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a b s t r a c t

This paper deals with the inertial cavitation of a single gas bubble in a liquid submitted to an ultrasonic
wave. The aim was to calculate accurately the pressure and temperature at the bubble wall and in the
liquid adjacent to the wall just before and just after the collapse. Two different approaches were proposed
for modeling the heat transfer between the ambient liquid and the gas: the simplified approach (A) with
liquid acting as perfect heat sink, the rigorous approach (B) with liquid acting as a normal heat conduct-
ing medium. The time profiles of the bubble radius, gas temperature, interface temperature and pressure
corresponding to the above models were compared and important differences were observed excepted
for the bubble size. The exact pressure and temperature distributions in the liquid corresponding to
the second model (B) were also presented. These profiles are necessary for the prediction of any physical
phenomena occurring around the cavitation bubble, with possible applications to sono-crystallization.

1. Introduction

1.1. Context and aim of the study

The unstable (inertial) acoustic cavitation of micron size gas
bubbles in a liquid medium and especially their violent collapses
induce extreme physical conditions (pressures up to tens of GPa,
temperatures up to tens of thousands K), inside and in the close
vicinity of the bubbles. These conditions are at the origin of
spectacular effects like: sonoluminescence, hydroxyl radicals
generation, solid surface erosion but also promote the crystalliza-
tion of solutes in super-saturated solutions or of solvent in
super-cooled solutions [1].

In order to keep these phenomena under control, one needs to
know exactly the evolution of physical parameters (pressure, tem-
perature, composition) of the gas inside the bubble but also that of
the liquid outside as the two are tightly linked one to another.

However, the first concern of most of the studies on acoustic
cavitation devoted to interpret sonochemistry and sonolumines-
cence was the behavior of the gas in the bubble and not that of
the surrounding liquid. Thus an approximate way to describe the
gas thermal behavior, the heat transfer at the interface and on

the liquid side was often adopted in order to obviate the solution
of a full set of energy and motion equations in the liquid. In most
cases the gas pressure inside the bubble was considered uniform
and the motion of the liquid was described by the classical
Rayleigh–Plesset equation corrected for liquid compressibility
[2–4]. The gas behavior depends strongly on the heat transfer rate
across the bubble wall. In a very simplified approach, the slow
bubble expansion can be considered as isothermal, while the fast
collapse as adiabatic. From that point the basic modeling approach
was to describe the gas state by a polytropic equation with a coef-
ficient depending on the Peclet number [5]. As concerns heat trans-
fer in the liquid surrounding the bubble, the simplest assumption
was to neglect any thermal gradient and to keep the bubble wall
temperature constant at the ambient value [4,6,7]. Another kind
of simplified thermal approach was to consider the continuity of
the heat flux across the bubble wall and to adopt an arbitrary liquid
temperature profile in order to evaluate the heat flux outside the
bubble [8,9].

A trend for a more in depth description of the heat transfer
between the gas and the liquid was dictated by the recognition
of the very important role that plays water vapor in the physics
of a collapsing bubble [10–12] and thus the need to take into
account the phase change (condensation or evaporation) at the
bubble wall and consequently to incorporate a heat balance at
the wall in the global model.
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The first aim of this study was to calculate accurately the pres-
sure and temperature at the bubble wall and in the liquid adjacent
to the wall just before and just after the collapse, starting from the
mathematical description of the gas behavior and of the bubble
wall motion already established and validated in the literature.

The second aim was to show the importance of the assumptions
concerning heat transfer at the bubble wall and in the surrounding
liquid, by considering two different modeling approaches briefly
presented below:

(A) Inside the bubble, a thermal gradient was supposed to exist
in the gas over a thin boundary layer near the bubble wall,
with a thickness varying accordingly to the wall dynamics.
A constant bubble wall (liquid–gas interface) temperature
equal to the far field liquid temperature was assumed, with
no thermal gradient on the liquid side.

(B) Inside the bubble, the same hypothesis as for case A was
adopted. Outside the bubble, a non-linear temperature pro-
file in the liquid was introduced, determined as an approxi-
mate analytical solution of the heat conduction–advection
equation. Moreover, the wall temperature was evaluated
from the heat balance at the wall including water liquid–
vapor phase change effect.

1.2. Bibliographical review

In this section a short review of the recent literature concerning
the pressure and temperature profiles inside and outside the bub-
ble will be given.

Kwak and Na [8] calculated density, pressure and temperature
distributions inside an air bubble by solving analytically the con-
servation PDEs but neglecting the viscous dissipation and water
vapor. The time evolution of the bubble radius was obtained from
the Keller–Miksis equation. The heat flux on the liquid side of the
bubble wall was expressed by the boundary layer approximation
with the layer thickness being a fitting parameter.

Yasui [10] used thoroughly the boundary layer approach in
order to evaluate the time profiles of gas temperature, gas pres-
sure, water content and bubble wall temperature for an argon bub-
ble. As concerns the heat transfer between the gas and the liquid,
he adopted an arbitrary layer thickness on the gas side and an
exponential profile on the liquid side with one fitting parameter
and he considered a heat balance at the wall including the phase
change effect.

Toegel et al. [6] aimed at determining the amount of water
vapor trapped in the bubble during the collapse and its impact
on sonoluminescence. They used the boundary layer approach
and considered a model consisting of 3 ODEs. The bubble wall
radius was evaluated by the Keller–Miksis equation which takes
water compressibility into account, the amount of water vapor
inside the bubble was derived from a Fickian diffusion flux at the
wall, the gas temperature was obtained from an energy balance
which takes the heat conduction flux at the bubble wall into
account. The mass and heat fluxes on the gas side were calculated
using a boundary layer thickness evaluated as diffusion length at a
characteristic time scale of the bubble motion. The gas pressure
was derived from the van der Waals equation of state. The temper-
ature at the bubble wall was supposed constant and equal to the
far liquid one.

Kim et al. [9] solved the rigorous set of PDEs on the gas side but
adopted the Keller–Miksis equation for the bubble wall motion and
considered a priori a parabolic temperature profile in a thermal
boundary layer on the liquid side. The thickness of the liquid
boundary layer was estimated by means of an ODE obtained by
the integration of the advection–conduction heat transfer equation
over the layer. On this basis, the temperature profiles inside and

outside an air bubble (without water vapor) were finally
determined.

The approach of Vuong et al. [13] was very similar, excepted
that no arbitrary temperature profile was adopted on the liquid
side. The heat transfer equation in the liquid was transformed by
the Plesset–Zwick method and simplified assuming a thin bound-
ary layer (large Peclet’s number) in order to obtain finally a linear
diffusion equation in Lagrangian boundary layer coordinates which
was solved numerically. Vuong et al. [13] used this model to deter-
mine the radial gas temperature profiles and bubble wall temper-
ature time profiles for an argon bubble.

Yuan et al. [14] also transformed the advection–conduction
equation on the liquid side into a purely diffusive one by means
of the Plesset–Zwick variable change but made no further simplifi-
cation to solve it. He calculated numerically the radial profiles of
gas pressure, temperature, velocity and density for a bubble con-
taining only air. The equations of liquid motion were not solved,
the Keller–Miksis equation was used to describe the wall dynamics
and the liquid compressibility was neglected in the heat transfer
equation.

As concerns the heat transfer on the liquid side, Hauke et al.
[15] adopted the less restrictive approach as compared to the
already cited works. They solved numerically the full set of govern-
ing PDE on the gas side and the heat advection–conduction equa-
tion on the liquid side (neglecting only the liquid compressibility
in the heat transfer equation) using the Keller–Miksis formulation
to describe the bubble wall motion. They provided the radial pro-
files of temperature, pressure and water vapor content inside the
bubble as well as the radial temperature profile outside the bubble.

In the context of therapeutic ultrasound, cavitation and bubble
dynamics imply very high acoustic pressures and frequencies as
well as elevated temperatures. In such conditions, the mass and
heat transfer at the bubble wall are particularly important. To
address the relevant physics, a reduced-order model of a single,
spherical bubble was proposed by Kreider et al. [12] that incorpo-
rates phase change at the liquid–gas interface as well as heat and
mass transport in both phases. Two approaches for heat transfer
on the liquid side were modeled and compared. In the ‘‘scaling’’
approach (SCL model), uniform liquid temperature was assumed
everywhere outside of a boundary layer near the bubble wall and
a Fickian expression was used for calculating the thermal flux
within the boundary layer. A fitting parameter was needed for esti-
mating the boundary layer thickness. In the second approach the
Plesset–Zwick analytical solution was used for describing thermal
conduction in the presence of advective liquid flow due to bubble
wall displacement. The idea of applying the Plesset–Zwick model
for heat transfer on the liquid side used in several studies cited
above was adopted for this study.

The applied acoustic driving conditions (Pac – acoustic pressure
amplitude, f – acoustic frequency, R0 – initial bubble radius) and
the corresponding gas temperature (Tg) as well as gas–liquid inter-
face temperature (Ti) and pressure (Pli) at the collapse are pre-
sented in Table 1 for the considered publications and compared
with the results of this study.

Independently of the conditions considered and thus of the
maximal gas temperature obtained in each particular case, all the
results shown above can be roughly classified in two groups: a first
group where the bubble wall temperature is of the same order of
magnitude than the bubble core one [8–10,12] and the second
group where the wall temperature is one order of magnitude lower
than the core one [13–15]. It is a very marked difference.
Furthermore, again in a rough manner, it can be claimed that the
results of the first group are based on simplified modeling
approaches (boundary layer approximations, arbitrary liquid tem-
perature profiles, analytical solutions) while those of the second
group are based on a more comprehensive and rigorous



approaches (spatial variables distributions, no imposed profiles,
numerical solutions). The results of the second group should be
considered as the reference. It’s obvious then that some degree of
refinement is needed in order to catch correctly the thermal behav-
ior of the system and this was the start point of our study.

2. Modeling

The exact description of the bubble dynamics during acoustic
inertial cavitation can be only achieved by numerical solution of
the full set of mass, momentum and energy conservation PDEs
on both the gas and liquid side. Nevertheless, it had been proven
that mathematically simplified approaches gave satisfactorily
precise results [16]. The most straightforward simplification lead-
ing to a set of ODEs is the boundary layer approximation where
the temperature and species profiles inside the bubble are sup-
posed to be uniform with the exception of a thin boundary layer
near the bubble wall [6,12].

In order to keep both mathematical simplicity and physical rel-
evance, the basic concept of our single bubble model is based on
Toegel’s [6] (see ‘Section 1.2’) but substantial modifications have
been made. First a more realistic representation of the heat transfer
at the bubble wall was introduced through an energy balance
involving the interfacial phase change heat flux and a conductive
heat flux on the liquid side. Second a rigorous thermal and
mechanical description was applied to the liquid, with the solution
of the heat conduction–advection equation by the Plesset–Zwick
[17] method and of the mass and momentum local conservation
equations by the Gilmore’s [2] method.

In the following subsections, the equations used to describe the
acoustic inertial cavitation of a single bubble containing water and
air will be presented, with the emphasis on the two approaches
adopted in this study for heat transfer at the wall and in the liquid.

2.1. Thermodynamics of the gas

In this study, the focus is on the physics of liquid surrounding
the bubble and the goal is to provide reasonably exact liquid
pressure and temperature space profiles after the collapse. For this
purpose a very fine model for the gas in the bubble is not necessary
and thus global balances and state equations were used on the
inner side of the bubble. The gas pressure Pg was considered uni-
form and evaluated by the classical equation of state with the
van der Waals’s correction for an incompressible (hard) core:

Pg ¼
ðNv þ NaÞRTg

4p
3 ðR

3 % R3
hcÞ

ð1Þ

where Na is the number of air moles, Nv the number of water vapor
moles within the bubble, R the bubble radius, Rhc the hard core
radius and Tg the gas temperature. While Na was considered con-
stant, Nv was considered to vary due to vapor diffusion through
the air in the bubble from or to the wall. The vapor quantity balance

in the bubble was based on a Fickian expression and a boundary
layer assumption:

dNv

dt
¼

3Dva

Rdmg

4pR3PvsatðTiÞ
3RTi

% Nv

!

ð2Þ

where Dva is the water vapor in dry air diffusivity and Pvsat is the
saturated water vapor pressure. The gas temperature Tg was consid-
ered uniform except in the close vicinity of the bubble wall and
obtained from an overall bubble energy balance where the heat flux
at the wall was evaluated by the boundary layer approximation:

ðCvvNv þ CvaNaÞ
dTg

dt
¼ %Pg4pR2 dR

dt
þ kg4pR2 Tg % Ti

dtg
þ dNv

dt

&ðCpvTi % CvvTgÞ ð3Þ

where Cv or Cp are specific heat capacities for constant volume or
constant pressure and Ti is the time dependent temperature at the
bubble wall which must be obtained like a part of the solution of
the global bubble cavitation model.

The boundary layer thicknesses for mass (dmg) and heat (dtg)
transfer at the bubble wall were evaluated as a diffusion length
during the characteristic time scale of the bubble oscillation:

dmg ¼min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dva

R
j _Rj

s
;
R
2

!
ð4Þ

dtg ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffi
ag

R
j _Rj

s
;
R
2

 !
ð5Þ

The pressure and temperature correlations for gas properties
involved in the above equations: water vapor mass diffusivity in
air Dva, vapor–air mixture heat conductivity kg, vapor–air mixture
heat diffusivity ag, saturated vapor pressure Pvsat, heat capacities
Cvv, Cva Cpv, were all extracted from the well-known compilation
of Poling et al. [18].

2.2. Mechanics of the wall and of the liquid

A single spherical gas bubble surrounded by liquid water is
considered. The radial coordinate r originates at the center of the
bubble. The mass and momentum conservation equations
(Navier–Stokes equations) for a spherically symmetric liquid flow
write respectively:

@ql

@t
þ @

@r
ðqlulÞ þ

2qlul

r
¼ 0 ð6Þ

@ul

@t
þ ul

@ul

@r
þ 1

ql

@Pl

@r
¼ 0 ð7Þ

where ul is the liquid velocity, Pl is the liquid pressure and ql its
density. The boundary conditions associated to these equations
are the liquid pressures and velocities at the wall and far away from
the wall:

Table 1
Selected published acoustic cavitation simulations.

Refs. Gas Pac (bar) f (kHz) R0 (lm) Tg (K) Ti (K) Pli (GPa)

[8] Air 1.3 26.5 4.5 25,000 17,000 0.8
[10] Argon and vapor 1.35 20.6 5 10,000 8000
[14] Air 1.275 26.4 4.5 15,000 500 4
[13] Argon 1.3 26.5 4.5 106,000 4000
[16] Argon and vapor 1.3 16 5 15,000 293
[9] Air 1.33 12.9 5 28,000 13,500
[15] Argon and vapor 1.2 22.3 19.3 4300 360 0.13
[12] Argon 1.2 26.5 4.5 4200
This study, model A Air and vapor 1.4 29 5 9300 263 18
This study, model B Air and vapor 1.4 29 5 11,300 620 23



– at the bubble wall (underscript i) the velocity is determined by
the wall motion, the pressure can be expressed by considering
the mechanical forces balance involving the pressure force
exerted by the gas, the surface tension force and the viscous
friction force:

uli ¼ U ¼ dR
dt

ð8Þ

Pli ¼ Pg %
2rgl

R
% 4ll

R
dR
dt

ð9Þ

where rgl is the gas–liquid surface tension and ll is the liquid
dynamic viscosity;
– in the liquid far away from the bubble (underscript 1), the

velocity vanishes and the pressure is the sum of the ambient
pressure and the driving acoustic pressure:

ul1 ¼ 0 ð10Þ

Pl1 ¼ P0 % Pac sinðxtÞ ð11Þ

As first demonstrated by Gilmore [2], these PDEs governing liq-
uid mechanics around a spherical bubble can be reduced to a set of
ODEs by using the Kirkwood–Bethe hypothesis. This hypothesis
states that the quantity denoted here by z:

z ¼ r hl þ
u2

l

2

" #
ð12Þ

is constant along any path traced by a point moving outward from
the bubble wall with a varying total velocity which is a sum of the
sound velocity in the liquid and of the liquid velocity (cl + ul). Such a
path is called a characteristic and the position of the point is
described by:

dr
dt
¼ cl þ ul ð13Þ

According to the above equations, differentiation along the
characteristic gives:

dz
dr
¼ @

@r
þ 1

cl þ ul

@

@t

" #
z ¼ 0 ð14Þ

In order to introduce the liquid sound velocity and the liquid
enthalpy the following definitions are used:

c2
l ¼

dPl

dql
ð15Þ

dhl ¼
dPl

ql
ð16Þ

After combining the above definitions and the liquid state equa-
tion (Tait’s equation, see below) with the starting mass and
momentum conservation equations, the velocity and the pressure
in the liquid are finally described as follows:

dul

dt
¼ 1

cl % ul
%

2c2
l ul

r
þ ðcl þ ulÞ

r2 Z
" #

ð17Þ

dPl

dt
¼ 1

cl % ul
ðmðPl þ bÞ1=mÞ

4c2
l u2

l

r
% ðcl þ ulÞ2

r2 Z

!

ð18Þ

where Z is the z value evaluated at the bubble wall and then:

Z ¼ R Hl þ
1
2

dR
dt

2
!

ð19Þ

Following the same mathematical lines, the bubble wall motion
is written as:

R
dU
dt

1% U
Cl

" #
þ 3

2
U2 1% U

3Cl

" #

¼ Hl 1þ U
Cl

" #
þ R

Cl
U

dHl

dR
1% U

Cl

" #
ð20Þ

dR
dt
¼ U ð21Þ

where U is the bubble wall velocity, Hl and Cl are respectively the
liquid enthalpy and sound velocity at the bubble wall.

Using the Tait’s form of state equation for liquid which writes:

qlðP; TÞ ¼ ql0ðTÞ
Pl þ b
Pl0 þ b

" #1=m

¼ q0

½1þ cðT % T0Þd(
Pl þ b
Pl0 þ b

" #1=m

ð22Þ

the enthalpy and the sound velocity can be evaluated everywhere in
the liquid (and specifically at the bubble wall) as a function of pres-
sure by the following expressions:

hl ¼
Z Pl

Pl1

dPl

ql
¼ m

m% 1
ðPl0 þ bÞ

1
m

ql0ðTÞ
½ðPl þ bÞ

m%1
m % ðPl1 þ bÞ

m%1
m ( ð23Þ

cl ¼
dPl

dql

" #1
2

¼
mðPl0 þ bÞ

ql0ðTÞ

" #1
2 Pl þ b

Pl0 þ b

" #m%1
2m

ð24Þ

The coefficients of the Tait’s equation for the low pressure
domain were directly read from the study of Ridah [19] and are
given in Table 2. The coefficients for the high pressure domain
were obtained by fitting the Tait’s equation to the data compiled
by Choukroun and Grasset [20]. The density correction for temper-
ature (function ql0(T)) was adopted from the same study (see
Table 2). The water gas–liquid interfacial energy rgl and the liquid
water dynamic viscosity ll were also correlated to pressure and
temperature [21–23]. It is worth noting that even in case of studies
proposing complex models, published simulations were mostly
realized with constant fluid properties, especially concerning the
liquid. One of the advantages of the present study is that the gas
and liquid properties are systematically correlated to pressure
and temperature, even for very high pressures (as far as data exist).

2.3. Heat transfer at the wall and in the liquid

2.3.1. Model A
The heat flux between the gas bubble and the ambient liquid

must be known for a proper evaluation of the bubble thermody-
namics, motion and chemistry. For this purpose, according to the
equations presented above, the fundamental issue is the evaluation
of the bubble wall (or gas–liquid interface) temperature. The ques-
tion arises if there is a simple way of estimating this temperature
near the collapse. At this special moment, the variation of the gas
temperature is very rapid and the hypothetical thermal boundary
layer very narrow. Thus, in a first attempt one can consider the
classical case of two semi-infinite solid bodies at different initial
temperatures which are bring into contact. The heat conduction
textbook’s solution of this problem states that the ratio of temper-
ature differences between the far and interface temperature for
each of the two bodies corresponds to the square root of the ratio
of their thermal effusivities (the effusivity is the product of density,
thermal conductivity and specific heat capacity). For standard

Table 2
Coefficients of the state equation for liquid water (q: kg/m%3, T: K, P: MPa).

q0 T0 P0 c d b m

P < 1000 1007 180 0.1013 2.963 & 10%9 3.17 303.9 7
P > 1000 Same as above 80 12.5



values of thermophysical properties of liquid water and air, the
temperature gradient at the liquid side will be 2 or 3 order of mag-
nitude smaller than the one at the gas side and so the interface
temperature should be very close to the far liquid temperature.
This estimation may justify the assumption of constant interface
temperature used by several authors (see ‘Section 1’) for acoustic
cavitation modeling. Such an assumption was adopted also for
the simplest thermal model considered in this study (model A). It
writes simply: Ti ¼ T11 ¼ constant.

In this model, the bubble wall temperature is maintained at its
lowest possible level and thus the cooling effect of the liquid is
maximal.

2.3.2. Model B
The approach presented above is not really satisfactory because

during the collapse the gas thermodynamical state is very far away
from the standard one, the huge bubble volume reduction resulting
in an enormous gas density increase and consequently thermal
effusivity increase. The gas effusivity can be expected to become
comparable to the liquid one at the collapse and the interface tem-
perature to shift toward to the core gas temperature. Moreover, a
vapor–liquid phase change takes place at the bubble wall and a
heat balance equation involving the energy sink (or release) due
to water evaporation (or condensation) is needed. A more rigorous
approach accounting for these effects and also for the bubble
dynamics is proposed below.

According to the mechanics of inertial cavitation (see preceding
section), the bubble radius R is a given function of time. Due to the
radial movement of the bubble wall the liquid is displaced in the
vicinity of the bubble. The heat transfer equation for incompress-
ible liquid with constant thermal properties involving molecular
diffusion and advection due to liquid motion is written as:

@Tl

@t
þ ul

@Tl

@r
¼ al

r2

@

@r
r2 @Tl

@r

" #
ð25Þ

where the heat diffusivity is defined as al ¼ kl=ðqlcplÞ and the liquid
velocity for incompressible flow is given by:

ul ¼
R2

r2

dR
dt

ð26Þ

For the determination of the temperature profile, the liquid incom-
pressibility is assumed, but for determination of the pressure profile
the compressibility of liquid has been accounted for as explained in
preceding subsection.

The initial and boundary conditions for the above equation are
given by:

– boundary condition at the bubble wall: r = R(t)

%kl
@Tl

@r
¼ UliðtÞ

4pR2ðtÞ
ð27Þ

– boundary condition in far liquid: r =1
Tl ¼ Tl1 ð28Þ

– initial condition: t = 0
Tl ¼ Tl1

The time dependent heat flux at the bubble wall Uli corresponds
to the conductive heat flux in the gas inside the bubble and the
latent heat flux of water evaporation/condensation at the wall:

UliðtÞ ¼ 4pRðtÞ2kg
TgðtÞ % TiðtÞ

dtgðtÞ
% dNv

dt
MvDhvapðTiÞ ð29Þ

In order to solve analytically this problem, independent variable
changes will be operated according to the Plesset–Zwick method
(see ‘Section 1.2’).

First, the spatial variable r will be replaced by a new variable y
defined by:

y ¼ r3 % R3ðtÞ
3

ð30Þ

The new variable corresponds dimensionally to a volume of liq-
uid and (if liquid incompressibility is assumed) is associated to a
material point moving along with the displacement of the bubble
wall. The new variable is thus a Lagrangian one and the transfer
equation will lose its advective term and will become a strictly dif-
fusive one:

@Tl

@t
¼ al

@

@y
3yþ R3ðtÞ
$ %4=3 @Tl

@y

& '
ð31Þ

In the limit y) R3, what means that the temperature in the liq-
uid is supposed to vary significantly only in a small distance from
the bubble wall, the above equation becomes:

1
R4ðtÞ

@Tl

@t
¼ al

@2Tl

@y2 ð32Þ

Now using a new temporal variable s defined by

s ¼
Z t

0
R4ðtÞdt ð33Þ

the heat transfer equation transforms simply to:

@Tl

@s ¼ al
@2Tl

@y2 ð34Þ

what is a canonical parabolic PDE which solution obtained by the
Laplace transform can be found in the references cited above but
also in heat conduction textbooks. This solution, for a prescribed
time dependent heat flux Uli at the boundary, writes:

Tlðy; sÞ % Tl1 ¼
ffiffiffiffiffi
al
p

4p3=2kl

Z s

0

UliðxÞ
R4ðxÞ

ffiffiffiffiffiffiffiffiffiffiffi
s% x
p

& exp % y2

4alðs% xÞ

" #
dx ð35Þ

The above approach based on the Plesset–Zwick approximation
was adopted for the final thermal model of this study (model B).
The literature expressions of heat conductivity kl [24] and specific
heat capacity cpl [20] as function of temperature were used. The
influence of pressure on these two parameters was neglected.

The model is very sensitive to mass diffusivity (Dva) and heat
diffusivities on the gas side (ag) and on the liquid side (al). As con-
cerns the bubble interior, the gas thermal properties are rather
well known and well correlated to pressure and temperature
[18]. Moreover, the boundary layer approach inside the bubble
was proven to give satisfactory results compared to a full solution
considering a radial temperature profile inside the bubble [16].
However, the boundary layer approximation outside the bubble
suffers from a lack of generally accepted time scale definition for
the diffusion length evaluation and from a lack of reliable liquid
thermal data, especially for high pressures. In the frame of this
study, a boundary layer approach for heat diffusion on the liquid
side was tried applying the same time scale as on the gas side
(see Eqs. (4) and (5)). That resulted in a not realistic very high tem-
perature at the bubble wall (around 1700 K) at the moment of the
collapse and this approach was abandoned. Kwak and Na [8], Yasui
[10] and Kreider et al. [12] have used an arbitrary temperature pro-
file or a boundary layer thickness with a fitting parameter. The



Plesset–Zwick approximation [12–14] adopted here avoids intro-
ducing such a kind of workarounds.

2.4. Numerical solution of the problem

The bubble dynamics was simulated by solving simultaneously
the Eqs. (2), (3), (20) and (21) as a system of first order ODEs by
means of MATLAB routine ODE113. At any time t, the solution pro-
vided the bubble radius R, bubble wall velocity U, the gas temper-
ature inside the bubble Tg and the vapor quantity inside the bubble
Nv. The gas pressure Pg inside the bubble was then calculated by Eq.
(1) and the liquid temperature Ti at the bubble wall by Eq. (35).
This last equation provided also the liquid temperature distribu-
tion all around the bubble.

The liquid dynamics around the bubble was simulated by solv-
ing simultaneously the Eqs. (13), (17) and (18) as a system of first
order ODEs (MATLAB routine ODE45). The calculations were car-
ried out along a characteristic, each characteristic originating at
the bubble wall. Starting from the given conditions at the bubble
wall (R, Hl, Cl), for any time subsequent time t, the solution pro-
vided the corresponding radial position r along the characteristic
and the value of the liquid pressure Pl and liquid temperature Tl

at this position. Many characteristics had to be used in order to
cover the entire geometrical domain around the bubble.

3. Results and discussion

3.1. Pressure and temperature at the bubble wall

In this section the simulations obtained with the two thermal
models (A and B) will be compared. The temporal evolutions of
the bubble wall position, the internal gas temperature, the liquid
temperature and pressure at the bubble wall are presented on
Figs. 1–3. The Figs. 2 and 3 are focused on the first collapse. The
gas pressure inside the bubble and the liquid pressure at the bub-
ble wall were found to be quite identical at the collapse and only
the liquid pressure was shown. The acoustic and ambient condi-
tions used for the calculations are given in Table 3. The ambient
temperature is below zero because this model was intended to
be applied later to the case of water freezing induced by
ultrasound.

As reported elsewhere, during inertial cavitation the bubble
expands rather slowly to several times its initial size and then
collapses violently. The huge nearly adiabatic compression of the
gas due to the collapse heats up very strongly the bubble core

Fig. 1. The time profiles of the bubble radius (R) over one period of the acoustic
excitation.

Fig. 2. The time profiles of the internal gas temperature (Tg) and the interfacial
liquid temperature (Ti) at the collapse.

Fig. 3. The time profiles of the interfacial liquid pressure (Pli) at the collapse.

Table 3
Parameters of the simulations.

R0 (lm) Tl1 (!C) Pac (bar) f (kHz)

5 %10 1.4 29



inducing a temperature and pressure peaks. According to Fig. 1, the
thermal model did not affect sensibly the dynamic behavior of
the bubble wall, excepted for the post-collapse rebounds.
However, the thermal model affected considerably all the thermo-
dynamic variables inside the bubble and at the wall. The tempera-
ture of the gas inside the bubble was found to be 20% lower for the
model A (9300 K) than for model B (11,300 K). This can be justified
by the fact that model A corresponded to a stronger cooling rate of
the bubble (see Fig. 2). Consequently, the pressure of liquid at the
wall (nearly equal to the internal gas pressure at the collapse) was
also 20% lower for case A (18 GPa) than for case B (23 GPa) as
shown on Fig. 3. The time of the collapse was slightly different
for the two cases.

The thermal model had by evidence the strongest impact on the
temperature at the bubble wall. According to Fig. 2, this interfacial
temperature for comprehensive model B was rather moderate
(620 K) and did not reach the critical value for water (647 K). It
was much closer to the far liquid (ambient) temperature (263 K)
than to the core temperature (11,300 K). However, substituting
the interfacial temperature by the ambient temperature appears
clearly as a not realistic hypothesis, especially if temperature sen-
sitive physical and chemical phenomena in the liquid are studied.
This result corroborates those corresponding to the most elaborate
models and numerical simulations published in the literature (see
Table 1), with some caution because of different parameters
(acoustic frequency, gas specie).

The bubble interior energy balance (Eq. (3)) does not include
the heat effect of chemical reactions. However, the water vapor
trapped within the bubble undergoes rapid reactions when the
temperature exceeds 3000 K and leads to the production of hydro-
xyl radicals. Several authors included chemical reactions in their
cavitation model and concluded that the endothermic dissociation
of water vapor significantly reduced the bubble core peak temper-
atures (Tg) achieved at the collapse. According to Hauke et al. [15]
(argon and vapor, Pac = 1.2 bar, f = 22.3 kHz, R0 = 19.3 lm) vapor

dissociation accounts for 10% of the core temperature (Tg) reduc-
tion and according to Storey and Szeri [25] (argon plus vapor,
Pac = 1.2 bar, f = 26.5 kHz, R0 = 4.5 lm), it accounts for up to 30%.
But the liquid temperature (Ti) at the bubble wall was supposed
and shown to be much less impacted. Supplementary simulations
with our model B showed that a 30% decrease of Tg corresponded
to a 5% decrease in Ti. So the error of calculating Ti due to chemical
reactions omission would be no more than 5%, which is in the
range, or even below, of the error induced by the uncertainty on
gas and liquid thermo-physical properties.

The model B proposed in this study comprehends all the rele-
vant thermal phenomena and at the same time it writes mathe-
matically rather simply. The thermal model B coupled with the
fluidics and thermodynamics model of cavitation proposed in this
study writes as a set of ODE’s and solves more conveniently
(MATLAB) and quickly than a full multi-physics model based on
PDE’s which requires a finite element software. At the same time,
this model gives realistic results, similar to those provided by com-
plex models and sophisticated solvers. It could be a useful tool for
fast prediction of pressure and temperature conditions around a
single cavitating bubble, with applications to sono-chemistry and
sono-crystallization. In the next part of this paper, only simulations
obtained with model B will be presented.

3.2. Liquid pressure and temperature near the bubble

The spatial distributions of the temperature and pressure in the
liquid outside the bubble just after the collapse are presented on
Fig. 4. The first considered time (65 ps) corresponds to the time
of maximum pressure at the bubble wall, the time zero being the
time of the collapse defined as the maximum of bubble wall
velocity.

As observed on liquid pressure profiles, a pressure peak which
can be assimilated to a shockwave propagates in the liquid at a
very high speed and is attenuated as moving away from the

Fig. 4. The radial profiles of liquid pressure (Pl) and liquid temperature (Tl) around a bubble for different times after the collapse.



bubble. As concerns liquid temperature, the spatial profiles present
2 different zones: a very narrow (100–200 nm) zone with a very
steep quasi-linear gradient and a broader (1–2 lm) zone with a
progressively decreasing gradient. The occurrence of these two
zones and the important spatial extension of the second one inval-
idates a simple calculation of the heat flux in the liquid based on a
linear temperature profile over a thermal boundary layer and
proves well the necessity of a very fine description of heat transfer
between the bubble and the liquid.

Besides, according to Fig. 4, the zone of strong temperature vari-
ation was roughly two times smaller than the zone of very high
pressures (above 1 GPa). That means that an area with already
nearly ambient temperature but still very high pressure existed
near the bubble after the collapse. This conjunction could promote
sono-crystallization processes, in solutions [26] or melts [7].

4. Conclusion

On the ground of a literature review, a mathematically simple
but physically comprehensive model of inertial acoustic cavitation
and especially of a single gas bubble collapse was developed. Two
different approaches were proposed for modeling the heat transfer
between the ambient liquid and the gas: the simplified approach
(A) with liquid acting as perfect heat sink, the rigorous approach
(B) with liquid acting as a normal heat conducting medium. The
values of the bubble radius, gas temperature, interface tempera-
ture and pressure corresponding to the above models were calcu-
lated in a time interval encompassing the collapse and compared.
Important differences were observed for gas and liquid tempera-
tures and may be interpreted as a rebuttal against the simplified
heat transfer description, often used in cavitation models. The
exact pressure and temperature distributions in the liquid after
the collapse, calculated with the second model (B), were presented.
The temperature at the bubble wall was found much closer to the
ambient liquid one than to the bubble core one. An area with
already nearly ambient temperature but still very high pressure
was observed near the bubble just after the collapse. These results
are the basis for the prediction of any physical phenomena
occurring around the bubble, especially of the dissolved or melted
phase crystallization, and thus the basis for the control of indus-
trial processes relying on acoustic cavitation. An application to
ice sono-crystallization in aqueous solutions will be described in
the second part of this paper.
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