing intrinsically offers
important information for SED. As examples, information about the source direc-
tions inferred from the interchannel time differences of arrival (TDOA) was used
to help partitioning home environments into several areas containing different types
of sound events in [155]. The combination of these spatial features with the classic
MFCC was reported to improve the event classification in the experiment. Moti-
vated by binaural processing, in [1] the stereo log-mel-band energy is extracted
from stereo recordings to train the neural networks in order to obtain a meaningful
cue similarly to the IID.
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4.2.3 Localization and Tracking of Acoustic Sources

Sound source localization and tracking are concerned with estimating and following
the position of a target source within a sound scene. This active field of research
in microphone array processing finds important applications e.g. in surveillance or
video conferencing where the camera should be able to follow the moving speaker,
and even can automatically switch the capture to an active sound source in multiple
source environments [157]. Spatial cues offered by the multichannel audio capture
play a key role in deriving the algorithms.

The problem of acoustic source localization has been a relevant topic in the audio
processing literature for the past three decades because of its applicability to a wide
range of applications [43, 150]. The most effective solutions rely on the use of spa-
tial distributions of microphones in space, which sample the sound field at several
locations. Spurious events, reverberation and environmental noise, however, can be
a significant cause of localization error. In order to ease the problem, at least for
those errors that are contained in a limited number of time frames, source tracking
techniques can come in handy, as they are able to perform trajectory regularization,
even on the fly. Typical approaches are based on Particle [5,95,159], Kalman [4,59]
or distributed Kalman [147] filtering.

Different methodologies have been developed for the localization of acoustic
sources through microphone arrays. Those that gained in popularity are based on
measurements of the time delay between array microphones. Working in the time
domain is often a suitable choice for wideband signals, and most techniques tend
to rely on the analysis of the Generalized Cross-Correlation (GCC) of the signals
[28, 90] and variants thereof. Localization in the frequency domain, however, can
be shown to attain good results for narrowband or harmonic sources immersed in a
wideband noise and rely on the analysis of the covariance matrix of the array data.
A taxonomy of the localization techniques is represented on Fig. 4.

Source 
localization

Frequency 
domain analysis

Time domain 
analysis

SRP- or GCF- 
based TDOA-basedParametric 

beamforming

Non 
parametric 

beamforming

Fig. 4: Taxonomy of source localization techniques.
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Time-domain Localization

Steered Response Power (SRP, [44, 45, 106]) and Global Coherence Field (GCF,
[119]) proceed through the computation of a coherence function that maps the GCC
values at different microphone pairs on the hypothesized source location. A source
location estimate is found as the point in space that maximizes the coherence func-
tion. In [23] the scenario of multiple sources is accommodated through a two-step
procedure that, after localizing the most prominent source, deemphasizes its con-
tribution in the GCC, so that other sources can be localized. These techniques are
known for their high level of accuracy, and are suitable for networks of microphone
arrays, where synchronization can only be guaranteed between microphones of the
same array. One limitation of such solutions is their computational cost, which is
proportional to the number of hypothesized source locations. This means that in-
creasing the spatial resolution results in higher computational costs. Some solutions
have been proposed in the literature to mitigate this problem. In [169] the authors
propose a hierarchical method that begins with a coarser grid, and refines the es-
timate at different steps by computing the map for finer grids concentrated around
the candidate locations estimated at the previous step. In [46] a similar approach

crophones. Expanding Equation 2, going to the frequency do-
main using more general, frequency-dependent weights W §

l (!)
and using Parseval’s theorem we obtain,

Pn(~x) =

MX

k=1

MX

l=1

Z 1

°1
(3)

Wk(!)W §
l (!)Mk(!)M§

l (!)ej!(ø(~x,l)°ø(~x,k)d!.

A combined weighting function is defined,

™kl(!) ¥ Wk(!)W §
l (!). (4)

The integral is seen to be the cross power spectrum for micro-
phones k and l with the direct waves in alignment. Noting the
elements summing to Pn(~x) form a symmetric matrix with
fixed energy terms on the diagonal, the part of Pn(~x) that
changes with ~x is defined as P 0

n(~x), i.e.,

P 0
n(~x) ¥

MX

k=1

MX

l=k+1

Z 1

°1
(5)

™kl(!)Mk(!)M§
l (!)ej!(ø(~x,l)°ø(~x,k)d!.

The phase transform (PHAT) [1] is an especially effec-
tive weighting of a GCC [9] for finding a TDOA from speech
signals in highly-reverberant environment. Weights are the
inverse of the magnitudes of the frequency components, i.e.,

™kl(!) ¥ 1

|Mk(!)M§
l (!)| . (6)

The process is thus to explore P 0(~x) over the whole fo-
cal volume and ultimately find the set of one or more dis-
tinct maxima x̂n

s (k). The calculation of any particular point
of P 0(~x) will be called a functional evaluation(fe). For the
SRP-PHAT functional, we want to determine a point-source
location in the room that gives the maximum value of P 0

n(~x).
Instead of a grid-search, which requires fe’s on a fine grid
throughout the room, we advocate using stochastic region con-
traction(SRC) to find the global maximum.

3. STOCHASTIC REGION CONTRACTION (SRC)

First presented in [10], the basic idea of the SRC algorithm
is, given an initial rectangular search volume containing the
desired global optimum and perhaps many local maxima or
minima, gradually, in an iterative process, contract the origi-
nal volume until a sufficiently small subvolume is reached in
which the global optimum is trapped (the uncertainty voxel
(volume Vu). The contraction operation on iteration i is based
on a stochastic exploration of the P 0

n(~x) functional in the cur-
rent subvolume. While this can also be done using a refining
grid-search, which ideally can have a computational advan-
tage of up to 4, SRC features 1) a simple way to program
and parameterize the optimization procedure, 2) a more ro-
bust procedure against an early wrong decision, and 3) an al-
lowance of the optimum being on the continuum. The first

Fig. 1. 2D example of SRC: The surface is P 0(~x). j is the
iteration index. The rectangular regions show the contracting
search regions

step is to determine the number of random points, J0, that
need to be evaluated to ensure that one or more is likely to
be in the volume, Vpeak, of higher values (than the rest of
the focal volume) surrounding the global maximum of P 0

n(~x).
see, e.g. Figure 1. Unfortunately, Vpeak is not easy to deter-
mine and in our data changes substantially as the source is far-
ther from the microphones. However, if Vroom is the original
search volume, we can estimate the number of fe’s needed to
ensure that the probability of missing Vpeak altogether is less
than a given percent (Table 1).

Vpeak
Vroom

0.1 0.01 0.001 0.0001
P(miss Vpeak)

1% 44 459 4603 46050
0.1% 66 688 6905 69,075
0.01% 88 917 9206 92,099

Table 1. Number of fe’s required for three probabilities of
missing Vpeak and four values of the ratio Vpeak

Vroom
.

Defining Ji as the number of random points evaluated for
iteration i, Ni, the number of points used to define the new
source volume, Vi+1, having a rectangular boundary vector
~Bi+1 ¥ [xmax(i + 1) xmin(i + 1) ymax(i + 1) ymin(i +
1)zmax(i+1)zmin(i+1)], and I the number of iterations, and
FEi the total number of fe’s evaluated as of iteration i,with
© the maximum number of fe’s allowed to be computed, the
SRC algorithm for finding the global maximum is,

1. Initialize iteration: i = 0
2. Set initial parameters: J0, N0 and V0 = Vroom.
3. Calculate P 0

n(~x) for Ji points.
4. Sort out the best Ni ø Ji points.
5. Contract the search region to the smaller region Vi+1, ~Bi+1

that contains these Ni points.
6. IF: Vi+1 < Vu, or FEi > © and Vi+1 < T1Vu, where

T1 is a parameter (about 10); determine x̂n
s (i§), I = i,

STOP, KEEP RESULT.

Fig. 5: Example of a coherent map using the Steered Response Power with Stochas-
tic Region Contraction technique (SRP-SRC, from [46])

is adopted, but a Stochastic Region Contraction strategy is used for going from a
coarser to a finer grid. An example of Steered Response Power with Stochastic Re-
gion Contraction map is shown on Figure 5. A coarser grid is also used in [35],
where the coherence function is not mapped for the centroid of the grid element, but
is integrated throughout all the points that fall within the considered element.

Less cumbersome are the solutions based on the Time Difference Of Arrival
(TDOA), which is estimated as the time lag of the GCC that exhibits the maximum
value. The TDOA is then converted into Range Difference (RD), which measures
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the difference of the range between the source and the two microphones in the pair.
The locus of candidate source locations corresponding to a given TDOA is a hyper-
bola whose foci are in the microphones locations, and whose aperture is proportional
to the measured TDOA. The most straightforward technique for localization consists
in intersecting hyperbolas corresponding to the TDOA measurements coming from
different pairs of microphones. The cost function that is based on this procedure is
strongly nonlinear, which makes the method sensitive to measurement errors. Least
squares cost functions provide a good approximation [12, 36, 72, 134]. The main
drawback of TDOA-based localization is its sensitivity to outlier measurements.
In [24, 25, 135] techniques for removal of the outliers were presented. In particular,
the DATEMM algorithm [135] is based on the observation that TDOAs over closed
loop must sum to zero. An example of the improvement of the performance for a
scenario of two sources (labelled as a and b) in a reverberant environment is shown
in Table 1. In particular the average TDOA error for each of the two sources, and
the resulting localization errors are shown.

Table 1: Improvement of the localization and TDOA measurements accuracy
brought by the DATEMM algorithm (from [135]).

∆p̂[cm] ∆n̂[samples]
p̂a p̂b n̂a n̂b n̂II

DATEMM 4 3 5 28 232
GCC-PHAT 31 48 317 239 –
SRP-PHAT 14 12 – – –

Frequency-domain Localization

Techniques in the frequency domain are based on the observation that different mi-
crophones in the array will receive differently delayed replicas of the source signals.
This, in the frequency domain, corresponds to a phase offset. For distant sources
the phase offset between adjacent microphones is constant throughout the array.
Delay-and-sum beamformers compensate the offsets so that the components related
to a direction will sum up coherently and the others will not. The estimation of
the direction of arrival (DOA) of the target source proceeds by searching for the
direction that maximizes the output energy of the beamformer over a grid of di-
rections [128, Chapter 6]. Delay and sum is known for its low resolution capabili-
ties, which makes it difficult to distinguish sources that are seen under close angles
from the array viewpoint. Minimum Variance Distortionless Response beamformer
(MVDR, [27]), MUltiple SIgnal Classification (MUSIC, [136]), and EStimation of
the Signal Parameters through Rotational Invariance Techniques (ESPRIT, [131])
bring improvements in terms of resolution. However, they are known for their sen-
sitivity to noise and reverberation, which tends to introduce spurious localizations.
The superdirective data-independent beamformer [16] was shown to partially mit-
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igate this problem. An interesting solution to the sensitivity to reverberation was
proposed in [142] for the detection of gunshots using networks of sensors, each
equipped with four or more microphones. For each sensor, both DOA and TDOA are
measured. Source location is estimated by intersecting the loci of potential source
locations (hyperbolas and direction of arrival) for the two kind of measurements
from all the sensors. In reverberant conditions and in the presence of intereferers,
some TDOAs and some DOAs could be related to spurious paths, thus providing
multiple estimates of the gunshot location. The actual gunshot location is found as
the one that maximizes the number of consistent TDOAs and DOAs.

It is important to notice that TDOA-based and frequency domain source local-
ization techniques require the synchronization of the microphones within the array.
This, in fact, becomes an issue when multiple independent small arrays are deployed
in different locations. In [25] the authors propose a technique for the localization
without requiring a preliminary synchronization of the arrays by including the time
offsets between the arrays into the unknowns, along with the location of the source.
Another important issue is the self-calibration of the array, i.e. the estimation of the
mutual relative positions of the microphones [40, 151]. The widespread diffusion
of mobile phones and devices equipped with one or more microphones enables the
implementation of a wireless acoustic sensor network in seconds, for goals rang-
ing from teleconferencing to security. In this context, however, both calibration and
synchronization are needed before normal operation [127].

Acoustic Source Tracking

Independently of the adopted localization method, reverberation and interferers
could introduce spurious localizations. The goal of source tracking is to alleviate
the influence of outliers. The idea behind tracking is that measurements related to
the actual source must follow a dynamical model whereas those related to spurious
sources must not [159]. Another goal that can be pursued with tracking systems
is that of fusing information coming from both audio and visual localization sys-
tems [9, 146]. Several solutions have been presented in the literature. The Kalman
filter [59, 89] is a linear system characterized by two equations. The state equation
models the evolution the state of a system (location and speed of the source) from
one time frame to the next one. The observation equation links the state variables
with the observable measurements. The goal of the Kalman filter is to estimate the
current state from the knowledge of time series of the observations.

Recently, Distributed Kalman filters were used, which enable the tracking of
acoustic sources also in the case of distributed array networks [147, 168], without
requiring that all nodes communicate the whole state of the system.

Inherent assumptions that lie in the use of the Kalman filter are the linearity and
Gaussianity of measurement and state vectors. In order to gain in robustness against
the nonlinearity, the use of the Extended Kalman Filter has been proposed [146],
which linearizes the nonlinear system around the working point. In order to gain in



Chapter 9: Multiview approaches to event detection and scene analysis 23

robustness against non Gaussian conditions, however, one has to resort to a differ-
ent modeling of the source dynamics. In recent years particle filter gained interest in
the source localization community due to the fact that it is suitable also to perform
tracking in nonlinear non-Gaussian systems and, more in general, for its higher per-
formance [159]. Particle filter [8] assumes that both state and measurement vectors
are known in a probabilistic form. Once a new measurement vector is available, the
likelihood function of the current observation from a given state is sampled through
particles. Each particle is assigned a weight, which determines its relevance in the
likelihood function. Only relevant particles will be propagated to the next step. The
source location is determined as the centroid of the set of particles. An example
of tracking of one, two, or three acoustic sources on a given trajectory for DOA
measurements is shown in Fig. 6.
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Fig. 2. Tracking results in the horizontal plane (time and elevation now shown). Left: one moving speaker (going from left to right), center:
two moving speakers (speaker 1 going from right to left, speaker 2 going from left to right), right: three moving speakers going back and
forth on each side.

4. RESULTS AND DISCUSSION

The proposed localization system was tested using real recordings
with a 60 cm circular array of eight omni-directional microphones
resting on top of a table. The shape of the array is chosen for its
symmetry and convenience in a videoconferencing setup, although
the proposed algorithm would allow other positions. The testing
environment is a noisy conference room resulting in an average SNR
of 7 dB (assuming one speaker) and with moderate reverberation.
Running the localization system in real-time required 30% of a
2.13 GHz Pentium-M CPU. For a stationary source at 1.5 meter
distance, the angular accuracy was found to be better than one degree
(below our measurement accuracy) while the distance estimate was
found to have an RMS error of 10%. It is clear from these results
that angular accuracy is much better than distance accuracy. This is
a fundamental aspect that can be explained by the fact that distance
only has a very small impact on the time delays perceived between
the microphones.

Three tracking experiments were conducted. The results in
Figure 2 show that the system is able to simultaneously track one,
two or three moving sound sources. For the case of two moving
sources, the particle filter is able to keep track of both sources even
when they are crossing in front of the array. Because we lack
the “ground truth” position for moving sources, only the distance
error was computed1 (using the information about the height of the
speakers) and found to be around 10% for all three experiments.

5. CONCLUSION

We have implemented a system that is able to localize and track
simultaneous moving sound sources in the presence of noise and
reverberation. The system uses an array of eight microphones and
combines an RWPHAT-based steered beamformer with a particle
filter tracking algorithm capable of following multiple sources.

An angular accuracy better than one degree was achieved with
a distance measurement error of 10%, even for multiple moving
speakers. To our knowledge, no other work has demonstrated
tracking of direction and distance for multiple moving sound
sources. The capability to track distance is important as it will allow
a camera to follow a speaker even if it is not located at the center of
the microphone array (parallax problem).

1Computation uses knowledge of the height of the speakers and assumes
that the angular error is very small.
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Fig. 6: Example of tracking of one, two or three sources over a prescribed trajectory
(from [152]).

In audio surveillance contexts, it is important to enable localization also when
multiple sources are active at any time, with a small convergence time when acous-
tic sources alternate. This is important, for example, in events that involve multiple
acoustic sources (brawls, people yelling, etc.). In recent years, swarm particle fil-
tering has shown to address this scenario particularly well [125]. It is based on the
idea that the propagation of each particle to the next step is determined not only by
the previous history of the particle itself, but also by the particle that exhibits the
best likelihood at the current time instant. Consequently, the overall behavior of the
systems resembles that of a bird flock, rapidly moving towards the active source.
An example of behavior of swarm particle filtering is shown in Fig. 7. Here two sets
of particles at four consecutive time frames estimate the location of a source using
Particle Filtering (PF) and Swarm Particle Filtering (Swarm). The two sets are ini-
tialized identically. It is possible to notice that after four steps the Swarm particles
cluster around the source location, while the PF is still converging.

5 Conclusion and outlook

Multichannel and multimodal data settings represent opportunities to address com-
plex real world scene and event classification problems in a more effective manner.
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of the averaging process. This requires also an accurate
control of the swarm compactness.

Finally, as an illustrative example, fig. 5 shows the -.

different speed of convergence between the simple PF and -SURCE
the swarm localization approaches in a typical case. ..
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Fig. 7: Example of behavior of two sets of particles propagated using Particle Fil-
tering (PF), and Swarm Particle Filtering (Swarm). The two sets of particles occupy
the same location at the first time frame (from [125]).

The availability of concurrent, hence potentially complementary streams of data
is amenable to a more robust analysis, by effectively combining them using ap-
propriate techniques, be it at the input representation-level, the feature-level or the
decision-level. Successful applications of such techniques have been realized in var-
ious multichannel audio and audiovisual scene analysis tasks.

Yet, a number of research questions remain open in these settings. Notably, it is
still not clear how to generically detect when some of the data views are temporarily
not reliable (typically noisy or out of focus, with respect to the classes of interest)
and which strategies should be developed that can efficiently ignore such views and
proceed with the classification (or any other similar data processing) using models
which were perhaps trained assuming all views are available.

Also, given the complexity of accurately annotating all data views, especially
for instantaneous multi-label event classification tasks, that is when multiple events
may occur simultaneously, it is important to consider learning methods that can take
advantage of very coarse ground-truth labels, which may have been obtained based
on just one of the views, without necessarily being relevant for others. An example
of this is the “blind” annotation of the audio track of a video (without considering the
images) where sound events may not be visible onscreen at the same time stamps.
Multiple instance learning and weakly supervised learning techniques may turn out
to be effective learning paradigms to address these difficulties.
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timodal dictionaries. IEEE Trans Image Process 16(9), 2272–2283 (2007)

110. Monaci, G., Vandergheynst, P.: Audiovisual gestalts. In: Proc IEEE Conf Comput Vision
Pattern Recognit, pp. 200–200 (2006)

111. Monaci, G., Vandergheynst, P., Sommer, F.T.: Learning bimodal structure in audio–visual
data. IEEE Trans Neural Netw 20(12), 1898–1910 (2009)

112. Moore, B.C.J.: Introduction to the psychology of hearing / Brian C. J. Moore. Macmillan
London (1977)

113. Murphy, K.P.: Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D.
thesis, University of California, Berkeley (2002)



30 Authors Suppressed Due to Excessive Length

114. Naphade, M.R., Garg, A., Huang, T.S.: Audio-visual event detection using duration depen-
dent input output markov models. In: Proc IEEE Workshop Content-Based Access Image
Video Libr, pp. 39–43. IEEE (2001)

115. Nefian, A.V., Liang, L., Pi, X., Xiaoxiang, L., Mao, C., Murphy, K.P.: A coupled {HMM}
for audiovisual speech recognition. In: Proc IEEE Int Conf Acoust Speech Signal Process,
vol. 2. IEEE (2002)

116. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In:
Proc Int Conf Mach Learn, pp. 689–696 (2011)

117. Nguyen, V.T., Nguyen, D.L., Tran, M.T., Le, D.D., Duong, D.A., Satoh, S.: Query-adaptive
late fusion with neural network for instance search. In: Proc IEEE Int Workshop Multimed
Signal Process, pp. 1–6. IEEE (2015)

118. Nikunen, J., Virtanen, T.: Direction of arrival based spatial covariance model for blind sound
source separation. IEEE/ACM Trans Audio Speech Lang Process 22(3), 727–739 (2014)

119. Omologo, M., Svaizer, P.: Acoustic event localization using a crosspower-spectrum phase
based technique. In: Proc IEEE Int Conf Acoust Speech Signal Process, vol. 2. IEEE (1994)

120. Otsuka, T., Ishiguro, K., Sawada, H., Okuno, H.G.: Bayesian nonparametrics for microphone
array processing. IEEE/ACM Trans Audio Speech Lang Proc 22(2), 493–504 (2014)

121. Ozerov, A., Févotte, C.: Multichannel nonnegative matrix factorization in convolutive mix-
tures for audio source separation. IEEE Trans Audio Speech Lang Process 18(3), 550–563
(2010)

122. Ozerov, A., Févotte, C., Blouet, R., Durrieu, J.L.: Multichannel nonnegative tensor factoriza-
tion with structured constraints for user-guided audio source separation. In: Proc IEEE Int
Conf Acoust Speech Signal Process. Prague, Czech Republic (2011)

123. Ozerov, A., Vincent, E., Bimbot, F.: A general flexible framework for the handling of prior
information in audio source separation. IEEE Trans Audio Speech Lang Process 20(4),
1118–1133 (2012)

124. Parekh, S., Essid, S., Ozerov, A., Duong, N.Q.K., Pérez, P., Richard, G.: Motion informed
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