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On random weighted Sobolev inequalities on Rd and
applications

Didier Robert and Laurent Thomann

Abstract. Our aim in this paper is to give an overview of recent results con-

cerning randomization methods applied to Schrödinger equations obtained in

[33, 32, 35]. We focus here on properties of the harmonic oscillator and Her-
mite functions for simplicity.

The general idea is that several well known deterministic results like Sobolev
type inequalities are improved in a large extent by introducing some random-

ness. This is very useful in particular for N.L.S with supercritical initial data.

1. Introduction

We present here the results we have obtained in [32, 33] in collaboration with
Aurélien Poiret and the results of [35]. Using ideas of Shiffman-Zelditch [37] and
Burq-Lebeau [6] who developed a randomisation method based on the Laplace
operator on a compact Riemannian manifold, we give a randomisation method
on L2(Rd) associated with the Laplace operator with confining potentials. We
are able to construct probability measures on L2(Rd), on the support of which a
typical function enjoys better Sobolev estimates than expected. These measures
and estimates have an interest in themselves, but we can moreover use them to

• construct orthonormal bases of L2(Rd) of Hermite functions which enjoy
good L∞ bounds. These bounds are shown to be optimal ;

• prove quantum ergodicity results ;
• show a.s. local and global well-posedness results for supercritical nonlinear

Schrödinger equations with quadratic potential ;
• show a.s. global well-posedness results for supercritical nonlinear Schrödinger

equations (without potential).
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To simplify the exposition, we will focus on estimates in the Sobolev spaces
based on the harmonic oscillator in L2(Rd)

H = −∆ + |x|2 =
d∑
j=1

(−∂2
j + x2

j ).

We get optimal stochastic weighted Sobolev estimates on Rd using the Burq-
Lebeau method. In [6], the construction of the measures relied on Gaussian random
variables but it is possible to consider general random variable which satisfy con-
centration of measure estimates (like Bernoulli random variables). However, the
optimal estimates (including lower bounds) are obtained only for the Gaussian law.

Let us emphasis here that even if there exist many similarities between the
spectral properties of the Laplace operators a compact Riemannian manifolds and
Schrödinger Hamiltonians with a confining potential on Rd, there exists a big dif-
ference due to the complex behaviour at high energy of the spectral function on a
non-compact configuration space.

In [35] we prove that most of the results can be extended to more general
Schrödinger Hamiltonians −4+ V (x) with confining potentials V .

2. Spectral estimates and harmonic Sobolev spaces

Let us recall the well known spectral analysis of the quantum harmonic oscil-
lator H on Rd. This is explained in many text books on quantum mechanics. For
mathematical details, we refer to Helffer [20] or to the course of Ramond [34].

The operator H is self-adjoint on the Hilbert space L2(Rd), and has the discrete
spectrum {2n+ d}n∈N.

• For d = 1 each eigenvalue is simple, Hhn = (2n + d)hn where hn is the
nth Hermite function.

• For d ≥ 2, an orthonormal basis is obtained by tensor products.
Let α = (α1, · · · , αd) ∈ Nd, x = (x1, · · · , xd) ∈ Rd,

(2.1) hα(x) = hα1(x1) · · · hαd(x1), α1 + · · ·+ αd = n.

It is sometimes convenient to use different notations. Any orthonormal basis of
ker(H − (2n+d)) can be denoted by {ϕn,k}1≤k≤mn , so that Hϕn,k = (2n+d)ϕn,k.
In the sequel, {λj}j∈N denotes the non-decreasing sequence of eigenvalues where
each eigenvalue (2n+d) is repeated according its multiplicity, such that Hϕj = λjϕj
where {ϕj}j≥0 is an orthonormal basis of L2(Rd).
By (2.1) the multiplicity of the eigenvalue 2n + d is of order nd−1, therefore λj is
of order j1/d.

The scale of harmonic Sobolev spaces is defined as follows: s ≥ 0, p ≥ 1.

(2.2) Ws,p =Ws,p(Rd) =
{
u ∈ Lp(Rd), Hs/2u ∈ Lp(Rd)

}
,

Hs = Hs(Rd) =Ws,2.

The natural norms are denoted by ‖u‖Ws,p and up to equivalence of norms we have
(see [41, Lemma 2.4]) for 1 < p < +∞

‖u‖Ws,p = ‖Hs/2u‖Lp ≡ ‖(−∆)s/2u‖Lp + ‖〈x〉su‖Lp .
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For s ≥ 0, Hs is the domain of the self-adjoint operator Hs/2 and we have

Hs =
{
u ∈ L2(Rd),

∑
j≥0

λsj |〈ϕj , u〉|2 < +∞
}

and
‖u‖2Hs ≈

∑
j≥0

λsj |〈ϕj , u〉|2.

In the sequel we fix d ≥ 2. Let us consider spectral windows Ih depending on
a small parameter h > 0 (this notation is convenient to make use of semiclassical
results here and in the more general setting considered in [35]).
Let us denote by Ih = [ahh ,

bh
h [ and assume that ah and bh satisfy, for some a, b,

D > 0 and δ ∈ [0, 1],

(2.3) lim
h→0

ah = a, lim
h→0

bh = b, 0 < a ≤ b and bh − ah ≥ Dhδ,

with any D > 0 if δ < 1 and D ≥ 2 in the case δ = 1. This condition ensures that
Nh, the number (with multiplicities) of eigenvalues of H in Ih tends to infinity when
h→ 0. Indeed, we can check that Nh ∼ ch−d(bh−ah), in particular lim

h→0
Nh = +∞,

since d ≥ 2. In the sequel, we write Λh = {j ≥ 1, λj ∈ Ih} and Eh = span{ϕj , j ∈
Λh}, so that Nh = #Λh = dim Eh. Finally, we denote by Sh =

{
u ∈ Eh : ‖u‖ = 1

}
the unit sphere of Eh (which is a complex linear space of dimension Nh).

A very useful tool to get local and global estimates in the deterministic setting
as well as in the probabilistic setting are Lp estimates of spectral projectors and of
their kernels, the so-called spectral function. On compact manifolds this is obvious
in [38] for example.

The spectral function is then defined as

πH(λ;x, y) =
∑
λj≤λ

ϕj(x)ϕj(y)

(recall that this definition does not depend on the choice of {ϕj , j ∈ N}). When
the energy λ is localized in I ⊆ R+ we denote by ΠH(I) the spectral projector of H
on I. The range EH(I) of ΠH(I) is spanned by {ϕj ;λj ∈ I} and ΠH(I) has an
integral kernel given by

πH(I;x, y) =
∑

[j :λj∈I]

ϕj(x)ϕj(y).

We will also use the notation EH(λ) = EH([0, λ]), NH(λ) = dim[EH(λ)].
The relationship between Sobolev type estimates and the spectral function is illus-
trated by the following elementary result:

(2.4) |u(x)| ≤ (πH(I;x, x))1/2‖u‖L2(Rd).

We have the following uniform estimate:

πH(λ;x, x) ≤ Cθλ(d+θ)/2〈x〉−θ,

where Cθ depends only on θ > 0. Now using (2.4) we get (with the semiclassical
parameter h = λ−1)

〈x〉θ/2h(d+θ)/4|u(x)| ≤ Cθ‖u‖L2(Rd), ∀u ∈ EH(h−1).
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For smaller spectral windows like Ih we need more accurate estimates on the spectral
function

ex := πH(
bh
h

;x, x)− πH(
ah
h

;x, x).

For any θ ≥ 0 there exists Cθ > 0 such that

(2.5) 〈x〉θex ≤ CθNhh(d−θ)/2.

where Cθ depends only on θ ≥ 0. Using (2.4) and interpolation inequalities we get
Sobolev type inequalities for u ∈ Eh, θ ≥ 0, p ≥ 2

(2.6) ‖u‖L∞,θ/2(Rd) ≤ C
(
Nhh

(d−θ)/2
)1/2

‖u‖L2(Rd),

which in turn implies using interpolation

(2.7) ‖u‖Lp,θ(p/2−1)(Rd) ≤ C
(
Nhh

(d−θ)/2
) 1

2−
1
p ‖u‖L2(Rd).

The previous inequality can be written as

‖u‖Lp,θ(p/2−1)(Rd) ≤ C(bh−ah)
1
2−

1
ph−( d+θ2 )( 1

2−
1
p )‖u‖L2(Rd), ∀p ∈ [2,+∞], ∀θ ∈ [0, d].

We shall see that these Sobolev type inequalities in a large extent can be improved
in a random sense that we shall explain now.

3. Probabilistic weighted estimates for frequency localized functions

3.1. Probabilistic setting. Let us introduce now our probabilistic setting.
Consider a probability space (Ω,F ,P) and let {Xn, n ≥ 1} be a sequence of
i.i.d random variables, centered and normalized following a law ν. We assume for
simplicity in all this paper that ν is either the standard complex Gaussian
NC(0, 1) or the Bernoulli law 1

2δ−1+ 1
2δ1 (see [33] for more general laws satisfying

a concentration of measure property).
Let γ := (γn)n∈N be a sequence of complex numbers and define the random vector
in Eh
(3.1) vγ(ω) :=

∑
j∈Λh

γjXj(ω)ϕj .

The probability law of vγ is denoted by νγ . We define a probability measure Pγ on
the sphere Sh by: for all measurable and bounded function f : Sh −→ R,∫

Sh

f(u)dPγ(u) =
∫

Ω

f
( vγ(ω)
‖vγ(ω)‖L2(Rd)

)
dP(ω).

It is not difficult to see that in the isotropic case (γj = 1√
Nh

for all j ∈ Λh) and
when Xj ∼ NC(0, 1), then Pγ is the uniform probability on the sphere Sh.

For more general sequences γ we need to assume the following squeezing con-
ditions. There exists K0 > 0, K1 > 0 such that

(3.2) ‖γ‖`∞(Λh) ≤
K0√
Nh
‖γ‖`2(Λh), ∀h ∈]0, 1].

We also need the stronger condition

(3.3)
K1√
Nh
‖γ‖`2(Λh) ≤ |γj | ≤

K0√
Nh
‖γ‖`2(Λh), ∀h ∈]0, 1], ∀j ∈ Λh.
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Notice that
E(‖vγ‖2L2(Rd)) =

∑
j∈Λh

|γj |2 = |γ|2`2(Λh).

Let us comment now our assumptions.

Remark 3.1. (i) Assumptions (3.2) and (3.3) mean that in the index set Λh
the sequence γ is almost constant. In applications it is useful to be able to
modify the γj. By considering two sequences γ, β and using the Kakutani
theorem we can construct mutually singular probability measures µγ , µβ on
the Sobolev space Hs (see [33, Section 2.2]). In particular this gives larger
sets of initial data for solutions of NLS (see Section 6.2 of this paper).

(ii) Assumptions (3.2) and (3.3) are very useful to be able to use the accurate
spectral estimate (2.5) as we have shown in [33, Section 3]. This condition
allows to normalize the Hs-norm of vγ . Moreover it is compatible with the
Lévy contraction principle (see [22] for details).

(iii) It is possible to avoid assumption (3.2) at the price of introducing new weighted
Sobolev spaces (see the definition of the space Z in [22]).

(iv) The Gaussian complex law is natural because it gives the uniform probability
measure on the sphere Sh, but in this case the Hs-norm of vγ (3.1) depends
on ω. This is not the case if ν is a centred Bernoulli law. Moreover the prob-
abilistic information we get clearly depends on ν and it may be interesting to
consider also discrete probability laws. Actually, our results are proven un-
der the assumption that the family (ν⊗N ,RN )N≥1 satisfies the concentration
property of measures. Finally, we point out that the results of Section 6 hold
true under the weaker assumption that ν is sub-gaussian: there exists σ ≥ 0
such that ∫

R
esxdν(x) ≤ e

σ2
2 s

2
, ∀s ∈ R.

For a discussion about these conditions we refer to [33, Section 2.1].

A very useful tool here is a measure concentration property satisfied by the
probability Pγ , proved by P. Lévy for the uniform law. For a study of this notion,
we refer to the book [25].

Proposition 3.1. Suppose that Assumption (3.3) is satisfied. Then there exist
constants K > 0, κ > 0 such that for every Lipschitz function F : Sh −→ R
satisfying

|F (u)− F (v)| ≤ ‖F‖Lip‖u− v‖L2(Rd), ∀u, v ∈ Sh,

we have

(3.4) Pγ

[
u ∈ Sh : |F −MF | > r

]
≤ Ke

− κNhr
2

‖F‖2
Lip , ∀r > 0, h ∈]0, 1],

where MF is a median for F .

Recall that a median MF for F is defined by

Pγ

[
u ∈ Sh : F ≥MF

]
≥ 1

2
, Pγ

[
u ∈ Sh : F ≤MF

]
≥ 1

2
.

The factor Nh in the exponential of r.h.s of (3.4) is crucial in applications to
get large deviation estimates.
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3.2. Lp bounds, 2 ≤ p < +∞. The following result shows that for θ = d the

Sobolev estimate (2.7) is improved by the factor N
1
p−

1
2

h for u in a set of probability
close to 1.

Theorem 3.1 ([33], Theorem 4.7). Let p ≥ 2. Denote by Mp a median
of ‖u‖Lp,d(p/2−1) . Assume condition (3.2) and let δ ∈ [0, 1]. Then there exist
0 < C0 < C1, K > 0, c1 > 0 , h0 > 0 such that for all r ∈ [2,K| log h|] and
h ∈]0, h0] such that

(3.5) Pγ,h

[
u ∈ Sh :

∣∣∣‖u‖Lp,d(p/2−1) −Mp

∣∣∣ > Λ
]
≤ 2 exp

(
− c2N2/p

h Λ2
)
.

Moreover if condition (3.3) is satisfied and if δ ∈ [0, 2/3[, then we have

C0
√
p ≤Mp ≤ C1

√
p, ∀p ∈ [2,K logNh].

This result shows that ‖u‖Lp,d(p/2−1) has a Gaussian concentration around its
median. The first part of the theorem is a direct application of Proposition 3.1 to
F (u) = ‖u‖Lp,d(p/2−1) . The estimate ofMp is more involved and needs the following
estimate for the spectral function.

Lemma 3.1 ([33], Lemma 4.9). Let δ ∈ [0, 2/3[ and −d/(p− 1) < θ ≤ 1. There
exist 0 < C0 < C1 and h0 > 0 such that

C0Nhh
d−θ
2 (1− 1

p ) ≤
(∫

Rd
〈x〉θ(p−1)epx dx

)1/p

≤ C1Nhh
d−θ
2 (1− 1

p ),

for every p ∈ [1,∞[ and h ∈]0, h0].

Let 0 < η < 1, then we are able to precise the concentration estimate (3.5)
in the regime p ∼ | lnh|1−η. Assume that for all j ∈ Λh, γj = N

−1/2
h and that

Xj ∼ NC(0, 1), so that P := Pγ is the uniform probability on Sh.

Theorem 3.2. Let δ ∈ [0, 2/3[, 0 < η < 1 and set ph = | lnh|1−η. Then there
exists constants C? = C?(d) and c > 0 such that for all ε > 0 there exists h0 > 0
so that for all h ∈]0, h0]

Pγ,h

[
u ∈ Sh :

∣∣∣‖u‖Lph,d(ph/2−1) − C?
√
ph

∣∣∣ > ε
√
ph

]
≤ 2e−cε

2| lnh|.

We give the main lines of the proof in the appendix.

3.3. L∞ bounds. The next result shows that for θ = d the Sobolev esti-
mate (2.6) is improved by the factor N−

1
2

h | log h| for u in a set of probability close
to 1. We suppose that (3.2) and (2.3) with 0 ≤ δ ≤ 1 are satisfied.

Theorem 3.3 ([33], Theorem 4.1). There exist h0 ∈]0, 1], c2 > 0 and C > 0
such that if c1 = d(1 + d/4), we have

Pγ,h

[
u ∈ Sh : h−

d−θ
4 ‖u‖L∞,θ/2(Rd) > Λ

]
≤ Ch−c1e−c2Λ2

, ∀Λ > 0, ∀h ∈]0, h0].

We can deduce probabilistic estimates for the derivatives as well. Recall that
the Sobolev spaces Ws,p(Rd) are defined in (2.2). The following result say that
Theorem 3.3 is sharp for large enough spectral windows.
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Theorem 3.4 ([33], Theorem 1.1). Let d ≥ 2. Assume that 0 ≤ δ < 2/3
in (2.3) and that condition (3.3) holds. Then there exist 0 < C0 < C1, c1 > 0 and
h0 > 0 such that for all h ∈]0, h0].

Pγ,h

[
u ∈ Sh : C0| log h|1/2 ≤ ‖u‖Wd/2,∞(Rd) ≤ C1| log h|1/2

]
≥ 1− hc1 .

It is clear that under condition (3.3), there exist 0 < C2 < C3, so that for all
u ∈ Sh, and s ≥ 0

C2h
−s/2 ≤ ‖u‖Hs(Rd) ≤ C3h

−s/2,

since all elements of Sh oscillate with frequency h−1/2. Thus Theorem 3.4 shows a
gain of d/2 derivatives in L∞, and this induces a gain of d derivatives compared to
the usual deterministic Sobolev embeddings. This can be compared with the results
of [6] where the authors obtain a gain of d/2 derivatives on compact manifolds: this
comes from different behaviours of the spectral function, see Section 2. Notice that
the bounds in Theorem 3.4 (and in the results of [6] as well) do not depend on the
length of the interval of the frequency localisation Ih (see (2.3)), but only on the
size of the frequencies. This is a consequence of the randomisation, and from the
bound (2.5).

In our works we give estimates for the eigenfunctions in the configuration space,
while Feng, Shiffman and Zelditch [37, 19] give similar estimates in the Bargmann
representation for holomorphic fields.

We now state a result which gives optimal L∞ bounds in the general case
0 ≤ δ ≤ 1

Theorem 3.5. Let d ≥ 2. Assume that 0 ≤ δ ≤ 1 in (2.3) and that condi-
tion (3.3) holds. Then there exist 0 < C0 < C1, c1 > 0 and h0 > 0 such that for all
h ∈]0, h0].

Pγ,h

[
u ∈ Sh : C0| log h|1/2 ≤ h−d/4‖u‖L∞(Rd) ≤ C1| log h|1/2

]
≥ 1− hc1 .

We will give the main lines of the proof of this result in the Appendix B. The
key obervation is that the estimates of the Lp norm of the spectral function (which
are not optimal when δ is close to 1), become optimal in the regime p = ph ∼ c| lnh|.

4. Hermite functions estimates

In this section the previous results are applied to obtain L∞ estimates for
Hermite functions.

Theorem 4.1 ([33], Theorem 1.3). Let d ≥ 2. Then there exists an orthonor-
mal basis of L2(Rd) of eigenfunctions of the harmonic oscillator H denoted by
{ϕ]n}n≥1 such that ‖ϕ]n‖L2(Rd) = 1 and so that for some M > 0 and all n ≥ 1,

(4.1) ‖ϕ]n‖L∞(Rd) ≤Mλ
− d4
n (1 + log λn)1/2.

In other words, all elements of this basis are decreasing in L∞(Rd) norm.
Let us compare (4.1) with the general known bounds on Hermite functions. We
have Hϕn = λnϕn, with λn ∼ cn1/d, therefore (4.1) can be rewritten

(4.2) ‖ϕ]n‖L∞(Rd) ≤Mn−1/4(1 + log n)1/2, ∀n ≥ 0.,



8 DIDIER ROBERT AND LAURENT THOMANN

For a general orthonormal basis of Hermite functions, with d ≥ 2, Koch and
Tataru [23] (see also [24]) prove that

‖ϕn‖L∞(Rd) ≤ Cλ
d
4−

1
2

n ,

whichshows that (4.2) induces a gain of d− 1 derivatives compared to the general
case.
Notice that for the tensorial Hermite basis hα(x), using the bound for d = 1 [40, 23]
we have

‖hα‖L∞(Rd) ≤ Cλ
− 1

12
n , for α1 + · · ·+ αd = λn.

Observe also that the basis of radial Hermite functions does not satisfy (4.1) in
dimension d ≥ 2, as we have recently proved in [22]. We will see in Theorem 4.3
that the log term in (4.1) can not be avoided.

Theorem 4.1 is a consequence of a more powerful result, obtained following an
idea in [43]. Here we follow the main lines of [6, Section 3]. In this part the upper
bounds estimates of Section 3 are used in their full strength.

Firstly, we assume that for all j ∈ Λh, γj = N
−1/2
h and that Xj ∼ NC(0, 1), so

that P := Pγ is the uniform probability on Sh. We set hk = 1/k with k ∈ N∗, and

ahk = 2 + dhk, bhk = 2 + (2 + d)hk.

Then (2.3) is satisfied with δ = 1 and D = 2. In particular, each interval

Ihk =
[ ahk
hk

,
bhk
hk

[
= [2k + d, 2k + d+ 2[

only contains the eigenvalue 2k + d with multiplicity Nhk ∼ ckd−1, and Ehk is the
corresponding eigenspace of the harmonic oscillator H. We can identify the space of
the orthonormal basis of Ehk with the unitary group U(Nhk) and we endow U(Nhk)
with its Haar probability measure ρk. Then the space B of the Hilbertian bases of
eigenfunctions of H in L2(Rd) can be identified with

(4.3) B = ×k∈NU(Nhk),

which can be endowed with the measure

(4.4) dρ = ⊗k∈N dρk.

Denote by B = (ϕk,`)k∈N, `∈J1,Nhk K ∈ B a typical orthonormal basis of L2(Rd) so
that for all k ∈ N, (ϕk,`)`∈J1,Nhk K ∈ U(Nhk) is an orthonormal basis of Ehk .

Then the main result of the section which implies Theorem 4.1, is the following.

Theorem 4.2 ([33], Theorem 5.1). Let d ≥ 2. Then, if M > 0 is large enough,
there exist c, C > 0 so that for all r > 0

ρ
[
B = (ϕk,`)k∈N, `∈J1,Nhk K ∈ B : ∃k, `; ‖ϕk,`‖Wd/2,∞(Rd) ≥M(log k)1/2 + r

]
≤ Ce−cr

2
.

The previous result relies on the following proposition
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Proposition 4.1 ([33], Proposition 5.2). Let d ≥ 2. Then, if M > 0 is large
enough, there exist c, C > 0 so that for all r > 0 and k ≥ 1

ρk

[
Bk = (ψ`)`∈J1,Nhk K ∈ U(Nhk) : ∃` ∈ J1, NhkK; ‖ψ`‖Wd/2,∞(Rd) ≥M(log k)1/2+r

]
≤ Ck−2e−cr

2
.

Let us show how this result implies Theorem 4.2: We set

Fk,r =
{
Bk = (ψ`)`∈J1,Nhk K ∈ U(Nhk) : ∀` ∈ J1, NhkK; ‖ψ`‖Wd/2,∞(Rd) ≤M(log k)1/2+r

}
,

and Fr = ∩k≥1Fk,r. Then for all r > 0

ρ(Fcr ) ≤
∑
k≥1

ρk(Fck,r) ≤ C
∑
k≥1

k−2e−cr
2

= C ′e−cr
2
,

and this completes the proof.

Then from the Borel-Cantelli Lemma we get

Corollary 4.1 ([33], Corolllary 5.3). For ρ-almost all orthonormal basis
(ϕk,`)k∈N, `∈J1,Nhk K of eigenfunctions of H we have

(i) For 2 ≤ p < +∞

‖ϕk,`‖Lp(Rd) ≤ Cpk−
d
2 ( 1

2−
1
p ), ∀ k ∈ N, ∀ ` ∈ J1, NhkK.

(ii) For p = +∞

‖ϕk,`‖L∞(Rd) ≤ (M + 1)k−d/4(1 + log k)1/2, ∀ k ∈ N, ∀ ` ∈ J1, NhkK.

We now state a result we shows that the log factor in the previous bounds is
optimal

Theorem 4.3. Let d ≥ 2. Then for all M > 0

ρ
[
B = (ϕk,`)k∈N, `∈J1,Nhk K ∈ B : lim inf

k→+∞
inf

`=1,...,Nk
kd/4‖ϕk,`‖L∞(Rd) ≤M

]
= 0.

This means that, from an orthonormal basis, one cannot extract a subsequence
which satisfies better bounds than in Corollary 4.1.

This result is a consequence of Theorem 3.5. For the proof, we can follow the
main lines of [6, Théorème 8] where an analogous result for the spherical harmonics
is proven.

5. Application to Quantum ergodicity

Recall that ”quantum ergodicity” for a quantum Hamiltonian H usually means
that in some semiclassical regime almost all eigenfunctions of H are distributed
according to an invariant measure with a support equal to the classical energy
shell.

Assume that Ih =]ah, bh] is such that

lim
h→0

ah = lim
h→0

bh = η > 0 and lim
h→0

bh − ah
h

= +∞.
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The Liouville measure Lη associated with the classical Hamiltonian Hc`(x, ξ) =
|x|2 + |ξ|2 is here the uniform probability on the sphere

√
η S2d−1. We define the

class of symbols

S(1) =
{
A ∈ C∞(R2d), ∀α,∀β, sup

(x,ξ)

|∂αx ∂
β
ξ A(x, ξ)| < +∞

}
,

and S(1, 1) ⊂ S(1) the class of symbols such that A ∈ C∞(R2d) and A is homoge-
neous of degree 0 outside a small neighbourhood of (0, 0) in Rdx ×Rdξ : A(λx, λξ) =
A(x, ξ) for every λ ≥ 1 and |(x, ξ)| ≥ ε.
For A ∈ S(1) let us denote by Â the Weyl quantization of A (here h = 1). No-
tice that if ‖uh‖L2(Rd) = 1 then A 7→ 〈uh, Âuh〉 defines a semiclassical measure on
√
η S2d−1 (see e.g. [5]).

Then we have

Theorem 5.1 ([35], Theorem 1.4). Assume that we are in the isotropic case
(γj = 1√

Nh
for all j ∈ Λh). Then there exist c, C > 0 so that for all r ≥ 1 and

A ∈ S(1, 1),

(5.1) Ph

[
u ∈ Sh : |〈u, Âu〉 − Lη(A)| > r

]
≤ Ce−cNhr

2
, ∀h ∈]0, 1].

This result can be related with quantum ergodicity (see [42, 15, 21, 26] and
the book [46, Chapter 15] for an introduction to this subject) which concerns
the semi-classical behavior of 〈ϕj , Âϕj〉 when the classical flow is ergodic on the
energy hyper surface H−1

c` (η). Then, for ”almost all” eigenfunctions ϕj , we have

〈ϕj , Âϕj〉
j→+∞−→ Lη(A). The meaning of Theorem 5.1 is that we have 〈u, Âu〉 h→0−→

Lη(A) for almost all u ∈ Sh such that all modes (ϕj)j∈Λh are “almost uniformly
distributed ” in u. For related results on compact manifolds see Zelditch [44].

As a consequence of Theorem 5.1 we get easily that almost all bases of Hermite
functions is Quantum Uniquely Ergodic (see Theorem 5.2 for a precise statement).
In [43] the author proved that on the standard sphere a random orthonormal basis
of eigenfunctions of the Laplace operator is ergodic.

Burq-Lebeau [6, Théorème 3] obtained a similar result for the Laplacian on a
compact manifold. A modification of their proof allows to consider more general
random variables satisfying the Gaussian concentration assumption instead of the
uniform law.

From (5.1) we directly deduce that there exists C > 0 so that for all p ≥ 2 and
h ∈]0, 1], ∥∥〈u, Âu〉 − Lη(A)

∥∥
LpPh
≤ CN−1/2

h

√
p.

Therefore, if one denotes by

uωh =
1√
Nh

∑
j∈Λh

Xj(ω)ϕj ,

then we have 〈uωh , Âuωh〉
h→0−→ Lη(A) in Lp(Ω)-norm with a remainder estimate.

For example taking the Bernoulli law for the Xj then uωh =
1√
Nh

∑
j∈Λh

(−1)εj(ω)ϕj

where {εj}j≥1 are i.i.d Bernoulli variables.
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We are also able to prove that a random orthonormal basis of eigenfunctions
of the Harmonic oscillator H is Quantum Uniquely Ergodic (QUE, according the
terminology used in [44] and introduced in [36]).

Recall the definitions (4.3) and (4.4) of B and ρ. Denote byB = (ϕj,`)j∈N, `∈J1,Nhj K ∈
B a typical orthonormal basis of L2(Rd) so that for all j ∈ N, (ϕj,`)`∈J1,Nhj K ∈
U(Nhj ) is an orthonormal basis of Ehj . Then

Theorem 5.2 ([35], Theorem 1.6). For B ∈ B and A ∈ S(1, 1) let us denote
by

Dj(B) = max
1≤`≤Nhj

∣∣〈ϕj,`, Âϕj,`〉 − Lη(A)
∣∣.

Then we have
lim

j→+∞
Dj(B) = 0, ρ− a.s on B.

In other words, ρ-almost all orthonormal basis of Hermite functions is QUE.

Using estimates proved in [6], an analogous result to Theorem 5.2 can be proved
for the Laplace operator on Riemannian compact manifolds with the same method.
This holds true in particular for the sphere in any dimension d ≥ 2 and more
generally for Zoll manifolds (in this last setting a random orthonormal basis of
quasi-modes is obtained).

For Schrödinger operators with super-quadratic potentials a similar result can
be obtained (see [35]), considering orthonormal basis of quasi-modes (approximated
eigenfunctions) satisfying the conclusion of Theorem 5.1.

6. Application to supercritical nonlinear Schrödinger equations

6.1. Construction of measures on L2(Rd) and Strichartz inequalities.
For j ≥ 1 denote by

I(j) =
{
n ∈ N, 2j ≤ λn < 2(j + 1)

}
.

Observe that for all j ≥ d/2, I(j) 6= ∅ and that #I(j) ∼ cdj
d−1 when j −→ +∞.

It might also be noticed that I(j) corresponds to exactly one eigenvalue λn of H,
with multiplicity #I(j), where λn = 2j if d is even and λn = 2j + 1 if d is odd.
Let us consider any fixed orthonormal basis (ϕn)n≥0 of eigenfunctions for the har-
monic oscillator H. Let s ∈ R, then any u ∈ Hs(Rd) can be written in a unique
fashion

(6.1) u =
+∞∑
j=1

∑
n∈I(j)

cnϕn,

and we make the following condition on the coefficients (this is actually condi-
tion (3.2))

(6.2) |ck|2 ≤
C

#I(j)

∑
n∈I(j)

|cn|2, ∀k ∈ I(j), ∀j ≥ 1.

We then define the random variable uω by

uω =
+∞∑
j=1

∑
n∈I(j)

Xn(ω)cnϕn,
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where {Xn}n≥0 is a sequence of i.i.d random variables, following either the standard
complex Gaussian law NC(0, 1) or the Bernoulli law 1

2δ−1 + 1
2δ1.

Remark 6.1. Here condition (6.2) allows us to use the optimal estimates on the
spectral function ex (see Lemma 3.1 and inequality (6.3) below). This will induce a
gain of Sobolev regularity for the random series uω as it is stated in Proposition 6.1,
compared to the deterministic Strichartz estimates (6.4).

We then have the following probabilistic improvement of the Strichartz esti-
mates.

Proposition 6.1 ([32], Proposition 2.1). Let s ∈ R and let u ∈ Hs(Rd) as
in (6.1). Assume that (cn)n∈N satisfies (6.2). Let 1 ≤ q < +∞, 2 ≤ p ≤ +∞, and
set α = d(1/2− 1/p) if p < +∞ and α < d/2 if p = +∞. Then there exist c, C > 0
so that for all τ ∈ R

P
[
ω :

∥∥e−i(t+τ)Huω
∥∥
Lq[0,T ]Ws+α,p(Rd)

> K

]
≤ Ce

− cK2

T2/q‖u‖2
Hs(Rd) .

The first key ingredient in the proof is the Khinchin inequality (see e.g. [9,
Lemma 4.2] for a proof): There exists C > 0 such that for all real k ≥ 2 and
(an) ∈ `2(N)

‖
∑
n≥0

Xn(ω) an‖LkP ≤ C
√
k
(∑
n≥0

|an|2
) 1

2
.

The second key ingredient in the proof is the L∞ estimate of the spectral
function given by Thangavelu/Karadzhov (see [33, Lemma 3.5]) which reads for
d ≥ 2

(6.3) sup
x∈R

∑
n∈I(j)

|ϕn
(
x
)∣∣2 ≤ Cjd/2−1,

and which does not depend on the choice of the (ϕn)n≥1.

Let us recall the deterministic Strichartz estimates for the harmonic oscillator,
which can be established using the Mehler formula (see [8, Lemma 5.1] for the
argument in 1D which can be extended). We say that a couple (q, p) ∈ [2,+∞]2 is
admissible if

2
q

+
d

p
=
d

2
and (d, q, p) 6= (2, 2,+∞).

Then for all T > 0 there exists CT > 0 so that for all u0 ∈ Hs(Rd) we have

(6.4) ‖e−itHf‖XsT ≤ CT ‖f‖Hs(Rd),

where

Xs
T :=

⋂
(q,p) admissible

Lq
(
[−T, T ] ;Ws,p(Rd)

)
.

When p is close to +∞, the result of Proposition 6.1 expresses a gain P−a.s.
of almost d/2 derivatives in space compared to the bound (6.4).
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Before we state our well-posedness results, we need to define the measures on
the space of initial conditions. We define the set As ⊂ Hs(Rd) by

As =
{
u =

+∞∑
j=1

∑
n∈I(j)

cnϕn ∈ Hs(Rd) s.t. condition (6.2) holds for some C > 0
}
.

Let γ ∈ As. We define the probability measure µγ on Hs via the map

Ω −→ Hs(Rd)

ω 7−→ γω =
+∞∑
j=1

∑
n∈I(j)

cnXn(ω)ϕn,

in other words, µγ is defined by: for all measurable F : Hs −→ R∫
Hs(Rd)

F (v)dµγ(v) =
∫

Ω

F (γω)dP(ω).

In particular, we can check that µγ satisfies

• If γ ∈ Hs\Hs+ε, then µγ(Hs+ε) = 0.
• Assume that for all j ≥ 1 such that I(j) 6= ∅ we have cj 6= 0. Then for all

nonempty open subset B ⊂ Hs, µγ(B) > 0.
Finally, we denote by Ms the set of all such measures

Ms =
⋃
γ∈As

{µγ}.

For more properties of these measures, we refer to the introduction of [32].

Each element γ ∈ As defines a probability measure µγ . We will see in the next
section that for a typical u0 ∈ Hs in the support of µγ , the nonlinear Schrödinger
equation with initial condition u0 is well-posed.

By the Kakutani theorem (see also Remark 3.1), the spaceMs contains mutu-
ally singular measures, and this extends the set of initial conditions for which we
are able to solve NLS.

6.2. Application to NLS. We now consider the Cauchy problem for non-
linear Schrödinger equations, where the initial condition is random. We apply the
estimates developed in the previous sections, in particular Proposition 6.1, in order
to show local and global well-posedness results, for problems with Sobolev super-
critical regularity.

Much work has been done on dispersive PDEs with random initial conditions
since the papers of Burq-Tzvetkov [9, 10]. In these articles, the authors showed
that thanks to a randomisation of the initial condition one can prove well-posedness
results even for data with supercritical Sobolev regularity. We also refer to [11,
39, 8, 31, 30, 17, 7, 29, 27] and references therein for further developments.

Let us consider nonlinear Schrödinger equation with harmonic potential

(6.5)

 i
∂u

∂t
+ ∆u− |x|2u = ±|u|p−1u, (t, x) ∈ R× Rd.

u(0) = u0,

with d ≥ 2, p ≥ 3 an odd integer. This is a model used in the description of the
Bose-Einstein condensates.
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Before we state our results, let us recall some facts concerning the deterministic
study of the nonlinear Schrödinger equation (6.5). We say that (6.5) is locally well-
posed in Hs(Rd), if for all initial condition u0 ∈ Hs(Rd), there exists a unique
local in time solution u ∈ C([−T, T ];Hs(Rd)), and if the flow-map is uniformly
continuous. We denote by

sc =
d

2
− 2
p− 1

,

the critical Sobolev index. Then one can show that NLS is well-posed in Hs(Rd)
when s > max(sc, 0), and ill-posed when s < sc. We refer to the introduction
of [39] for more details on this topic.

6.2.1. Local existence results. We are now able to state our first result on
the local well-posedness of (6.5).

Theorem 6.1 ([32], Theorem 1.1). Let d ≥ 2, p ≥ 3 an odd integer and fix
µ = µγ ∈M0. Then there exists Σ ⊂ L2(Rd) with µ(Σ) = 1 and so that:

(i) For all u0 ∈ Σ there exist T > 0 and a unique local solution u to (6.5) with
initial data u0 satisfying

(6.6) u(t)− e−itHu0 ∈ C
(
[−T, T ];Hs(Rd)

)
,

for some d
2 −

2
p−1 < s < d

2 .
(ii) More precisely, for all T > 0, there exists ΣT ⊂ Σ with

µ(ΣT ) ≥ 1− C exp
(
− cT−δ‖γ‖−2

L2(R2)

)
, C, c, δ > 0,

and such that for all u0 ∈ ΣT the lifespan of u is larger than T .

Denote by γ =
+∞∑
n=0

cnϕn(x), then uω0 :=
+∞∑
n=0

gn(ω)cnϕn(x) is a typical element

in the support of µγ . Another way to state Theorem 6.1 is : for any T > 0, there
exists an event ΩT ⊂ Ω so that

P(ΩT ) ≥ 1− C exp
(
− cT−δ‖γ‖−2

L2(Rd)

)
, C, c, δ > 0,

and so that for all ω ∈ ΩT , there exists a unique solution of the form (6.6) to (6.5)
with initial data uω0 .

The key argument in the proof is the use of Proposition 6.1 which yields a gain
of d/2 derivatives compared to the deterministic theory. To prove Theorem 6.1 we
only have to gain sc = d/2 − 2/(p − 1) derivatives. The solution is constructed
by a fixed point argument in a Strichartz space Xs

T ⊂ C
(
[−T, T ];Hs(Rd)

)
with

continuous embedding, and uniqueness holds in the class Xs
T .

The deterministic Cauchy problem for (6.5) was studied by Oh [28] (see also
Cazenave [14, Chapter 9] for more references). In [39], Thomann has proven an
almost sure local existence result for (6.5) in the supercritical regime (with a gain
of 1/4 of derivative), for any d ≥ 1. This local existence result was improved by
Burq-Thomann-Tzvetkov [8] when d = 1 (gain of 1/2 derivatives), by Deng [18]
when d = 2, and by Poiret [31, 30] in any dimension.
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6.2.2. Global existence and scattering results for NLS. As an applica-
tion of the results of the previous part, we are able to construct global solutions to
the non-linear Schrödinger equation without potential, which scatter when t→ ±∞.
Consider the following equation

(6.7)

 i
∂u

∂t
+ ∆u = ±|u|p−1u, (t, x) ∈ R× Rd.

u(0) = u0.

The well-posedness indexes for this equation are the same as for equation (6.5).
Namely, (6.7) is well-posed in Hs(Rd) when s > max(sc, 0), and ill-posed when
s < sc.

Then we can prove

Theorem 6.2 ([32], Theorem 1.3). Let d ≥ 2, p ≥ 3 an odd integer and fix
µ = µγ ∈M0. Then there exists Σ ⊂ L2(Rd) with µ(Σ) > 0 and so that:

(i) For all u0 ∈ Σ there exists a unique global solution u to (6.7) with initial data
u0 satisfying

u(t)− eit∆u0 ∈ C
(
R;Hs(Rd)

)
,

for some d
2 −

2
p−1 < s < d

2 .
(ii) For all u0 ∈ Σ there exist states f+, f− ∈ Hs(Rd) so that when t −→ ±∞∥∥u(t)− eit∆(u0 + f±)

∥∥
Hs(Rd)

−→ 0.

(iii) If we assume that the distribution of ν is symmetric, then

µ
(
u0 ∈ L2(Rd) : the assertion (ii) holds true

∣∣∣ ‖u0‖L2(Rd) ≤ η
)
−→ 1,

when η −→ 0.

We can show [31, Théorème 20], that for all s > 0, if u0 /∈ Hσ(Rd) then
µ(Hσ(Rd)) = 0. This shows that the randomisation does not yield a gain of de-
rivative in the Sobolev scale; thus Theorem 6.2 gives results for initial conditions
which are not covered by the deterministic theory.

There is a large literature for the deterministic local and global theory with
scattering for (6.7). We refer to [2, 12] for such results and more references.

One of the key points in the proof is to use the lens transform L defined as

u(t, x) 7−→ L u(t, x) =
(

1√
1 + 4t2

)d/2
u
(arctan(2t)

2
,

x√
1 + 4t2

)
e
ix2t

1+4t2 ,

which permits link equation (6.7) to equation (6.5). In particular, local in time re-
sults for (6.5) on the time interval [−π/4, π/4] imply global in time results for (6.7).

In Theorem 6.2 we assumed that d ≥ 2 and p ≥ 3 was an odd integer, so we
had p ≥ 1 + 4/d, or in other words we were in a L2-supercritical setting. Our
approach also allows to get global in time results in an L2-subcritical context, i.e.
when 1 + 2/d < p < 1 + 4/d.
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Theorem 6.3 ([32], Theorem 1.4). Let d = 2 and 2 < p < 3 and fix µ = µγ ∈
M0. Then there exists Σ ⊂ L2(R2) with µ(Σ) > 0 and so that for all 0 < ε < 1

(i) For all u0 ∈ Σ there exists a unique global solution u to (6.7) with initial data
u0 satisfying

u(t)− eit∆u0 ∈ C
(
R;H1−ε(R2)

)
.

(ii) For all u0 ∈ Σ there exist states f+, f− ∈ H1−ε(R2) so that when t −→ ±∞∥∥u(t)− eit∆(u0 + f±)
∥∥
H1−ε(R2)

−→ 0.

(iii) If we assume that the distribution of ν is symmetric, then

µ
(
u0 ∈ L2(R2) : the assertion (ii) holds true

∣∣∣ ‖u0‖L2(R2) ≤ η
)
−→ 1,

when η −→ 0.

In the case p ≤ 1 + 2/d, Barab [3] showed that a non trivial solution to (6.7)
never scatters, therefore even with a stochastic approach one can not have scattering
in this case. When d = 2, the condition p > 2 in Theorem 6.3 is therefore optimal.
Usually, deterministic scattering results in L2-subcritical contexts are obtained in
the space H1 ∩ F(H1). Here we assume u0 ∈ L2, and thus we relax both the
regularity and the decay assumptions (this latter point is the most striking in this
context). Again we refer to [2, 1] for an overview of scattering theory for NLS.

6.2.3. Global existence results for NLS with quadratic potential. We
also get global existence results for defocusing Schrödinger equation with harmonic
potential. For d = 2 or d = 3, consider the equation

(6.8)

 i
∂u

∂t
−Hu = |u|2u, (t, x) ∈ R× Rd,

u(0) = u0,

and denote by E the energy of (6.8), namely

E(u) = ‖u‖2H1(Rd) +
1
2
‖u‖4L4(Rd).

Deterministic global existence for (6.8) has been studied by Zhang [45] and by
Carles [13] in the case of time-dependent potentials.

When d = 3, our global existence result for (6.8) is the following

Theorem 6.4 ([32], Theorem 1.5). Let d = 3, 1/6 < s < 1 and fix µ = µγ ∈
Ms. Then there exists a set Σ ⊂ Hs(R3) so that µ(Σ) = 1 and so that the following
holds true

(i) For all u0 ∈ Σ, there exists a unique global solution to (6.8) which reads

u(t) = e−itHu0 + w(t), w ∈ C
(
R,H1(R3)

)
.

(ii) The previous line defines a global flow Φ, which leaves the set Σ invariant

Φ(t)(Σ) = Σ, for all t ∈ R.

(iii) There exist C, cs > 0 so that for all t ∈ R,

E
(
w(t)

)
≤ C(M + |t|)cs+,
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where M is a positive random variable so that

µ(u0 ∈ Hs(R3) : M > K) ≤ Ce
− cKδ

‖γ‖2
Hs(R3) .

Here the critical Sobolev space is H1/2(R3), thus the local deterministic the-
ory combined with the conservation of the energy, immediately gives global well-
posedness in H1(R3). To prove Theorem 6.4, we use the high/low frequency decom-
position method of Bourgain [4, page 84]), which relies on the almost well-posedness
result of Theorem 6.1 and the global well-posedness in H1(R3). As a result, we get
a global well-posedness result in a supercritical context. This strategy has been
successful in different contexts, and has been first used together with probabilistic
arguments by Colliander-Oh [16] for the cubic Schrödinger below L2(S1) and later
on by Burq-Tzvetkov [11] for the wave equation.

With a similar approach, in dimension d = 2, we can prove the following result

Theorem 6.5 ([32], Theorem 1.6). Let d = 2, 0 < s < 1 and fix µ = µγ ∈Ms.
Then there exists a set Σ ⊂ Hs(R2) so that µ(Σ) = 1 and so that for all u0 ∈ Σ,
there exists a unique global solution to (6.8) which reads

u(t) = e−itHu0 + w(t), w ∈ C
(
R,H1(R2)

)
.

In addition, statements (ii) and (iii) of Theorem 6.4 are also satisfied with
cs = 1−s

s .

Here the critical Sobolev space is L2(R2), thus Theorem 6.5 shows global well-
posedness for any subcritical cubic non linear Schrödinger equations in dimension
two.

Appendix A. Proof of Theorem 3.2

Lemma A.1. Let 0 < η < 1 and set ph = | lnh|1−η. Then there exists a constant
C? = C?(d) such that

(A.1) (C? − ε/2)
√
ph ≤Mph ≤ (C? + ε/2)

√
ph,

for h > 0 small enough.

Proof. In the sequel, write p = ph. As in the proof of [33, Theorem 4.7], we
denote by Ap = Eh(‖u‖Lp,d(p/2−1))1/p. Then from [33, estimate (4.14)] we have

|Ap −Mp| ≤ CN−1/p√p ≤ e−c| lnh|
η√

p,

hence it is enough to prove estimate (A.1) for Ap. The proof then consists in
tracking all the constants in [33] and to show that they are optimal. We do not
write all the details, but we give the main steps. Let us recall [33, estimate (4.12)]

(A.2) C1 p(c1N)−p/2
(∫

Rd
〈x〉d( p2−1)ep/2x dx

)∫ c0N

0

tp/2−1e−t dt ≤ App ≤

≤ C2 p(c2N)−p/2
(∫

Rd
〈x〉d( p2−1)ep/2x dx

)
Γ(p/2).

Then for ε > 0
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• With an inspection of the proof of [33, Theorem 2.6, (2.11)] and in [33,
Lemma 2.11] we can show that we can take in the previous line

1/2− ε/8 < c2 < c1 < 1/2 + ε/8.

• We can construct the parametrix in [33, Lemma 4.9] in such a way that

(
√
C? − ε/8)

√
N ≤

(∫
Rd
〈x〉d( p2−1)ep/2x dx

)1/p

≤ (
√
C? + ε/8)

√
N,

where C? is a constant which only depends on the dimension.
• With the Laplace method, we can show that for p ≥ 2 large enough

(1− ε/8)
√

p

2e
≤
(∫ c0N

0

tp/2−1e−t dt
)1/p

≤
(
Γ(p/2)

)1/p ≤ (1 + ε/8)
√

p

2e
.

Putting the previous estimates together with (A.2), we get

(C? − ε/2)
√
p ≤ Ap ≤ (C? + ε/2)

√
p,

with C? = (C?/(2e))1/2, which was the claim. �

We are now able to complete the proof of Theorem 3.2. By Lemma A.1, for
p ≥ 2 large enough{∣∣‖u‖Lp,d(p/2−1) − C?

√
p
∣∣ > ε

√
p
}
⊂
{∣∣∣‖u‖Lp,d(p/2−1) −Mp

∣∣∣ > ε

2
√
p
}
,

and an application of Theorem 3.1 gives the result.

Appendix B. Proof of Theorem 3.5

Assume here that δ = 1 (the general case 0 ≤ δ ≤ 1 can be treated in the same
way). To begin with, we state an estimate of ‖u‖Lr .

Theorem B.1. Let 2d/(d−1) < r ≤ ∞ and denote by Mr a median of ‖u‖Lr .
Then there exist 0 < C0 < C1, K > 0, c1 > 0 and h0 > 0 such that for all
r ∈ [2,K| log h|] and h ∈]0, h0] such that

Pγ,h

[
u ∈ Sh :

∣∣∣‖u‖Lr −Mr

∣∣∣ > Λ
]
≤ 2 exp

(
− c2N2/r

h h−
d
4 (1+ 2

r )Λ2
)
.

and where

(B.1) C0

√
rh

d
4 (1+ 2

r ) ≤Mr ≤ C1

√
rh

d
4 (1− 2

r ), ∀r ∈ [2,K| log h| ].

This is a result similar to [33, Theorem 4.7] in which we made the restriction
δ < 2/3. However, the price to pay, is that the estimate (B.1) is no more optimal.
The reason is that, in this case we prove the following estimate on the spectral
function when p > d/(d− 1) (here r = 2p)

(B.2) C0h
1− d2 (1− 1

p ) ≤
(∫

Rd
epx dx

)1/p

≤ C1h
1− d2 (1+ 1

p ).

Let us prove (B.2). The upper bound is the same as in Lemma 3.1 and is proved
using (2.5) (see also [35, Appendix A.5] for more general results). To get the lower
bound, we oberve that among the family (ϕj)j∈Λh there exists a radial function
ϕrad,h and which satisfies Hϕrad,h ∼ 1

hϕrad,h. Therefore

ex :=
∑
j∈Λh

|ϕj |2 ≥ |ϕrad,h|2.
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Now we invoke the sharp Lp bounds of radial Hermite functions, proved in [22,
Proposition 2.4] which imply the result. Finally, to prove Theorem B.1, we proceed
as in the proof of [33, Theorem 4.7], using the estimate (B.2).

The proof of Theorem 3.5 is analogous to [33, Corollary 4.8]. Roughly speaking,
the L∞ norm is reached in the regime r = rh = c| lnh| and h� 1. In this regime,
the estimate (B.1) becomes optimal, since hc1/rh ∼ c2.

Acknowledgements. We are grateful to the anonymous referee for very use-
ful comments on the first version of this text.
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30. A. Poiret, Solutions globales pour des équations de Schrödinger cubique en dimension 3, arXiv

math.AP (1989), 2012, preprint, http://arxiv.org/abs/1207.1578.
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Laboratoire de Mathématiques J. Leray, UMR 6629 du CNRS, Université de Nantes,
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