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Abstract

In this paper we study a model describing a copolymer in a micro-emulsion. The
copolymer consists of a random concatenation of hydrophobic and hydrophilic monomers,
the micro-emulsion consists of large blocks of oil and water arranged in a percolation-type
fashion. The interaction Hamiltonian assigns energy —a to hydrophobic monomers in oil
and energy —f to hydrophilic monomers in water, where «, 8 are parameters that without
loss of generality are taken to lie in the cone {(a,3) € R?: a > |3|}. Depending on
the values of these parameters, the copolymer either stays close to the oil-water interface
(localization) or wanders off into the oil and/or the water (delocalization). Based on an
assumption about the strict concavity of the free energy of a copolymer near a linear
interface, we derive a variational formula for the quenched free energy per monomer that
is column-based, i.e., captures what the copolymer does in columns of different type. We
subsequently transform this into a variational formula that is slope-based, i.e., captures
what the polymer does as it travels at different slopes, and we use the latter to identify
the phase diagram in the (a, §)-cone. There are two regimes: supercritical (the oil blocks
percolate) and subcritical (the oil blocks do not percolate). The supercritical and the
subcritical phase diagram each have two localized phases and two delocalized phases,
separated by four critical curves meeting at a quadruple critical point. The different
phases correspond to the different ways in which the copolymer can move through the
micro-emulsion. The analysis of the phase diagram is based on three hypotheses about the
possible frequencies at which the oil blocks and the water blocks can be visited. We show
that these three hypotheses are plausible, but do not provide a proof.
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0 Outline

In Section [T, we introduce our model for a copolymer in a micro-emulsion and present a
variational formula for the quenched free energy per monomer, which we refer to as the slope-
based wvariational formula, involving the fractions of time the copolymer moves at a given
slope in the interior of the two solvents and the fraction of time it moves along the interfaces
between the two solvents. This variational formula is the corner stone of our analysis. In
Section |2, we identify the phase diagram. There are two regimes: supercritical (the oil blocks
percolate) and subcritical (the oil blocks do not percolate). We obtain the general structure
of the phase diagram, and state a number of properties that exhibit the fine structure of the
phase diagram as well. The latter come in the form of theorems and conjectures, and are
based on three hypotheses.

In Section |3, we introduce a truncated version of the model in which the copolymer is
not allowed to travel more than M blocks upwards or downwards in each column, where
M € N is arbitrary but fixed. We give a precise definition of the various ingredients that
are necessary to state the slope-based variational formula for the truncated model, including
various auxiliary quantities that are needed for its proof. Among these is the quenched
free energy per monomer of the copolymer crossing a block column of a given type, whose
existence and variational characterization are given in Section [} In Section [5] we derive
an auxiliary variational formula for the quenched free energy per monomer in the truncated
model, which we refer to as the column-based variational formula, involving both the free
energy per monomer and the fraction of time spent inside single columns of a given type,
summed over the possible types. At the end of Section [5] we show how the truncation can
be removed by letting M — oo. In Section [6, we use the column-based variational formula
to derive the slope-based variational formula. In Section [7] we use the slope-based variational
formula to prove our results for the phase diagram. Appendices [AHG] collect several technical
results that are needed along the way.

For more background on random polymers with disorder we refer the reader to the mono-
graphs by Giacomin [3] and den Hollander [5], and to the overview paper by Caravenna, den
Hollander and Pétrélis [2].

1 Model and slope-based variational formula

In Section we define the model, in Section [1.2] we state the slope-based variational formula,
in Section we place this formula in the proper context.

1.1 Model

To build our model, we distinguish between three scales: (1) the microscopic scale associated
with the size of the monomers in the copolymer (= 1, by convention); (2) the mesoscopic scale
associated with the size of the droplets in the micro-emulsion (L,, > 1); (3) the macroscopic
scale associated with the size of the copolymer (n > L,,).

Copolymer configurations. Pick n € N and let W, be the set of n-step directed self-
avoiding paths starting at the origin and being allowed to move upwards, downwards and to



the right, i.e.,
Wa = {1 = (mi)ig € (No x Z)"": mo = (0,1),
Tip1 —m € {(1,0),(0,1),(0,-1)} VO <i<n,m#m; VO<i<j<n}. (11

The copolymer is associated with the path 7. The i-th monomer is associated with the bond
(mi—1,7;). The starting point 7 is chosen to be (0,1) for convenience.

Figure 1: Microscopic disorder w in the copolymer. Dashed bonds represent monomers of
type A (hydrophobic), drawn bonds represent monomers of type B (hydrophilic).

Microscopic disorder in the copolymer. Each monomer is randomly labelled A (hy-
drophobic) or B (hydrophilic), with probability % each, independently for different monomers.
The resulting labelling is denoted by

w={w;: i€ N} e {A, B} (1.2)

and represents the randomness of the copolymer, i.e., w; = A and w; = B mean that the i-th
monomer is of type A, respectively, of type B (see Fig. [)). We denote by P,, the law of the
microscopic disorder.

RN \
4/ )

Figure 2: Mesoscopic disorder €2 in the micro-emulsion. Light shaded blocks represent droplets
of type A (oil), dark shaded blocks represent droplets of type B (water). Drawn is also the
copolymer, but without an indication of the microscopic disorder w attached to it.

Mesoscopic disorder in the micro-emulsion. Fix p € (0,1) and L,, € N. Partition
(0,00) x R into square blocks of size L,:

(0,00) x R= ] A, (),  Ap,(x)=aL,+ (0,L,]> (1.3)
€Ny XZ



Each block is randomly labelled A (oil) or B (water), with probability p, respectively, 1 — p,
independently for different blocks. The resulting labelling is denoted by

Q= {Q2): z €Ny x Z} € {A, B}NoxZ (1.4)

and represents the randomness of the micro-emulsion, i.e., Q(z) = A and Q(x) = B mean that
the z-th block is of type A, respectively, of type B (see Fig. [2). The law of the mesoscopic
disorder is denoted by Pq and is independent of P,,. The size of the blocks L,, is assumed to
be non-decreasing and to satisfy

logn

lim L, =00 and lim
n—oo n—oo

L, =0, (1.5)

i.e., the blocks are large compared to the monomer size but small compared to the copolymer
size. For convenience we assume that if an A-block and a B-block are next to each other,
then the interface belongs to the A-block.

Hamiltonian and free energy. Given w, {2 and n, with each path m € W,, we associate an
energy given by the Hamiltonian

H (m50, 8) = Zn: (ar{wi=0f  =al+srfw=0fr =B}) (6
=1

where Q(L;,.,l,m) denotes the label of the block the step (m;—1,m;) lies in. What this Hamiltonian
does is count the number of AA-matches and BB-matches and assign them energy « and £,
respectively, where «, 5 € R. (Note that the interaction is assigned to bonds rather than
to sites, and that we do not follow the convention of putting a minus sign in front of the
Hamiltonian.) Similarly to what was done in our earlier papers [6], [7], [8], [9], without loss

of generality we may restrict the interaction parameters to the cone
CONE = {(a, B) € R%: o > |B|}. (1.7)

For n € N, the free energy per monomer is defined as

w,Q .
194 a, B) = Llog Z:’gn(a,ﬂ) with Z:’?n(a,ﬁ) = Z eftnLn (i 2B) (1.8)
TEWn

and in the limit as n — oo the free energy per monomer is given by

fla, Bsp) = lim f27 (o, B), (1.9)

n—oo

provided this limit exists w, (2-a.s.
Henceforth, we subtract the term ) ;" | 1{w; = A} from the Hamiltonian, which by the

law of large numbers w-a.s. is §n(1 + o(1)) as n — oo and corresponds to a shift of —§ in
the free energy. The latter transformation allows us to lighten the notation, starting with the

Hamiltonian in (1.6)), which becomes

n

HP (mio )= (5 1{w; = B} —a1{w; = A}) 1 {Q(L;;fm) - B} . (1.10)

i=1



1.2 The slope-based variational formula for the quenched free energy per
step

Theorem below gives a variational formula for the free energy per step in (1.9). This
variational formula, which is the corner stone of our paper, involves the fractions of time the
copolymer moves at a given slope through the interior of solvents A and B and the fraction
of time it moves along AB-interfaces. This variational formula will be crucial to identify the
phase diagram, i.e., to identify the typical behavior of the copolymer in the micro-emulsion as a
function of the parameters «a, 3, p (see Section [2| for theorems and conjectures). Of particular
interest is the distinction between localized phases, where the copolymer stays close to the
AB-interfaces, and delocalized phases, where it wanders off into the solvents A and/or B. We
will see that there are several such phases.

To state Theorem we need to introduce some further notation. With each [ € Ry =
[0, 00) we associate two numbers v4 ;, vg; € [141, 00) indicating how many steps per horizontal
step the copolymer takes when traveling at slope [ in solvents A and B, respectively. We
further let vz € [1,00) denote the number of steps per horizontal step the copolymer takes
when traveling along AB-interfaces. These numbers are gathered into the set

B={v=(va,vp,vr) €ECxC x[1,00)} (1.11)

with
C={l+ w onRy: continuous with u; >1+1 VI € Ry }. (1.12)

Let R(u,l) be the entropy per step carried by trajectories moving at slope | with the
constraint that the total number of steps divided by the total number of horizontal steps is
equal to u € [1 +1,00) (for more details, see Section [3.1). Let ¢z(u; o, 3) be the free energy
per step when the copolymer moves along an A B-interface, with the constraint that the total
number of steps divided by the total number of horizontal steps is equal to u € [1,00) (for
more details, see Section 3.2). Let p = (pa,pn,pz) € Mi1(Ry x Ry x {Z}), where pa(dl)
and pp(dl) denote the fractions of horizontal steps at which the copolymer travels through
solvents A and B at a slope that lies between [ and [ + dl, and pz denotes the fraction of
horizontal steps at which the copolymer travels along AB-interfaces. The possible p form a
set

Rp C M1 (Ry x Ry x {Z}) (1.13)

that depends on p (for more details, see Section [3.5). With these ingredients we can now state
our slope-based variational formula.

Theorem 1.1 [slope-based variational formula] For every (o, 3) € CONE and p € (0,1)
the free energy in (1.9)) exists for P-a.e. (w, ) and in L*(P), and is given by

N(p,v
f(aaﬂﬁ)) = sup sup D(P )
PERp vEB (p,’U)

: (1.14)

N(p,v) = / vagR(vay,l) pa(dl) +/ vgy [R(vpg, 1) + 252] pe(dl) + vz ¢z(vr; o, B) pr,
0 0

D(ﬁ, v) = / VA pa(dl) + / vB, ﬁB(dl) + vz Pz, (1.15)
0 0

with the convention that N(p,v)/D(p,v) = —oo when D(p,v) = co.



Remark 1.2 In order to obtain (1.15)), we need to assume strict concavity of an auxiliary
free energy, involving a copolymer in the vicinity of a single linear interface. This is the object
of Assumption [3.3]in Section which is supported by a brief discussion.

1.3 Discussion

The variational formula in is tractable, to the extent that the &-function is known
explicitly, the ¢z-function has been studied in depth in the literature (and much is known
about it), while the set B is simple. The key difficulty of resides in the set ﬁp,
whose structure is not easy to control. A detailed study of this set is not within the scope of
our paper. Fortunately, it turns out that we need to know relatively little about 7@,, in order
to identify the general structure of the phase diagram (see Section . With the help of three
hypotheses on R,, each of which is plausible, we can also identify the fine structure of the
phase diagram (see Section .

We expect that the supremum in (1.14) is attained at a unique p € 7@1, and a unique
v € B. This maximizer corresponds to the copolymer having a specific way to configure itself
optimally within the micro-emulsion.

Column-based variational formula. The slope-based variational formula in Theorem
will be obtained by combining two auxiliary variational formulas. Both formulas involve the
free energy per step ¥ (0, ug; a, ) when the copolymer crosses a block column of a given type
O, taking values in a type space V, for a given ug € R that indicates how many steps on
scale L, the copolymer makes in this column type. A precise definition of this free energy per

block column will be given in Section |3.4.2

The first auxiliary variational formula is stated in Section |3| (Proposition and gives
an expression for ¥ (0, ue;a, 3) that involves the entropy &(-,l) of the copolymer moving
at a given slope [ and the quenched free energy per monomer ¢z of the copolymer near a
single linear interface. Consequently, the free energy of our model with a random geometry is
directly linked to the free energy of a model with a non-random geometry. This will be crucial
for our analysis of the phase diagram in Section [2 The microscopic disorder manifests itself
only through the free energy of the linear interface model.

The second auxiliary variational formula is stated in Section |5| (Proposition . It is
referred to as the column-based variational formula, and provides an expression for f(«, 3;p)
by using the block-column free energies ¥ (0, ug; o, 3) for © € V and by weighting each column
type with the frequency p(d©) at which it is visited by the copolymer. The numerator is the
total free energy, the denominator is the total number of monomers (both on the mesoscopic
scale). The variational formula optimizes over (ug)g.y; € By and p € Ry The reason why
these two suprema appear in is that, as a consequence of assumption , the mesoscopic
scale carries no entropy: all the entropy comes from the microscopic scale, through the free
energy per monomer in single columns. The mesoscopic disorder manifests itself only through
the presence of the set Rp.

Removal of the corner restriction. In our earlier papers [6], [7], [8], [9], we allowed the
configurations of the copolymer to be given by the subset of W,, consisting of those paths that
enter pairs of blocks through a common corner, exit them at one of the two corners diagonally
opposite and in between stay confined to the two blocks that are seen upon entering. The
latter is an unphysical restriction that was adopted to simplify the model. In these papers we
derived a variational formula for the free energy per step that had a much simpler structure.



We analyzed this variational formula as a function of «, 5,p and found that there are two
regimes, supercritical and subcritical, depending on whether the oil blocks percolate or not
along the coarse-grained self-avoiding path running along the corners. In the supercritical
regime the phase diagram turned out to have two phases, in the subcritical regime it turned
out to have four phases, meeting at two tricritical points.

In Section [2| we show how the variational formula in Theorem can be used to identify
the phase diagram. It turns out that there are two types of phases: localized phases (where
the copolymer spends a positive fraction of its time near the AB-interfaces) and delocalized
phases (where it spends a zero fraction near the AB-interfaces). Which of these phases occurs
depends on the parameters «, 3, p. It is energetically favorable for the copolymer to stay close
to the AB-interfaces, where it has the possibility of placing more than half of its monomers
in their preferred solvent (by switching sides when necessary), but this comes with a loss of
entropy. The competition between energy and entropy is controlled by the energy parameters
a, B (determining the reward of switching sides) and by the density parameter p (determining
the density of the AB-interfaces). It turns out that the phase diagram is different in the
supercritical and the subcritical regimes, where the A-blocks percolate, respectively, do not
percolate. The phase diagram is richer than for the model with the corner restriction.

Figure 3: Picture of a directed polymer with bulk disorder. The different shades of black,
grey and white represent different values of the disorder.

Comparison with the directed polymer with bulk disorder. A model of a polymer
with disorder that has been studied intensively in the literature is the directed polymer with
bulk disorder. Here, the set of paths is

W, = {7‘(’ = (7;,71’1')?:0 S (NO X Zd)nJrl: mo =0, H7Tz‘+1 — ﬂ-lH =1V0o<i< TL}, (1.16)

where || - || is the Euclidean norm on Z?, and the Hamiltonian is

n

Hy(m) =AY w(i,m), (1.17)

=1

where A\ > 0 is a parameter and w = {w(i,z): i € N,z € Z%} is a field of i.i.d. R-valued
random variables with zero mean, unit variance and finite moment generating function, where
N is time and Z? is space (see Fig.|3)). This model can be viewed as a version of a copolymer
in a micro-emulsion where the droplets are of the same size as the monomers. For this model



a variational formula for the free energy has been derived by Rassoul-Agha, Seppéldinen and
Yilmaz [10], [I1]. However, the variational formula is abstract and therefore does not lead to a
quantitative understanding of the phase diagram. Most of the analysis in the literature relies
on the application of martingale techniques (for details, see e.g. den Hollander [5], Chapter
12).

In our model (which is restricted to d = 1 and has self-avoiding paths that may move north,
south and east instead of north-east and south-east), the droplets are much larger than the
monomers. This causes a self-averaging of the microscopic disorder, both when the copolymer
moves inside one of the solvents and when it moves near an interface. Moreover, since the
copolymer is much larger than the droplets, also self-averaging of the mesoscopic disorder
occurs. This is why the free energy can be expressed in terms of a variational formula, as in
Theorem This variational formula acts as a jumpboard for a detailed analysis of the phase
diagram. Such a detailed analysis is lacking for the directed polymer with bulk disorder.

The directed polymer in random environment has two phases: a weak disorder phase
(where the quenched and the annealed free energy are asymptotically comparable) and a
strong disorder phase (where the quenched free energy is asymptotically smaller than the
annealed free energy). The strong disorder phase occurs in dimension d = 1,2 for all A > 0
and in dimension d > 3 for A > ., with A\. € [0, 0] a critical value that depends on d and
on the law of the disorder. It is predicted that in the strong disorder phase the copolymer
moves within a narrow corridor that carries sites with high energy (recall our convention of
not putting a minus sign in front of the Hamiltonian), resulting in superdiffusive behavior in
the spatial direction. We expect a similar behavior to occur in the localized phases of our
model, where the polymer targets the AB-interfaces. It would be interesting to find out how
far the coarsed-grained self-avoiding path in our model travels vertically as a function of n.

2 Phase diagram

In Section we identify the general structure of the phase diagram. In particular, we show
that there is a localized phase £ in which A B-localization occurs, and a delocalized phase D in
which no AB-localization occurs. In Section[2.2] we obtain various results for the fine structure
of the phase diagram, both for the supercritical regime p > p. and for the subcritical regime
p < pe, where p. denotes the critical threshold for directed bond percolation in the positive
quandrant of Z?. This fine structure comes in the form of theorems and conjectures, and is
based on three hypotheses, which we discuss in Section

2.1 General structure

To state the general structure of the phase diagram, we need to define a reduced version of
the free energy, called the delocalized free energy fp, obtained by taking into account those
trajectories that, when moving along an AB-interface, are delocalized in the A-solvent. The
latter amounts to replacing the linear interface free energy ¢z (vr; a, 8) in by the entropic
constant lower bound #(vz,0). Thus, we define

~—

N’D P, v
fo(a,B;p) = sup sup % (2.1)
pPER, vEB Dp(p,v)



ND(ﬁ,U) = /Ooo VA, /%(UAJ,Z) [ﬁA + ﬁI(SQ](dl) + /OOO B, [ (UBl,l) + ﬁ%a] ﬁB(dl), (2.2)
Dp(p.v) = /0 " vat [Pa+ pr ol (dl) + /0 " o (L), (2.3)

provided Dp(p,v) < oo. Note that fp(a, 3;p) depends on (c, ) through a — 3 only.
We partition the CONE into the two phases D and £ defined by

L = {(a,B) € CONE: f(a,B; p) > fp(a, B;p)},
D = {(a, B) € CONE: f(a, 8; p) = fp(e, B;p)}.

The localized phase £ corresponds to large values of 3, for which the energetic reward to
spend some time travelling along AB-interfaces exceeds the entropic penalty to do so. The
delocalized phase D, on the other hand, corresponds to small values of 3, for which the
energetic reward does not exceed the entropic penalty.

(2.4)

B
Hae
S — R ()
D B
- ° 7 (0%
a(y)
Y

Figure 4: Qualitative picture of the phase diagram in CONE. The curve v — [.(7) separates
the localized phase £ from the delocalized phase D. The parameter v measures the distance
between the origin and the point on the lower boundary of CONE from which the line with
slope 1 hits the curve at height 3(y). Note that a(y) = yv/2 is the value where this line
crosses the horizontal axis.

For a > 0, let J, be the halfline in CONE defined by (see Fig. |4))
Jo ={(a+8,8): Be[-5,00)}. (2.5)
Theorem 2.1 (a) There exists a curve v — Bc(7), lying strictly inside the upper quadrant,

such that
LNJo={(a+p5,8): Be (Bc(w(oz)) 00)},
DNJo={(a+8,8): B€[-5 B(v(e)]},
for all a € (0,00) with v(a) = a/V/2.
(b) Inside phase D the free energy f is a function of a— 8 only, i.e., f is constant on Jo, ND
for all o € (0,00).

(2.6)



2.2 Fine structure

This section is organized as follows. In Section [2.2.1] we consider the supercritical regime
p > pe, and state a theorem. Subject to two hypotheses, we show that the delocalized phase
D (recall (2.4)) splits into two subphases D = D; U D such that the fraction of monomers
placed by the copolymer in the B solvent is strictly positive inside D; and equals 0 in Ds. Thus,
D; and Ds are said to be non-saturated, respectively, saturated. We give a characterization
of the critical curve o — fBc(a) (recall (2.6)) in terms of the single linear free energy and
state some properties of this curve. Subsequently, we formulate a conjecture stating that
the localized phase L also splits into two subphases £ = £1 U L5, which are non-saturated,
respectively, saturated. In Section [2.2.2] we consider the subcritical regime p < p., and obtain
similar results.

For p € (0,1) and (a, ) € CONE, let O, 3 denote the subset of 7_21, containing those p
that maximize the variational formula in (|1.14)), i.e.,

_ N(p,
Opap = {ﬁ € Rp: fla, Bip) = sup DEZ, Z; } (2.7)

Throughout the remainder of this section we need the following hypothesis:
Hypothesis 1 For all p € (0,1) and o € (0,00) there exists a p € Op a0 such that pr > 0.
This hypothesis will allow us to derive an expression for f.(v) in (2.6).

Remark 2.3 Hypothesis [1| will be discussed in Section 2.3 The existence of p is proven in
Appendix [F] for a truncated version of our model, introduced in Section [3.3] This truncated
model approximates the full model as the truncation level diverges (see Proposition .

For ¢ € (0,00), define v(c) = (va(c),vp(c),vz(c)) € B as

UA,Z(C) = X;l(c)a l e [Oa OO)’ (2'8)
vpi(c) =x; ' (c+ O‘T_B), l €0, 00), .
vz(c) =z, 0y (uoz(u))(2) > ¢ > 0y (upz(u))(2), (2.10)
where
xi(v) = (6u(u R(u,l))(v) (2.11)

and x; ! denotes the inverse function. Lemma (v—vi) ensures that v — x;(v) is one-to-one
between (1 + 1, 00) and (0,00). The existence and uniqueness of z in follow from the
strict concavity of u — u¢z(u) (see Assumption and Lemma [C.1] (see (C.IHC.2)). We
will prove in Proposition that the maximizer v € B of necessarily belongs to the
familly {v(c): ¢ € (0,00)}.

For p € R,, define

Kao) = [T patdd. Kalp) = [0+ Dpsla (2.12)

10
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Figure 5: Qualitative picture of the phase diagram in the supercritical regime p > p..

2.2.1 Supercritical regime

Splitting of the D-phase. We partition D into two phases: D = D; U Dy. To that end
we introduce the delocalized A-saturated free energy, denoted by fp,(p), which is obtained by
restricting the supremum in to those p € R, that do not charge B. Such p, which we
call A-saturated, exist because p > p., allowing for trajectories that do not visit B-blocks.
Thus, fp,(p) is defined as

ND 0,V
fp,(p) = sup sup == 2(_ ) (2.13)
PERp vEB Dp(p,v)
Kp(p)=0
with o
Nou(p.0) = [ varioard) pa + prbol(@), (2.14)
0

provided Dp(p,v) < co. Note that fp,(p) is a constant that does not depend on («, 3).

With the help of this definition, we can split the D-phase defined in (2.4) into two parts
(see Fig. 5):

e The D;-phase corresponds to small values of 8 and small to moderate values of «. In
this phase there is no AB-localization and no A-saturation. For the variational formula
in this corresponds to the restriction where the AB-localization term disappears
while the A-block term and the B-block term contribute, i.e.,

D1 = {(a, B) € CONE: f(a,B; p) = fp(a, B; p) > fp,(p)}- (2.15)

e The Dy-phase corresponds to small values of 5 and large values of a.. In this phase there
is no AB-localization but A-saturation occurs. For the variational formula in ((1.14))
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this corresponds to the restriction where the AB-localization term disappears and the
B-block term as well, i.e.,

Dy = {(a, B) € CONE: f(a,B; p) = fp,(p)}- (2.16)

Let 7, be the subset of R, containing those p that have a strictly positive B-component
and are relevant for the variational formula in (1.14), i.e.,

To={P€Rp: Kp(p)>0, Ka(p) + Kp(p) < o} (2.17)

Note that 7, does not depend on (a, 3). To state our main result for the delocalized part of
the phase diagram we need the following hypothesis:

Hypothesis 2 For all p > pc,

sup Jo” 94(1) [pa + pz do](dl)

i < 0, (2.18)
peT, Kg(p)

where

ga(l) = vau(e) [R(van(c),1) — ]

with va(c) as defined in (2.8]).

(2.19)

c=fp,

Remark 2.5 Hypothesis[2] will allow us to show that D; and Dy are non-empty. This hypoth-
esis, which will be discussed further in Section [2.3] relies on the fact that, in the supercritical
regime, large subcritical clusters typically have a diameter that is of the same size as their
circumference.

Remark 2.6 The function g4 has the following properties: (1) g4(0) > 0; (2) ga is strictly
decreasing on [0,00); (3) lim;_, ga(l) = —oco. Property (2) follows from Lemma [B.1](ii) and
the fact that u — ui(u, ) is concave (see Lemma [B.1fi)). Property (3) follows from fp, > 0,
Lemma [B.1|iv) and the fact that va;(fp,) > 1+1 for I € [0,00). Property (1) follows from
property (2) because [ ga(l)[pa + préol(dl) = 0 for all p maximizing (2.13)).

Let
o =sup{a >0: fp(a,0; p) > fp,(p)}. (2.20)

Theorem 2.7 Assume Hypotheses([l] and 2l Then the following hold:
(a) a* € (0,00).
(b) For every a € [0, ),

JaD1i = Ju D = {(a+B,): A€ -2, Bulr(a))]. (2.21)
(c) For every a € [a*, 00),
JoNDy=JoND = {(a+8,6): Be[-%,B(v(a))]}. (2.22)

(d) For every a € [0,00),
Be(v(a)) = inf {B >0: ¢pz(va0; 0+ 5,8) > /%(1714,0,0)} with v =v(fp(a,0; p)). (2.23)

(e) On [a*,00), o+ Be(y()) is concave, continuous, non-decreasing and bounded from above.
(f) Inside phase Dy the free energy f is a function of a— 3 only, i.e., f is constant on Jo, Dy
for all a € [0, *].

(9) Inside phase Do the free energy f is constant.
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Splitting of the L-phase. We partition £ into two phases: £ = £ U Ls. To that end we
introduce the localized A-saturated free energy, denoted by fr,, which is obtained by restricting
the supremum in (1.14)) to those p € R, that do not charge B, i.e.,

N P,V
fro(o, B;p) = sup  sup —(, ), (2.24)
PERp weB D(p)v)
Kp(p)=0

provided D(p,v) < oo.

With the help of this definition, we can split the £-phase defined in (2.4]) into two parts
(see Fig. [5):

e The Li-phase corresponds to small to moderate values of o and large values of 3. In
this phase AB-localization occurs, but A-saturation does not, so that the free energy is
given by the variational formula in (|1.14)) without restrictions, i.e.,

L1 = {(a,ﬁ) € CONE: f(a, B;p) > max{fr,(a, 5;p), fp(a,ﬁ;p)}}. (2.25)

e The Lo-phase corresponds to large values of o and 8. In this phase both AB-localization
and A-saturation occur. For the variational formula in ((1.14]) this corresponds to the
restriction where the contribution of B-blocks disappears, i.e.,

Ly = {(a, B) € CONE: f(a,B;p) = fr,(a,B;p) > fpe, 85 p)}- (2.26)

Conjecture 2.8 (a) There exists a curve v — B3(7), lying above the curve vy +— Bc(y), such

that
L10 o = {(a+6,6): 8 € (Bulr(@)), B @]}, oom
LaNJo={(a+8,8): B€[B:(v(a)),00)}. '
for all o € (0, ].
(b) LyNJy =0 for all a € (a*,00).
2.2.2 Subcritical regime
Splitting of the D-phase. Let
K, = inf Kp(p). (2.28)

PERp

Note that K, > 0 because p < p.. We again partition D into two phases: D = Dy U Dj. To
that end we introduce the delocalized maximally A-saturated free energy, denoted by fp, (p),
which is obtained by restricting the supremum in (2.1]) to those p € R, achieving K. Thus,
Ip,(p) is defined as )
N'D P,V
fp,(a, 8 p) = sup sup _(v;’ (2.29)

pery  veB Dp(P
Kp(p)=Kp

provided Dp(p,v) < oo. Note that, contrary to what we had in the supercritical regime,
fpa(c, 8 p) depends on a — 8.

With the help of this definition, we can split the D-phase defined in (2.4]) into two parts
(see Fig. [6)):
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Figure 6: Qualitative picture of the phase diagram in the subcritical regime p < pe.

e The D;-phase corresponds to small values of 8 and small to moderate values of «. In
this phase there is no AB-localization and no maximal A-saturation. For the variational
formula in this corresponds to the restriction where the AB-localization term
disappears while the A-block term and the B-block term contribute, i.e.,

Dy = {(a,8) € CONE: f(a,; p) = fp(e, B; p) > fp,(p)}- (2.30)

e The Ds-phase corresponds to small values of 8 and large values of a. In this phase there
is no AB-localization and maximal A-saturation. For the variational formula in
this corresponds to the restriction where the AB-localization term disappears and the
B-block term is minimal, i.e.,

Dy = {(a, B) € CONE: f(a,B; p) = fp,(p)}- (2.31)

Let
To=1{P € Rp: Kp(p) > Ky, Ka(p) + Kp(p) < o0} (2.32)
To state our main result for the delocalized part of the phase diagram we need the following

hypothesis:

Hypothesis 3 For all p > p.,

sup Jo~ 94,a-5() [pa + pz do)(dl)

= < 00, 2.33
€T, Kg(p) (2.33)

where

9a.a-6(1) = vau(e) [E(vai(e),l) ] (2.34)

with va(c) as defined in (2.8]).

c= fDQ (Oé—ﬁ)
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Remark 2.10 Hypothesis 3| will allow us to show that D; and D3 are non-empty. It is close
in spirit to Hypothesis 2] and will be discussed further in Section [2.3]

Let
& =inf{a>0:Va' >a3IpecOyno: Kp(p)=Kp}. (2.35)

Theorem 2.11 Assume Hypotheses[I] and 3| hold. Then the following hold:

(a) @* € (0,00).

(b) Theorems [2.7|(b,c,d) hold with o* replaced by a*.

(c) Theorem[2.7|(f) holds on the whole D whereas Theorem [2.7)(g) does not hold.

Splitting of the £L-phase. We again partition £ into two phases: £ = £1ULs. To that end
we introduce the localized mazimally A-saturated free energy, denoted by fr,, which is obtained
by restricting the supremum in ([1.14)) to those p € R, achieving K,. Thus, fr,(c,5; p) is

defined as _( )
N(p,v
fea(a,Bip) = sup  sup =
PERD vEB D(p,?))
Kp(p)=Kp

: (2.36)

provided D(p,v) < cc.
With the help of this definition, we can split the £-phase defined in (2.4]) into two parts
(see Fig. [6)):

e The L;-phase corresponds to small to moderate values of o and large values of 3. In
this phase AB-localization occurs, but maximal A-saturation does not, so that the free
energy is given by the variational formula in (|1.14)) without restrictions, i.e.,

L1 = {(a,B) € CONE: f(a, B;p) > max{fr,(a, B;p), fo(e, B;p)}}- (2.37)

e The Lo-phase corresponds to large values of o and 8. In this phase both AB-localization
and maximal A-saturation occur. For the variational formula in ((1.14]) this corresponds
to the restriction where the contribution of B-blocks is minimal, i.e.,

Ly = {(a, ) € CONE: f(a, B;p) = fr, (e, B;p) > fple, B; p)}. (2.38)

Conjecture 2.12 Conjecture holds with &* instead of o*.

2.3 Heuristics in support of the hypotheses

Hypothesis At (a,0) € CONE, the BB-interaction vanishes while the AA-interaction
does not, and we have seen earlier that there is no localization of the copolymer along AB-
interfaces when 5 = 0. Consequently, when the copolymer moves at a non-zero slope [ € R\{0}
it necessarily reduces the time it spends in the B-solvent. To be more specific, let p € 7_€p be
a maximizer of the variational formula in , and assume that the copolymer moves in the
emulsion by following the strategy of displacement associated with p. Consider the situation in
which the copolymer moves upwards for awhile at slope [ > 0 and over a horizontal distance
h > 0, and subsequently changes direction to move downward at slope I’ < 0 and over a
horizontal distance h’ > 0. This change of vertical direction is necessary to pass over a B-
block, otherwise it would be entropically more advantageous to move at slope (hi+h'l") /(h+h')
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over a horizontal distance h + k' (by the strict concavity of & in Lemma [B.|(i)). Next, we
observe (see Fig.[7]) that when the copolymer passes over a B-block, the best strategy in terms
of entropy is to follow the AB-interface (consisting of this B-block and the A-solvent above
it) without being localized, i.e., the copolymer performs a long excursion into the A-solvent
but the two ends of this excursion are located on the AB-interface. This long excursion is
counted in pz. Consequently, Hypothesis [1| (oz > 0) will be satisfied if we can show that the
copolymer necessarily spends a strictly positive fraction of its time performing such changes
of vertical direction. But, by the ergodicity of w and 2, this has to be the case.

/ﬁ

Figure 7: Entropic optimization when the copolymer passes over a B-block.

Hypothesis The hypothesis can be rephrased in a simpler way. Recall Remark and
note that there is an lp € (0,00) such that g4 > 0 on [0,ly) and g4 < 0 on (lp,c0). Assume
by contradiction that Hypothesis [2| fails, so that the ratio in is unbounded. Then, by
spending an arbitrarily small amount of time in the B-solvent, the copolymer can improve the
best saturated strategies by moving some of the mass of p4(lp, o0) to pa(0,lp), such that the
entropic gain is arbitrarily larger than the time spent in the B-solvent. In other words, failure
of Hypothesis [2| means that spending an arbitrarily small fraction of time in the B-solvent
allows the copolymer to travel flatter when it is in the A-solvent during a fraction of the time
that is arbitrarily larger than the fraction of the time it spends in the B-solvent. This means
that, instead of going around some large cluster of the B-solvent, the copolymer simply crosses
it straight to travel flatter. However, the fact that large subcritical clusters scale are shaped
like large balls contradicts this scenario, because it means that the time needed to go around
the cluster is of the same order as the time required to cross the cluster, which makes the
unboundedness of the ratio in impossible.

Hypothesis [3l Hypothesis [3]is similar to Hypothesis[2, except that in the subcritical regime
the copolymer spends a strictly positive fraction of time in the B-solvent. Failure of Hypoth-
esis |3| would lead to the same type of contradiction. Indeed, the unboundedness of the ratio
in would mean that there are optimal paths that spend an arbitrarily small additional
fraction of time in the B-solvent in such a way that the path can travel flatter in the A-solvent
during a fraction of the time that is arbitrarily larger than the fraction of the time it spends
in the B-solvent. Again, the fact that large subcritical clusters adopt round shapes rules out
such a scenario.
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3 Key ingredients

In Section we define the entropy per step &(u,l) carried by trajectories moving at slope
I € Ry with the constraint that the total number of steps divided by the total number of
horizontal steps is equal to u € [1 + [, 00) (Proposition below). In Section we define
the free energy per step ¢z(u) of a copolymer in the vicinity of an AB-interface with the
constraint that the total number of steps divided by the total number of horizontal steps
is equal to u € [1,00) (Proposition below). In Section we introduce a truncated
version of the model in which we bound the vertical displacement on the block scale in each
column of blocks by M, with M € N arbitrary but fixed. (This restriction will be removed in
Section by letting M — o0.) In Section we combine the definitions in Sections
[3-2] to obtain a variational formula for the free energy per step in single columns of different
types (Proposition below). In Section we define the set of probability laws introduced
in , which is a key ingredient of the slope-based variational formula in Theorem (1.1
Finally, in Section we prove that the quenched free energy per step f(«, 3;p) is strictly
positive on CONE.

3.1 Path entropies at given slope

Path entropies. We define the entropy of a path crossing a single column. To that aim, we
set

H={(u,l) €[0,00) x R: uw>1+]l|},
Hr={(w,)eH:leZ uecl+|I|+Z},  LeN, (3.1)
and note that H N Q? = UpenHy. For (u,l) € H, we denote by Wy (u,1) the set containing

those paths 7 = (0, —1) + 7 with 7 € Wy, (recall (L.1)) for which 7,z = (L,lL) (see Fig.[g).
The entropy per step associated with the paths in Wy (u,l) is given by

Fr(u,l) = 2 log Wi (u,1)|. (3.2)

u.L steps

Figure 8: A trajectory in Wy, (u, ).
The following propositions will be proven in Appendix [A]
Proposition 3.1 For all (u,l) € HNQ? there exists a &(u,l) € [0,log3] such that

lim Rr(u,l)= sup Fkr(u,l) = k(u,l). (3.3)
L—oco LEN
(w,)eH], (u,l)EHT,
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An explicit formula is available for &(u, ), namely,

R e e (3.4)

where k(a,b), a > 1+0b, b > 0, and &(p), p > 1, are given in [6], Section 2.1, in terms
of elementary variational formulas involving entropies (see [6], proof of Lemmas 2.1.1-2.1.2).
The two formulas in allow us to extend (u,l) — K(u,l) to a continuous and strictly
concave function on H (see Lemma ).

3.2 Free energy for a linear interface

Free energy along a single linear interface. To analyze the free energy per monomer in
a single column we need to first analyze the free energy per monomer when the path moves in
the vicinity of an AB-interface. To that end we consider a single linear interface T separating
a solvent B in the lower halfplane from a solvent A in the upper halfplane (the latter is
assumed to include the interface itself).

For L € Nand o € 1+ %, let WE(u) = Wr(p,0) denote the set of puL-step directed
self-avoiding paths starting at (0,0) and ending at (L,0). Recall (1.2]) and define

67 0) = o ZE and o) = Elo (), (3.5)
with
2T Y e [H2T(m).
TeWE (1)
wnL (36)
Hy () =Y (BYw; = B} — a {w; = A}) 1{(mi_1,m) < 0},
=1

where (m;—1,m;) < 0 means that the i-th step lies in the lower halfplane, strictly below the
interface (see Fig. [9).

Proposition 3.2 (6], Section 2.2.2)
For all (v, ) € CONE and pn € QN [1,00) there exists a ¢r(p) = ¢pr(p;a, B) € R such that

lim  ¢57 (u) = ¢r(pu)  for P-a.e. w and in L*(P). (3.7)

It is easy to check (with the help of concatenation of trajectories) that pu — uoz(p; o, 8)
is concave. For later use we need strict concavity:

Assumption 3.3 For all (a, B) € CONE the function p — udz(p; e, B) is strictly concave on
[1, 00).

This property is plausible, but hard to prove. There is to date no model of a polymer near a
linear interface with disorder for which a property of this type has been established. A proof
would require an explicit representation for the free energy, which for models with disorder
typically is not available.
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Figure 9: Copolymer near a single linear interface.

3.3 Path restriction

In the remainder of this section, as well as in Sections [AH6] we will work with a truncation
of the model in which we bound the vertical displacement on the block scale in each column
of blocks by M € N. The value of M will be arbitrary but fixed. In other words, instead of
considering the full set of trajectories W,,, we consider only trajectories that exit a column
through a block at most M above or M below the block where the column was entered (see
Fig. . The reason for doing the truncation is that is simplifies our proof of the column-based
variational formula. In Section [5.5] we will remove the truncation by showing that the free
energy of the untruncated model is the M — oo limit of the free energy of the M-truncated
model, and that the variational formulas match up as well.

We recall and, formally, we partition (0, 00) x R into columns of blocks of width Ly,
ie.,

(0,00) X R = UjenoCjLs  CjLn = UrezAr, (4, k), (3.8)

where Cj 1, is the j-th column. For each m € W,, we let 7; be the time at which 7 leaves the
(j — 1)-th column and enters the j-th column, i.e.,

7j =sup{i € Ng: m; € Cj_1,} =inf{i € Ng: m; € Cj,} — 1, j=1,...,N—1, (3.9)

where N, indicates how many columns have been visited by 7. Finally, we let v_1(7) = 0
and, for j € {0,..., Ny — 1}, we let vj(m) € Z be such that the block containing the last step
of the copolymer in C;,, is labelled by (j,v;(7)), i.e., (77, 1,7, ;) € ALy (j,v(m)). Thus,
we restrict W, to the subset W, ys defined as

Wym = {m € Wyt |vj(m) —vj_1(m)| < M Vj€{0,..., Nz — 1}}. (3.10)
We recall ([1.8)) and we define Z:gﬂ (M;a, 3) and f, Q(]\4 ; a, B) the partition function and the

quenched free energy restricted to those trajectories in W, ur, i.e.,
W, .
[0y o ) = Flog Zy7 (Mio ) with Z7 (M, )= el (311
ﬂ'GWn,]u
and, as n — oo, the free energy per monomer is given by
F(Msa,p) = lim f2%(M;a, B) (3.12)
n—oo

provided this limit exists w, 2-a.s.

In Remark below we discuss how the mesoscopic vertical restriction can be relaxed by
letting M — oo.
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Figure 10: Example of a trajectory m € W, p with M = 2 crossing the column Cy , with
Vo (7T ) = 2.

Remark 3.4 Asmentioned in Section[I.3], the slope-based variational formula in Theorem [I.1]
will be deduced from a column-based variational formula stated in Proposition In this
framework, the truncated model is used as follows. First, we prove the column-based vari-
ational formula for the truncated model: this will be the object of Propositions in
Section[5.1.2] Next, we show with Proposition [5.5 that, as the truncation levl M diverges, the
truncated free energy converges to the non-truncated free energy. This will complete the proof
of the column-based variational formula for the non-truncated model. Finally, in Section [6]
we transform the column-based variational formula into the slope-based variational formula
for the non-truncated model.

3.4 Free energy in a single column and variational formulas

In this section, we prove the convergence of the free energy per step in a single column
(Proposition and derive a variational formula for this free energy with the help of Propo-
sitions The variational formula takes different forms (Propositions , depending
on whether there is or is not an AB-interface between the heights where the copolymer enters
and exits the column, and in the latter case whether an AB-interface is reached or not.

In what follows we need to consider the randomness in a single column. To that aim, we
recall (3.8), we pick L € N and once {2 is chosen, we can record the randomness of Cj 1, as

Q(j7 )= {Q(j,l): l e Z} (313)

We will also need to consider the randomness of the j-th column seen by a trajectory that
enters C; , through the block A;j; with k # 0 instead of £ = 0. In this case, the randomness
of C; 1, is recorded as

Qier ) = 1G4 L €Z}. (3.14)

Pick L € N, x € {4, B}% and consider Cy j, endowed with the disorder ¥, i.e., Q(0,-) = x.
Let (ni)iez € Z” be the successive heights of the AB-interfaces in Cy 1, divided by L, i.e.,

e <no1<ng<0<ni<ng <.... (315)
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and the j-th interface of Co, 1, is Z; = {0,..., L} x {n;L} (see Fig.[L1]). Next, for r € Ny we set
kry =0if ny > r and k;,,, = max{i > 1: n; < r} otherwise, (3.16)

while for » € —N we set
kry =0if ng <r and k,, = min{i <0: n; > r+ 1} — 1 otherwise. (3.17)

Thus, |k, | is the number of AB-interfaces between heigths 1 and 7L in Co r..

1 3
n — 2
1
1 0
Mo = 1
n, —1 -2
- . -3

Figure 11: Example of a column with disorder x = (..., x(—=3), x(—2), x(—1), x(0), x(1), x(2),
..)=(...,B,A,B,B,B,A,,...). In this example, for instance, k_s, = —1 and k;, = 0.

3.4.1 Free energy in a single column

Column crossing characteristics. Pick L, M € N, and consider the first column Cp ;.. The
type of Co 1, is determined by © = (x, E, z), where x = () ez encodes the type of each block
in Cor, ie., xj = Q) for j € Z, and (=, z) indicates which trajectories 7 are taken into
account. In the latter, = is given by (AII, by, b1) such that the vertical increment in Cyp z on
the block scale is AIl and satisfies |AII| < M | i.e., ™ enters Co 1, at (0,bpL) and exits Cp 1,
at (L,(AIL + b1)L). As in (3.16) and (3.17)), we set ko = kam,, and we let Viny be the set
containing those © satisfying kg # 0. Thus, ©® € Vi, means that the trajectories crossing
Co,r, from (0,b9L) to (L, (AIl 4 b1)L) necessarily hit an AB-interface, and in this case we set
x = 1. If, on the other hand, © € Vying = V' \ Vint, then we have kg = 0 and we set = 1 when
the set of trajectories crossing Cp 1, from (0,b9L) to (L, (AIl+b;y)L) is restricted to those that
do not reach an AB-interface before exiting Cp 1, while we set © = 2 when it is restricted to
those trajectories that reach at least one AB-interface before exiting Co 1. To fix the possible
values taken by © = (x, Z, z) in a column of width L, we put Vr, a1 = Ving, 2,0 U Ving, 1, i With

Viear = {06 AL bo, b, 2) € {A, BY x Zx {1, 2. 1} x {1}
|AI| < M, kam,y # 0},
Vnint,L,M = {(X,AH, bo,bl,l‘) € {AvB}Z X Z X {%a %a-' 'a1}2 X {1a2}:

|ATI| < M, kamn,y = 0}.
(3.18)
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Thus, the set of all possible values of © is Vy; = Ur>1Vp, am, which we partition into Vy; =
Vint,M U Vaint, M (see Fig. with
Vint, M@ = ULeN Vint,L,M
= {(x, AIL by, by, z) € {A, B} x Z x (Q1))* x {1}: |AII| < M, kam,y # 0},
Vaint,M = UreN Vnint,L,M
= {(x, AIL by, by, z) € {A, B} x Z x (Q1))* x {1,2}: |AII| < M, kam,y =0},
(3.19)

where, for all I C R, we set Q7 = INQ. We define the closure of Vy; as Vs = th,M Uant,M
with
Vint,wr = {(x, AIL bo, b, @) € {A, BY* x Z x [0,1]* x {1}: |AII| < M, kam,y # 0},

Viint,mr = { (¢, AIL by, br, 2) € {4, B}Y* x Z x [0,1]* x {1,2}: |AIl| < M, kam, = 0}.
(3.20)

n,

n,

ATT=6

b ATT=-3

N

b

1

Figure 12: Labelling of coarse-grained paths and columns. On the left the type of the column
is in Vin¢,as, on the right it is in Vyine, v (with M > 6).

Time spent in columns. We pick L, M € N, © = (x, AIl, by, b1, z) € Vi m and we specify
the total number of steps that a trajectory crossing the column Cy ;, of type © is allowed to
make. For © = (x, AlL by, by, 1), set

te = 1 + sign(AIl) (AIL + b1 — bo) 1yamzoy + 101 — bol 1ani—o}, (3.21)

so that a trajectory 7 crossing a column of width L from (0,b9L) to (L, (AIl + b)L) makes
a total of uL steps with u € tg + % For © = (, AIl by, b1, 2) in turn, recall (3.15)) and let

to =1+ min{2n1 — by — by — AIL 2|ng| + bg + b1 + AH}, (3.22)
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so that a trajectory m crossing a column of width L and type © € Vyint 1 ar from (0,b9L) to
(L, (AIL + b1)L) and reaching an AB-interface makes a total of uL steps with u € tg + 2.

uL steps ~_

iy

bLj

Figure 13: Example of a uL-step path inside a column of type (x, AlL by, b1,1) € Vipt,, with
disorder x = (..., x(0),x(1),x(2),...) = (..., A, B, A,...), vertical displacement AIl = 2,
entrance height by and exit height b;.

uL steps

A

A

£
e

-
o
Al_

[
==

/

Figure 14: Two examples of a uL-step path inside a column of type (x,All by, b1,1) €
Vhint,r, (left picture) and (x,AIl bg,b1,2) € Vning,r (right picture) with disorder x =
(., x(0), x(1), x(2), x(3),x(4),...)=(...,B,B,B,B, A, ...), vertical displacement AIl = 2,
entrance height by and exit height b;.

L L

At this stage, we can fully determine the set We ,, 1, consisting of the uL-step trajectories
m that are considered in a column of width L and type ©. To that end, for © € Viy r,m we
map the trajectories m € W (u, AIl+b; —bg) onto Cp 1, such that 7 enters Co r, at (0,boL) and
exits Co,z at (L, (AIl+by)L) (see Fig.[13), and for © € Vyint,z,1r we remove, dependencing on
x € {1,2}, those trajectories that reach or do not reach an AB-interface in the column (see
Fig. . Thus, for © € Vi 10 and u € tg + %, we let

W@,u,L = {7T = (O, boL) +7:TE WL(’LL, All + by — bo)}, (3.23)
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and, for © € Vyint,z,ir and u € to + %,

Weou,r = {m € (0,boL) + Wr(u, Al + by — by): 7 reaches no AB-interface} if zo = 1,
Weou,r = {m € (0,bgL) + Wr(u, Al + by — by): 7 reaches an AB-interface} if zo = 2,

(3.24)
with zg the last coordinate of © € V. Next, we set
Vi = {(@,u) € Vi % [0,00): u € te + %}
Vir={(0,u) € Vi x Qi o0): u>to},
Vi =1{(0,u) €Vy x[l,00): u>te}, (3.25)

which we partition into Vi, 1 ny U Vi 1oars Vinear Y Vaing v and V?nt’ u Y V;m, - Note that
for every (©,u) € Vj, there are infinitely many L € N such that (©,u) € Vj )/, because
(©,u) € Vi for all ¢ € N as soon as (©,u) € V] .

Restriction on the number of steps per column. In what follows we abbreviate
EIGH = {(M,m) e Nx N: m > M + 2}, (3.26)

and, for (M, m) € EIGH, we consider the situation where the number of steps uL made by a
trajectory 7 in a column of width L € N is bounded by mL. Thus, we restrict the set Vp, i
to the subset V™), containing only those types of columns © that can be crossed in less than
mL steps, i.e.,

VITM = {@ eEVrom: te < m} (3.27)

Note that the latter restriction only conconcerns those © satisfying z¢ = 2. When z¢ =1 a
quick look at (3.21)) suffices to state that to < M +2 < m. Thus, we set V;", = Vi | ;U
VTnt,L,M with Vinmt7L7M = Vint,L,M and with

m 2
nint’L’M:{@e{A,B}Zxe{%,%,...,1} x {1,2}:
IATI| < M, ko =0 and to §m}. (3.28)

The sets VJ} = V7, UV and V) = Vi& MU V:fm’ u are obtained by mimicking 1
3.20). In the same spirit, we restrict Vj ;, to

Vi ={(0,u) € Vi © €V, u<m} (3.29)

* o * .
and Vi vy = Vine 1. Y Viing, om0 With

n

V’Ztr,,z,M = {(@,u) € Vit X [1,m]: u € te + %},

1

o (3.30)
s = {(00) €V pa x [Lm]: we to+ 3.

*,m _ *,m *, M . *, M _ *, M *,m _ *,m
We set also VM - Vint,M U Vnint,M with Vint,M - ULGNVint,L,M and Vnint,M - ULeNVnin‘c,L,M’
and rewrite these as

Vit{t?}\/l ={(©,u) € Vint. vt X Q) u > to},
Viintnr = 1(0,w) € Vil p X Qump: u > te ). (3.31)
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We further set Vy; = V;ﬁ/[ U V;iﬁ M With
Vit{t?z/l ={(©,u) € Vi?t,M x [1,m]: u>te},

35k, M

—m (3.32)
Vnint,M = {(@vu) € Vnint,M X [Lm]: u > t@}'

Existence and uniform convergence of free energy per column. Recall (3.23), (3.24)
and, for L € N, w € {A, B} and (0,u) € Vi u» we associate with each m € We 1 the
energy

ul
HEX (1) =3 (814w = B} —al{w; = A}) 1{X(Lm_1,m) - B}, (3.33)
i=1
where X‘(Lﬂ'i—l ) indicates the label of the block containing (7;—1,7;) in a column with disorder

x of width L. (Recall that the disorder in the block is part of the type of the block.) The
latter allows us to define the quenched free energy per monomer in a column of type © and
size L as

1 w,
wf(@,u):u—Llong(G),u) with Z7(0,u) = Z e Muiin(m), (3.34)

ﬂ—ew(—),u,L

Abbreviate 11,(0,u) = E[¢%(0,u)], and note that for M € N, m > M +2 and (©,u) € V; '}/
all T € We 1 necessarily remain in the blocks Ar(0,i) with ¢ € {-m +1,...,m — 1}
Consequently, the dependence on x of ¥4 (0O, u) is restricted to those coordinates of x indexed
by {—m +1,...,m — 1}. The following proposition will be proven in Section

Proposition 3.5 For every M € N and (©,u) € V;, there exists a (0, u) € R such that

Lhm @ij(@v u) = ¢(@, U) = ¢(@7 u; &, B) W —a.s. (335)
(@7“)6‘3%,1»1

Moreover, for every (M, m) € EIGH the convergence is uniform in (©,u) € V3.

Uniform bound on the free energies. Pick (o, 3) € CONE, n € N, w € {4, B}, Q ¢
{A, B}No*Z " and let W, be any non-empty subset of W, (recall (1.1))). Note that the quenched

free energies per monomer introduced until now are all of the form

Un=Llog » e, (3.36)
TEW,

where H,, () may depend on w and Q and satisfies —an < H,(7) < an for all 7 € W), (recall
that |8| < a in CONE). Since 1 < |[W,| < [W,| < 3", we have

| < log3 4+ a =% Cy(a). (3.37)

The uniformity of this bound in n, w and € allows us to average over w and/or €2 or to let
n — 00.

25



3.4.2 Variational formulas for the free energy in a single column

We next show how the free energies per column can be expressed in terms of a variational
formula involving the path entropy and the single interface free energy defined in Sections
and Throughout this section M € N is fixed.

For © € Vs we need to specify [ A0 and I g, the minimal vertical distances the copolymer
must cross in blocks of type A and B, respectively, when crossing a column of type ©.

Vertical distance to be crossed in columns of class int. Pick © € Vint’ M and put

I = 1gamso03(m1 — bo) + 1yam<oy (bo — no),
lj = Liansoy(nj — nj—1) + Liancoy(n—ji2 —n—j41) for je{2,... [kel},
lkol+1 = L{am=0} (ALl + b1 — ng ) + Lian<oy (ke +1 — AIL = b1), (3.38)
i.e., l; is the vertical distance between the entrance point and the first interface, [; is the

vertical distance between the i-th interface and the (i + 1)-th interface, and ;41 is the
vertical distance between the last interface and the exit point.

Recall that © = (x, All by, b1, z), and let 4 g and Ip g correspond to the minimal vertical
distance the copolymer must cross in blocks of type A and B, respectively, in a column with
disorder x when going from (0, bg) to (1, AIl + by), i.e.,

lko|+1 ke | +1
lae =Lans0) D, bl n—a) +lgancoy D Llixto,pn=ay
j=1 i=1
ke |+1 kel +1
lB,@ = 1{AH>0} Z ljl{x(nj,ﬂ:B} + 1{AH<0} Z ljl{X(”*ijl):B}' (3'39)
=1 =1

Vertical distance to be crossed in columns of class nint. Depending on x and AIl, we
further partition Vnim, M into four parts

Vnint,A,l,M U Vnint,A,2,M U vnint,B,l,M U Vnint,B,Q,M’ (340)

where Vnint’ Az,m and Vnint, B,z,M contain those columns with label x for which all the blocks
between the entrance and the exit block are of type A and B, respectively. Pick © € Vyint, i
In this case, there is no AB-interface between by and AIIl 4 by, which means that AIl < nq if
AIl > 0 and AII > ng if AII < 0 (no and n; being defined in )

For © € Vnint, A1,m we have [p g = 0, whereas [4 g is the vertical distance between the
entrance point (0,by) and the exit point (1, AIl + by), i.e.,

lae = 1iam>0y (AIl — by + b1) + Lan<oy (|AIL] + bo — b1) + Tian=oy b1 — bol, (3.41)
and similarly for © € Vnmt, B,1,M Wwe have obviously 46 = 0 and

IB6 = a0y (Al = by + b1) + Lian<oy (|AL] + bo — b1) + 1yam=oy/b1 — bol- (3.42)

For © € Vnint,A,Q,M, in turn, we have Ip g = 0 and /4 g is the minimal vertical distance a
trajectory has to cross in a column with disorder y, starting from (0, by), to reach the closest
AB-interface before exiting at (1, AIl + b), i.e.,

lae = 1iam>0y (Al = by + b1) + Lian<oy (|AIL] + bo — b1) + 1am=0y/b1 — bol, (3.43)
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and similarly for © € Vninu B,2,m We have [4 9 = 0 and

e = liam>0y (AL = by + b1) + Liami<oy (JAI] + bo — b1) + 1 am=03[b1 — bol- (3.44)

Variational formula for the free energy in a column. We abbreviate (h) = (ha, hp, h1)
and (a) = (aa,ap,ar). Note that the quantity h, indicates the fraction of horizontal steps
made by the copolymer in solvent x for x € {A, B} and along AB-interfaces for x = 7.
Similarly, a, indicates the total number of steps made by the copolymer in solvent = for
x € {A, B} and along AB-interfaces for x = Z. For (I4,lp) € [0,00)? and u >[4 + g + 1, we
put

,C(ZA,ZB;U) = {(h),(a) S [0, 1]3 X [O,OO)S: ha+hg+hr=1,ap+ag+az=u
aa>ha+la, ap > hp+1lp, az > hg}. (3.45)

For l4 € [0,00) and u > 1+ l4, we set

Luint,a2(Lasu) = {(h), (a) € L(14,0;u): hp =ap =0},

3.46
Luint, 4,1(Lasu) = {(R), (a) € L(14,0;u): hp =ap = hg = ag =0}, (3.46)
and, for g € [0,00) and u > 1 + Ip, we set
Luin Ig;u) ={(h), € L(0,lg;u): ha = =0t,
oz = {0, @) € £O.p0): ha=ax =0} .

Lint,B,1(Ig5;u) = {(h), (a) € L(0,lp;u): hgy =aa=hr =az = 0}.

The following proposition will be proved in Section |4} The free energy per step in a single
column is given by the following variational formula.

Proposition 3.6 For all © € V) and u > te,

ask Ma o +a K ati s + ﬁ;oz +a 4z
Y(O,u;a, B) = sup AR( i)+ os [R5 ) + 75 I¢I(h7'), (3.48)
(h),(a)EL(O;u) u

with

ﬁ@’u = E(ZA,ZB; u) if@ S ?int,M, (3 49)

E@,u = Enint,k,x(lk;u) Zf@ € Vnint,k:,x,My ke {Aa B} and x € {17 2}'

The importance of Proposition lies in the fact that it expresses the free energy in a

single column in terms of the path entropy in a single column K and the free energy along a
single linear interface ¢z, which were defined in Sections and are well understood.

3.5 Mesoscopic percolation frequencies

In Section [3.5.1] we associate with each path m € W a coarse-grained path that records the
mesoscopic displacement of 7 in each column. In Section [3.5.2] we define a set of proba-
bility laws providing the frequencies with which each type of column can be crossed by the
copolymer. This set will be used in Section [5|to state and prove the column-based variational
formula. Finally, in Section [3.5.3] we introduce a set of probability laws providing the fractions
of horizontal steps that the copolymer can make when travelling inside each solvent with a
given slope or along an AB interface. This latter subset appears in the slope-based variational
formula.
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3.5.1 Coarse-grained paths

For x € Ny X Z and n € N, let ¢;,, denote the center of the block Ay, (z) defined in (L.3)), i.e.,
Con = 2Ly + (3,3)Ln, (3.50)

and abbreviate

(No X Z)p, = {cgn: = € Ng x Z}. (3.51)

Let W be the set of coarse-grained paths on (Ng x Z),, that start at cg, are self-avoiding and
are allowed to jump up, down and to the right between neighboring sites of (Ny x Z),, i.e.,
the increments of II = (ﬁj)jeNo € W are (0,Ly),(0,—Ly) and (L,,0). (These paths are the
coarse-grained counterparts of the paths m introduced in (1.1]).) For I € NU {oo}, let 1//\71 be
the set of [-step coarse-grained paths.

Recall, for m € W, the definitions of N and (v;(7));j<n,—1 given below With 7
we associate a coarse-grained path e WN that descrlbes how T moves Wlth respect to
the blocks. The construction of II is done as follows: Iy = €(0,0) II moves vertically until it
reaches ¢(q ), moves one step to the right to c(y ,,), moves vertically until it reaches ¢y ),

moves one step to the right to ¢(,,), and so on. The vertical increment of II in the J-th

column is Aﬁj = (vj —vj—1)Ly, (see Figs. .

Figure 15: Example of a coarse-grained path.

To characterize a path m, we will often use the sequence of vertical increments of its
associated coarse-grained path II, modified in such a way that it does not depend on L,
anymore. To that end, with every m € W,, we associate II = (Hk) P ! such that Iy = 0 and,

. 1 _
Pick M € N and note that m € W, y if and only if |AIl;| < M for all j € {0,..., N — 1}.

3.5.2 Percolation frequencies along coarse-grained paths.

Given M € N, we denote by M;(Vys) the set of probability measures on Vjy;. Pick Q €
{A, BYNoxZ T € 7ZNo such that IIp = 0 and |AIL;| < M for all i > 0 and b = (b;)jen, €
Qo). Set Otraj = (E)jen, with

E] = (AHJJbJJbJ+1)7 J € N07 (353)
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let
X = {z e {1,211 (Q4, I + ), Zi, 2;) € Vur Vi € No}, (3.54)

and for x € Xy set
0; = (0, 1L + ), Al bj, b1, 35), 5 € No. (3.55)
With the help of (3.55)), we can define the empirical distribution

N-1
1 _
pN(QILb,2)(0) = = > lre,_e;, NEN, O€Vy. (3.56)

J=0

In Appendix we define in ((C.7)) a distance d that turns Vj; into a Polish space. Thus,
the weak convergence in M1 (V) is metrizable and Mj(V);) is Polish as well.

Definition 3.7 For Q € {A, BYYo*% qnd M € N, let

Ry n = {pn(Q,1L,b,2) with b= (bj)jen, € (Qu1)",
IT = (I1;) jeny, € {0} x Z: |ATL;| < M Vj € Ny, (3.57)
Tr = (:z:j)jeNO € {1,2}N0: (Q(], Hj + -),AHj,bj,bj+1,a:j) € VM}

and let RSA} be the set of all accumulation points of those sequences (pn)nNen Satisfying pn €
RSy, for all N €N, i.e.,

RSy = m closure( U R%’N), (3.58)
N’eN N>N’

both of which are subsets of Mi(Vas).

Proposition 3.8 For every p € (0,1) and M € N there exists a closed set Ry © M1(Var)
such that
RSy = Ryr for P-a.e. Q. (3.59)

Proof. Note that, for every Q € {A, BYNoXZ  the set 7?,?4 does not change when finitely
many variables in ) are changed. Therefore RQM is measurable with respect to the tail o-
algebra of 2. Since () is an i.i.d. random field, the claim follows from Kolmogorov’s zero-one
law. Because of the constraint on the vertical displacement, R, s does not coincide with

Mi(Vu). O

Each probability measure p € R, » is associated with a strategy of displacement of the
copolymer on the mesoscopic scale. As mentioned above, the growth rate of the square blocks
in ensures that no entropy is carried by the mesoscopic displacement, and this justifies
the optimization over R, ps in the column-based variational formula.
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3.5.3 Fractions of horizontal steps per slope

In this section, we introduce ﬁp, M as the counterpart of R, ys for the slope-based variational
formula. To that aim, we define

€ ={(hao hBo hze)ecy,, € (0,1])Y™: hae+hpe+hre=1V6, (3.60)
© — hy e Borel Vk € {A, B, 7T},
hk7@ > 0 if lk7@ >0VEke {A,B},
hro =1 if © € Vying k1,05
hzo + hio =1 if © € Vaint koM }-

With each p € Ry and h € € associate G, € My (Ry UR; U{Z}), defined by

Gppaldl) = / hao 1{};‘4—2 e dz}p(d@), (3.61)

Vi

Gop,p(dl) = /v hp.e 1{;;;—?) e dz} (d©),
M

Gp,h,I = /_ hI,@ P(d®)>
Vi

where l;, o /hi,0 = 0 by convention if hy e = 0 for © € V), and k € {A, B}. The set Ry in

(1.14) is defined as

Rpar = Closure {p e My(Ry UR, U{T}): 3p R h€E: j= Gp,h}, (3.62)
and as the M-restriction is relaxed the set R, in (1.14) is defined as
7?,;,, = UMZlﬁ@M. (3.63)

For p € Ry, let pa, pp and pz denote the restriction of p to Ry, Ry and {Z}, respectively, as
in (1.15)). The measures pa(dl), pp(dl) represent the fraction of horizontal steps made by the
copolymer when it moves at slope [ in solvent A, respectively, B. The number p7 represents
the fraction of horizontal steps made by the copolymer when it moves along the A B-interface.

3.6 Positivity of the free energy

It is easy to prove that for all p € (0,1), M € N and («, ) € CONE the two variational
formulas (that is the slope-based variational formula stated in but with the supremum
taken over R,y instead of R, and the column-based variational formula stated in with
the supremum taken over R, ) instead of R,) are strictly positive, i.e.,

f(a, B; M, p) > 0. (3.64)

To prove that the variational formula in ((1.14) is strictly positive, we define ppor €
Ml(R+ U R+ U {I}) as

Phor = P204,0(dl) + (1 — p)?0p,0(dl) + 2p(1 — p)dz. (3.65)

When moving along the z-axis, the pairs of blocks appearing above and below the x-axis have
density p? for type AA, density (1 — p)? for type BB, and density 2p(1 — p) for types AB and
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BA. Consequently, pnor belongs to ﬁp and (1.14) implies that, for any choice of vq,vp > 1,
the variational formula in ((1.14) is at least

[0}

[p? + 2p(1 — p)|va k(va,0) + (1 — p)?vp [R(vs,0) + B%]
[p* +2p(1 = p)lva+ (1 —p)*vs '

(3.66)

Thus, it suffices to pick vp = 1, to recall that lim, . uk(u,0) = co (Lemma iv)), and to
choose v4 large enough so that (3.66)) becomes strictly positive.

To prove that the variational formula in (5.2) is strictly positive, we can argue similarly,
taking both sequences (II;);en, and (b;)ien, constant and equal to 0.

4 Proof of Propositions [3.53.6

In this section we prove Propositions and [3.6] which were stated in Sections [3.4.1] and
and contain the precise definition of the key ingredients of the variational formula in
Theorem [5.1} In Section [5] we will use these propositions to prove Theorem [5.1]

In Section [.1] we associate with each trajectory 7 in a column a sequence recording the
indices of the AB-interfaces successively visited by w. The latter allows us to state a key
proposition, Proposition below, from which Propositions [3.5] and are straightforward
consequences. In Section we give an outline of the proof of Proposition in Sec-
tions |4.2.1 we provide the details.

4.1 Column crossing characteristic
4.1.1 The order of the visits to the interfaces

Pick (M, m) € EIGH. To prove Propositions and instead of considering (0©,u) € V3",
,m

we will restrict to (©,u) € V;"},. Our proof can be easily extended to (©,u) € V2™, .

Pick (©,u) € V."},, recall (3.15) and set Jo,, = {Né) w ,Ng o) With

Ngu:max{izl:nigu} and Ngu:() it ng>uwu. (4.1)

./\/'éu:min{ig& Ini| <wu} and ./\/'éuzl if  |no| > wu.

Next pick L € N so that (©,u) € Vi, |, and recall that for j € Jg, the j-th interface of the
©-column is Z; = {0,..., L} x {n;L}. Note also that 7 € We , 1 makes uL steps inside the
column and therefore can not reach the AB-interfaces labelled outside {Né’u, . J\fg,u}.

First, we associate with each trajectory m € We ,, 1 the sequence J(m) that records the
indices of the interfaces that are successively visited by 7. Next, we pick 7 € Weg .1, and
define 7, J; as

7 =inf{i e N: 3j € Jou: m € L}, T €Ly, (4.2)

so that J; = 0 (respectively, J; = 1) if the first interface reached by 7 is Zy (respectively, Z;).
For i € N\ {1}, we define 7, J; as

Ti:inf{t>7'l;11 dj Ejem\{Jl;l},Tri EIj}, Tr; EIJZ., (4.3)
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so that the increments of J(m) are restricted to —1 or 1. The length of J(m) is denoted by
m(m) and corresponds to the number of jumps made by 7 between neighboring interfaces

before time uL, i.e., J(7) = (Ji)in;(f) with
m(m) = max{i € N: 7; <ulL}. (4.4)

Note that (©,u) € V"), necessarily implies kg < m(m) < u < m. Set

S ={j=0i)i-, € VAR J1 €{0,1}, jis1 —ji€{-1,1} V1<i<r—1}, reN, (4.5)
and, for © € V, r € {1,...,m} and j € S,, define

= 1g5,=13(n1 — bo) + 1g5,=03 (bo — n0),
li=|nj, —n;,_,|forie{2,...,r},
lpy1 = 1{jr=k@+1}(nk@+1 — AIl — bl) + 1{jT:k@}(AH + b1 — nkg), (46)
so that (I;)ie(1,... r+1} depends on © and j. Set

Agj={ie{l,...,r+1}: AbetweenZ;, , andZ;}, (4.7)
Be,;={iec{l,...,r+1}: B betweenZ;, , and Z;},

and set lo j = (la,0,5,lB,0,) With
14,05 = Licao,lis 1B = Xiepe,li- (4.8)

For L € N and (©,u) € V;’J?L’M, we denote by Sg 1 the set {J(7), ™ € We . }. It is not
difficult to see that a sequence j € S, belongs to Sg,, if and only if it satisfies the two
following conditions. First, j, € {ke, ke + 1}, since j, is the index of the interface last visited
before the ©-column is exited. Second, u > 1+ 140, + (B e, because the number of steps
taken by a trajectory m € We ,, 1, satisfying J(7) = j must be large enough to ensures that all
interfaces Z;,, s € {1,...,r}, can be visited by 7 before time uL. Consequently, Se ., 1 does
not depend on L and can be written as Sg , = UL, Se 4., Where

Sour = {j €S8 : 7 €{koko+1},u>1+ lao,;+ ZB,@J}. (4.9)

Thus, we partition We ,, 1, according to the value taken by J(7), i.e.,

W&u,L:U U We u,L,js (4.10)

r=1 jGS@7u7T

where We ., 1.,; contains those trajectories m € We 4 1, for which J(7) = j.
Next, for j € Sg 4, we define (recall (3.33))

1
Vi(©,u,j) =~ log Z1(8,u,5),  YrL(O,u,j) =E[¥1(0,u,j)], (4.11)

with o
Z8©u )= Y. eMuinl® (4.12)
WEW@,U,LJ'

*, M

For each L € N satisfying (0©,u) € V, | ,; and each j € Sg,, the quantity I4 e ;L (respec-
tively, Ipe ;L) corresponds to the minimal vertical distance a trajectory m € We 1. ; has to
cross in solvent A (respectively, B).
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4.1.2 Key proposition

For simplicity we give the proof for the case (0, u) € V;1 . The extension to (©,u) € V"
is straightforward.

Recalling (3.48) and (4.8)), we define the free energy associated with ©,u, j as

@ZJ(@,%J) = 2l)int(ua l@,j) (413)

u l 1 ~ (U l ; —« ’lLI

_ s uA H(ﬁ, Ah’(j”) +upg [m(ﬁ, B,;i’]) + ’BT] +ur ¢(37)
(h),(w)eL(le,j; u) u

Propositionbelow states that im0 ¥1,(0, u, j) = (O, u, j) uniformly in (0, u) € Vi,
and j € Sgy-

Proposition 4.1 For every M, m € N such that m > M + 2 and every € > 0 there exists an
L. € N such that

[0L(0,u,5) —¢(0,u,j)| <e V(O,u) €Vl 1y 5 ESow L> Le. (4.14)

m

Proof of Propositions and subject to Proposition Pick e > 0, L € N and
(©,u) € Vi’:l’tf'LM. Recall and note that [4(©)L and [g(©)L are the minimal vertical
distances the trajectories of We 4,1 have to cross in blocks of type A, respectively, B. For
simplicity, in what follows the ©-dependence of {4 and I will be suppressed. In other words,

l4 and Ip are the two coordinates of lg ¢ (recall (4.8)) with f = (1,2,...,|ke|) when AIl >0
and f = (0,-1,...,—|ke|+ 1) when AIIl < 0, so (3.48) and (4.13) imply

wmt(u, lA,lB) = ¢(@,u, f) (4.15)

Hence Propositions andwill be proven once we show that limyz_, o ¥ (0, u) = ¥(0,u, f)

uniformly in (0, u) € Vf;l’tng - Moreover, a look at (4.13]), (4.15)) and ({3.48)) allows us to assert
that for every j € Sg, we have ¥(0,u,j) < ¥(0,u, f). The latter is a consequence of the

fact that [ — R (u,l) decreases on [0,u — 1] (see Lemma ii) in Appendix |[A]) and that

ZA = lA7@7f = min{lA@,j: j S S@}u},
Ilp=Ilpe,;= min{lB,@,j: JE€ S@,U}' (4.16)

By applying Proposition we have, for L > L.,

T/JL(@,UJ) S ’QZ)(@,’U,, f) + € V(@,u) € V;{t?z7Ma vj € S@,’Un
YL(©,u, f) > (O, u, f) —  ¥(O,u) € Vi - (4.17)

The second inequality in (4.17)) allows us to write, for L > L.,
w(gvua f) —e< ¢L(@,U, f) < ¢L(@7u) V(@,u) € Vit{tr,)z,M' (418)

To obtain the upper bound we introduce

Ape={w: WEO,u,5) —vrOuj) e V(O,u) €V}, Vi € Soufs  (419)
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so that

Yir(0,u) SE[lag vE(0,u)] +E[la, . ¢7(6,u)] (4.20)
< Cu(@) P(AG o) + B[ 14, 10g T e, , e 0n @),

where we use (3.37)) to bound the first term in the right-hand side, and the definition of Ay, .
to bound the second term. Next, with the help of the first inequality in (4.17)) we can rewrite
(4.20) for L > L. and (©,u) € V" ,, in the form

YL(0,u) < Cur(@) P(AS L) + 7 log | Uy Spf 4+ 0(O, u, f) + 2e. (4.21)

At this stage we want to prove that limy .o P( CLE) = 0. To that end, we use the concen-
tration of measure property in in Appendix @ with | = uL, I' = We 4,1, 1 = eul,
& = —al{w; = A} + fl{w; = B} for all i € N and T'(z,y) = I{X(Lg:y) = B}. We then obtain
that there exist C1,Cy > 0 such that, for all L € N, (©,u) € V{;’{Z’M and j € Sg 4,

P(|9%(0,u,5) — ¥r(0,u,j)| > ) < Cye 2" ul, (4.22)

The latter inequality, combined with the fact that \V;’t"z | grows polynomialy in L, allows
us to assert that limy oo P(A7 ) = 0. Next, we note that | U2 S, < oo, so that for L. large
enough we obtain from (4.21)) that, for L > L.,

L(O.u) SHO.u f) 43 V(O.u) € Vi (4.23)

Now (4.18) and (4.23]) are sufficient to complete the proof of Propositions |3.5 in the case

(©,u) € V.. . As mentioned earlier, the proof for the case (©,u) € V2", - is entirely similar.

O
4.2 Structure of the proof of Proposition 4.1
Intermediate column free energies. Let
G ={(L,0,u,7): (©,u) € V" 1y J € Soul (4.24)

and define the following order relation.

Definition 4.2 For g,g: Gj; — R, write g < g when for every € > 0 there exists an L. € N
such that
9(L,0,u,7) <g(L,0,u,j)+¢ V(L,O,u,j) e Gy: L> Le. (4.25)

Recall (4.11) and (4.13)), set

wl(Lagauvj) :d}L(@?u’j)a ¢4(L,@,U,j) :7/)(@7%]')’ (426)

and note that the proof of Proposition will be complete once we show that 11 < ¢4 and
1y < 1. In what follows, we will focus on ¥; < 4. Each step of the proof can be adapted
to obtain 14 < 11 without additional difficulty.

In the proof we need to define two intermediate free energies o and 3, in addition to
11 and 4 above. Our proof is divided into 3 steps, organized in Sections and
consists of showing that ¥ < 2 < Y3 < 4.
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Additional notation. Before stating Step 1, we need some further notation. First, we
partition We ,, 1 ; according to the total number of steps and the number of horizontal steps
made by a trajectory along and in between AB-interfaces. To that end, we assume that
Jj € Sou, with 7 € {1,...,m}, we recall and we let

Dorj = {(diti)iT}: dieNand t; € di + ;L +2Ng V1 <i <r+1},
DI = {(df, t5)i_y: df e Nand tf € df + 2Ny V1 <i <r}, (4.27)

107

where d;,t; denote the number of horizontal steps and the total number of steps made by
the trajectory between the (i — 1)-th and i-th interfaces, and d7,t denote the number of

17
horizontal steps and the total number of steps made by the trajectory along the i-th interface.

For (d,t) € Do L j, (d*,tF) € DX and 1 <i < r, we set Ty = 0 and
i i1
Vi=> ti+ >t =1,
j=1 j=1
i i
Ti=> ti+Y th, i=1...,m (4.28)
Jj=1 Jj=1

so that V;, respectively, T; indicates the number of steps made by the trajectory when reaching,
respectively, leaving the i-th interface.

Next, we let #: RY — RN be the left-shift acting on infinite sequences of real numbers
and, for v € N and w € {4, B}, we put

u

HY(B) =) [B1l{w—py — @ l{u—ay)- (4.29)
i=1
Finally, we recall that
(L, 0,u j) Eflog Z¥(L, O, u, j)], (4.30)

where the partition function defined in (3.34]) has been renamed Z; and can be written in the
form

Z?(L7®7ua]) = Z Z Al Bl Cl, (431)
(dt)€Deo,L,; (dZ,tT)eDL
where (recall (4.7]) and (3.5))
_ t; Iid df i t; Nd j z' ) T;— l(w)( )
Ay= ] e H e : (4.32)

i€Ae j i€Bo i

+Z
B1:H6 i diI),

Ci =

{Zr“d YT d L} {srtl ey F=uL}’

It is important to note that a simplification has been made in the term A; in . Indeed,
this term is not &g, (-, ) defined in , since the latter does not take into account the vertical
restrictions on the path when it moves from one interface to the next. However, the fact that
two neighboring AB-interfaces are necessarily separated by a distance at least L allows us
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to apply Lemma in Appendix which ensures that these vertical restrictions can be
removed at the cost of a negligible error.

To show that ¥y < 1y < 13 < 14, we fix (M, m) € EIGH and £ > 0, and we show that
there exists an L. € Ns such that ¢ (L, 0, u, ) < ¥p11(L,0,u,j)+¢ for all (L,0,u,j) € G}
and L > L.. The latter will complete the proof of Proposition

4.2.1 Step 1

In this step, we remove the w-dependence from Z{(L, 0, u,j). To that aim, we put

1
¢2(La@7u7j) = EIOgZ2(L7@7u>j) (433>
with
ZQ(L, @, u,]) = Z Z AQ B2 CQ, (4.34)
(d,t)G'D@’L,j (dI,tI)G'Dg
where
. t; L L ~ ty LL -«
A2 — H eti Hdi (CTZ’ d; ) H eti fd; (CTJ d; ) e%tij (435)
icAe,j i€Bo,;

! tz¢z<é)
BzZHel 4 \d;
i=1
Cy = C].

)

Next, for n € N we define

Ag,n:{EIOSt,SSn: t>en,

H)(B) - 5524 > et}
B., = {30 <t,dys<n:ted+2No, t>en, |¢f (L) = ga(t)| > s}. (4.36)

By applying Cramér’s theorem for i.i.d. random variables (see e.g. den Hollander [4], Chapter
1), we obtain that there exist Cj(g), Ca(e) > 0 such that

P(|H"/(B) — 552 > et) < Ci(e) e @, t,seN. (4.37)

By using the concentration of measure property in (D.3)) in Appendix@with l=t,T =W,
T(xz,y) = 1{(z,y) <0}, n =et and § = —al{w; = A} + f1{w; = B} for all i € N, we find
that there exist C,Cy > 0 such that

P65 () = ga(t)| > e]) < Cre @, td,s €N, t €d+ 2N, (4.38)
With the help of (3.37)) and (4.30) we may write, for (L,©,u,j) € G}7,
P1(L,0,u,5) < Cut(@) P(Acjnr, UBemr) + i E [Leac, e,y log ZY'(L,©,u,5)]. (4.39)

With the help of (4.37)) and (4.38)), we get that P(A. ,,1) = 0 and P(B. ) — 0 as L — oo.
Moreover, from ((4.31)-(4.36)) it follows that, for (L, 0, u, j) € Gij and w € AZ |/ N BE 1,

le’J(L>®au7J) < Z2(L7®7u7j) eSUL' (440)

The latter completes the proof of 11 < 9.
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4.2.2 Step 2

In this step, we concatenate the pieces of trajectories that travel in A-blocks, respectively,
B-blocks, respectively, along the AB-interfaces and replace the finite-size entropies and free
energies by their infinite-size counterparts. Recall the definition of [4 ¢ ; and Ipe ; in
and define, for (L, ©,u,j) € G}}, the sets

Jorj= {(aA,hA,aB,hB) eN*: ay €lgo L +ha+2Ng, ap € lpo L+ hp + 2N0},

(4.41)
JT = {(af,hf) eN?: of e hI+2N0},
and put ¥3(L,0,u,j) = i log Z3(L, 0, u,j) with
Z3(L,0,u,j) = Z Z As B Cs, (4.42)
(a,h)eJe,L,j (aT,hT)eTT
where
p = 7 ) (52 20) 250,
T
B3 = eCLIQS(%)?
Cs = 1{aA+aB+aI:uL} 1{hA+hB+hI:L}' (443)

In order to establish a link between 1, and 13 we define, for (a, h) € Jo 1, ; and (a*,nt) € J7,

Plany = {(t.d) € Do,r,;: Dicdo, (i di) = (an, ha), D iep, (tidi) = (aB, hB)},
Quz pry = {(t*,d") € DF: Y (tF,d¥) = (aF, h7)}. (4.44)

177
Then we can rewrite Z5 as

Zy(L,0,u,j) = Y Yoo ) > As By, (4.45)

(a,h)eje;,[‘,j (aI’hI)ejI (tvd)ep(a,h) (tzvdI)EQQlI’hI)
To prove that 19 < 13, we need the following lemma.

Lemma 4.3 For every n > 0 there exists an L, € N such that, for every (L,©,u, j) E Gm
with L > L, and every (d,t) € Do, ; and (dt, tI) € DI satisfying S+ d; + Z
and ZT'Ht + 3t =uL,

le

ti (%, ’L) nul < tifa (5, 5F) <tiR(%, SE) +qul i=1,...,r+1, (4.46)
o) —mul < 76,2 () < tFo(%) +nul i=1,...r
7 d ZI = dZI n ) )

Proof. By using Lemmas and in Appendix we have that there exists a ET, eN
such that, for L > L, (u,1) G’HL anduel-i— -,

Rp(u,l) — R(w, D) <n,  |oL (k) — ¢ (w)| < n. (4.47)
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Moreover, Lemmas [3.1] [B.1J(ii-iii), [C.1J(ii) and ensure that there exists a v, > 1 such that,
forLZl(ul)G?—lLW1thu>vnand,u€1+ with u > vy,

0<Fr(u,l)<m,  0<¢r(p) <n. (4.48)

Note that the two inequalities in remain valid when L = oo. Next, we set r, =
n/(2v,Cy¢) and L, = L, /r,, and we cons1der L > L,. Because of the left-hand side of (4.47),
the two inequalities in the first line of (| - ) hold when d; > ryL > L We deal with the
case d; < r,L by considering first the case t; < nulL/2Cy¢, which is easy because &g, and &
are uniformly bounded by Cy¢ (see (3-37)). The case t; > nuL/2Cy¢ gives t;/d; > uvy > vy,
which by the left-hand side of (| completes the proof of the first line in . The same
observations applied to tZ, d* combined with the right-hand side of and provide

177

the two inequalities in the second line in (4.46)). O

To prove that v9 < 13, we apply Lemma with n = ¢/(2m + 1) and we use (4.35)) to
obtain, for L > L. om+1), (d;t) € Do 1,; and (d*,t1) € DI,

ti i

A2<He (. 2m+1Hekiz

i€Ae i ’LEB@]

L B—a L
) i3 +2}6#+1 (4.49)

Tz tiz " eulL
32§H6i¢ di ) amtl
=1

Next, we pick (a,h) € Jo,r,;, (af,ht) € T*, (t,d) € Py and (t£,d%) € Q(az p1), and we
use the concavity of (a,b) + ak(a,b) and p — ¢*(u) (see Lemma in Appendix |A| and
Lemma [C.1]in Appendix [C) to rewrite ({.49) as

l iL l iL — ulL

aa tAe.j ap 'B,©.,j 670‘ e(r+1)u e(r+ul

A < eaA”(hA ha )+a3”(h13 he )+ 2 BT T omdT = = Aze 2m+l | (4.50)
o T at erull erull

By < ¢” ¢ ( z)+2m+1 = Bz e2m+l,

Moreover, r, which is the number of AB interfaces crossed by the trajectories in We 4, j 1, is

at most m (see (4.10)), so that (4.50)) allows us to rewrite (4.45)) as

Z5(L,0,u,j) < eul Z Z Cs |7D(a,h)| |Q(az7hz)‘ As Bs. (4.51)
(a,h)eJe,L,j (aT,hT)eTT

Finally, it turns out that [P, )| < (uL)® and 1Q(az 11| < (uL)®". Therefore, since r < m,
(4.42) and (4.51) allow us to write, for (L, O, u, j) € Gj} and L > L, ja;41,

Z(L,©,u, ) < (mL)'*" Z3(L, ©, u, j). (4.52)

The latter is sufficient to conclude that ¥y < 3.

4.2.3 Step 3

For every (L,©,u,j) € G} we have, by the definition of L(l4,0,,!B6,;u) in -, that
(a,h) € Jo,1,; and (a®,h?) € J7 satistying as + ap + a = uL and hy + hB + hl = L also
satisfy

(%% 5, (B 22 1) ) € Lllao i lp05iw)- (4.53)
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Hence, (4.53) and the definition of 7 in (3.48]) ensure that, for this choice of (a,h) and
(aT,n?),
A3B3 < ettvz(wlaeslse.), (4.54)

Because of Cs3, the summation in (4.42)) is restricted to those (a, k) € Jo 1; and (a,ht) € J*
for which a4, ap,a’ < uL and ha, hg, h* < L. Hence, the summation is restricted to a set of
cardinality at most (uL)3L3. Consequently, for all (L, 0, u,j) € GI* we have

Z3(L,0,u,j) = > > AyBiCy < (mL)PLP e Pvriniaesises)  (455)
(a,h)eTe,L,j (aT,hT)eTT

The latter implies that 13 < 14 since ¢4 = 9z(u, laej, e, ) by definition (recall (4.13)
and (L28)).

5 Column-based variational formula

To derive the slope-based variational formula that is the cornerstone of our analysis, we state
and prove in this section an auxiliary variational formula for the quenched free energy per step
that involves the fraction of the time spent by the copolymer in each type of block columns and
the free energy per step of the copolymer in a given block column. This auxiliary variational
formula will be used in Section [f] in combination with Proposition [3.6] to complete the proof
of the slope-based variational formula.

With each © € V), we associate a quantity ug € [te,c0) indicating how many steps on
scale Ly, the copolymer makes in columns of type ©, where tg is the minimal number of steps
required to cross a column of type ©. These numbers are gathered into the set

v = {(“@)GGVM € RVM, ug >te VO € Vi, © — up continuous}, (5.1)

where the continuity in © is with respect to the distance dj; defined in in Appendix
We recall Proposition which identifies the free energy per step (0, ug; a, 3) associated
with the copolymer when crossing a column of type © in ug steps, and we recall that the set
Rp, v introduced in Sectionm gathers the frequencies with which different types of columns
can be visited by the copolymer.

Theorem 5.1 (column-based variational formula) For every («,3) € CONE, and p € (0,1)
the free energy in (1.9)) exists for P-a.e. (w, Q) and in L*(P), and is given by

N(p,u
f(a, B;p) = sup  sup sup D(p)’ (5:2)
M=1 p€Rp M (vo)ocy,, €By,, (p;u)
where
N(p,u) :/ ue ¥(0,ue; o, ) p(doO),
Vm
D(p,u) = / ue p(dO), (53)
Vu

with the convention that N(p,u)/D(p,u) = —oco0 when D(p,u) = co.
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The present section is technically involved because it goes through a sequence of approxi-
mation steps in which the self-averaging of the free energy with respect to w and €2 in the limit
as n — oo is proven, and the various ingredients of the variational formula in Theorem
that were constructed in Section 3| are put together.

In Section [5.1] we introduce additional notation and state Propositions . 5.3 5.4 and
[b.5] from which Theorem (. is a straightforward consequence. Proposition [5.2] which deals
with (M, m) € EIGH, is proven in Section |5.2] E 2| and the details of the proof are worked out
in Sections [5.2.1 organized into 5 Steps that link intermediate free energies. We pass
to the limit m — oo with Propositions [5.3] and [5.4] which are proven in Section [5.3] and [5.4}
respectively. Finally, we pass to the hm1t M — oo with Proposition [5.5| which is proven in
Section [£.5

5.1 Proof of Theorem 5.1
5.1.1 Additional notation

Pick (M, m) € EIGH and recall that  and w are independent, ie., P = P, x Pg. For
Qc{A BYWoxZ ¢ {A, BN, n € Nand (a, 3) € CONE, define

Q ) 1 wQ HS ()
fo (M, m;o, B) = Llog 2% (M,m) with 2 (M,m)= Y e (5.4)

m
7r€Wn7M,

where W), contains those paths in W .M that, in each column, make at most mL, steps.
We also restrlct the set R,y in ) to those limiting empirical measures whose support is
included in Vy; M 1-e., those measures chargmg the types of column that can be crossed in less
than mL, steps only. To that aim we recall (3.57) and define, for Q € {4, B}"o*%Z and N € N,

RMN = {pn (1L, b, ) with b = (b;)jen, € (Qo1) ™,
I = (ILj)jen, € {0} x Z%: |AIL| < M Vj € Ny, (5.5)
v = (z5)jen, € {1,210 (U, 1L + -), ALy, by, b1, ;) € Vi)

which is a subset of RSAZ/[ n and allows us to define
RQ,m o Qm
A = closure( Nyven Un>n Ryp v ) (5.6)

which, for P-a.e. € is equal to Ry & Rpm
At this stage, we further define,

f(M,m;a,B) = sup sup V(p,u), (5.7)
PER M (ue)ocym €Bym
where
p7 u) = 9y *
fv;} ue p(dO)
where (recall (3.28))
BVE = {(UQ)GGVE € RVM . O ug € CO(V]\m/bR), to <upg <mVO e V}Z}, (5.9)
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and where Vﬂ is endowed with the distance dj; defined in (C.7)) in Appendix

Let WZWA} C WJLM be the subset consisting of those paths whose endpoint lies at the
boundary between two columns of blocks, i.e., satisfies 7,1 € NL,,. Recall (5.4)), and define
Z:;ET?(M) and fl*”;’;’Q(M,m;a,B) as the counterparts of Z::?n(M, m) and ff;lQ(M,m;a,B)
when W, is replaced by W;"]\}[ Then there exists a constant ¢ > 0, depending on « and
only, such that

’Q —CLn ’ 7Q ,Q
Z{n s, (M m)e Ln < Zyw (Mym) < Z350° 1 (M, m),

N Nox7 (5.10)
neN, we{A B}, Qe {A B} "%

The left-hand side of the latter inequality is obtained by changing the last L, steps of each
trajectory in W, to make sure that the endpoint falls in L,N. The energetic and entropic
cost of this change are obviously O(L,). By assumption, lim,_,~ L,/n = 0, which together
with implies that the limits of ff;LQ(M,m; a, ) and fi’:’Q(M,m; a,B) as n — oo are
the same. In the sequel we will therefore restrict the summation in the partition function to
W:;K} and drop the * from the notations.

Finally, let
(M, m; o, B) = B [f15) (M, m; o, B)],

. (5.11)
fin(M,m; a, B) = By o[ f15, (M, m; a, B)],
and recall and (3.11)) to set
Fe B) = Bo[fi%(a, B)), [ (M5, 8) = B[ (M a, B)]. (5.12)

5.1.2 Key Propositions

Theorem is a consequence of Propositions and stated below and proven in
Sections [5.3.1 Section [5.4] and Sections [5.5.1 respectively.

Proposition that is stated first is required to prove Proposition [5.3| and will be proven
in Sections £.2.1H5. 2.5l

Proposition 5.2 For all (M, m) € EIGH,

TLILII(}O ffn(M, mya, ) = f(M,m;a,B)  for P —a.e. Q. (5.13)

Proposition 5.3 For all M € N,

lim f,?(M;a,,B) = sup f(M,m;a,B) forP —a.e. S (5.14)

Proposition 5.4 For all M € N,

sup f(M,m;a, ) = sup sup V(p,u), (5.15)

m>M+2 PERH M (u@)GGV]M EBV]M

where, in the righthand side of (5.15]), we recognize the variational formula of Theorem
and with By; =~ defined in (3.18).
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Proposition 5.5
lim sup fg(a,ﬁ) < sup lim fg(M, a,B)  forP—a.e. Q. (5.16)

n—00 M>171—
Proof of Theorem subject to Propositions and With Propositions
and [5.5] in hand, the proof of Theorem [5.1] will be complete once we show that
lim |f<%(a, B) — fHa, B)| =0 for P —a.e. (w,Q). (5.17)
n—oo
To that aim, we note that for all n € N the Q-dependence of f, ’Q(a,ﬁ) is restricted to
{Q: x € Gp} with G, = {0,..., 2=} x{—=7=,..., 7=} Thus, forn € Nand £ > 0 we set

Acn = {17 B) = fil (e, B)] > )}, (5.18)
and by independence of w and 2 we can write
Po,0(Aen)= 2rera,pyon Puo(den N {Qq, = T})
= Yreanyon Poll i (@.8) = fY(@.B)| > ) Pa{Q6, = T}).  (5.19)

At this stage, for each n € N we can apply the concentration inequality (D.3]) in Appendix @
with ' =W, l =n, n = en,

fi = —« 1{0.}7, = A} + /B 1{wi = B}, 1 €N, (520)

and with T'(z,y) indicating in which block step (x,y) lies in. Therefore, there exist C7,Cy > 0
such that for all n € N and all T € {A, B}“" we have

P/ (M msa, ) = £ (M m3a, B)] > e) < Crem ™, (5.21)
which, together with (5.19) yields P, o(Ac ) < Cre=C22"n for all n € N. By using the Borel-
Cantelli Lemma, we obtain ([5.17]). O

5.2 Proof of Proposition

Pick (M, m) € EIGH and («, ) € CONE. In Steps 1-2 in Sections we introduce an
intermediate free energy f:?n(M ,m;a, ) and show that

lim (M, m;a, B) — f§,(M,m;a, 8) =0 VQ e {A, B2 (5.22)
Next, in Steps 3—4 in Sections we show that
lim sup fé?n(M,m; a,f) = f(M,m;a, ) for P — a.e. Q, (5.23)
n—oo

while in Step 5 in Section [5.2.5| we prove that
lin_1>inf f;?n(M,m; a, ) = limsup f:?n(M,m; a, B) for P — a.e. Q. (5.24)
n—o0 ? ’

n—oo
Combing (/5.22H5.24) we get
liminf £ (M, m; o, 8) = limsup f2 (M, m; o, ) = f(M,m;a, B) for P —a.e. Q, (5.25)
n—oo - n—o00 ’

which completes the proof of Proposition [5.2

In the proof we need the following order relation.
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Definition 5.6 For g,g: N3 x CONE — R, write g < § if for all (M, m) € EIGH, (a,f3) €
CONE and € > 0 there exists an n. € N such that

g(n, M,m;a, B) < g(n, M,m;a,B) + ¢ Vn > ne. (5.26)

The proof of will be complete once we show that f2 < f§! and 5! < fi for all
Q € {A, BYWox2 We will focus on flﬂ =< f§2, since the proof of the latter can be easily
adapted to obtain f§! < fi%. To prove f! < f§! we introduce another intermediate free energy
/5, and we show that f{* < f§! and f§! < f5%.

For L € N, let
DY = {E= (AL by, b1) € {—M,..., M} x {1,2,...,1}*}. (5.27)

For L, N € N, let

-----

and with each Oy € 75%4 N associate the sequence (Hi)fio defined by IIy = 0 and II; =
Z;;B All; for 1 <4 < N. Next, for Q € {4, B}NoXZ and O € 5%]\,, set

Xé‘{"jﬂ = {o e {1,2}0-N "1 (Q(, T + ), 5, 2) € VIF VO <i < N —1}, (5.29)

and, for x € X Q, set

0, = (Q(i,Hi + '), =i, xz) for i€ {0, o, N — 1} (5.30)
and
N—-1
ot = {u=(wicgo, vo1y € Lml wi € to, + 3 VOIS N-1, 3w =2},
=0
(5.31)
Note that Z/{g[mL is empty when N ¢ [mL’ L]

For m € W)™, we let N; be the number of columns crossed by m after n steps. We
denote by (ug(m ) ,un,—1(m)) the time spent by 7 in each column divided by L,, and we
set ug(m) = 0 and ﬂj(w) = {;E ug(m) for 1 < j < N,. With these notations, the partition
function in (5.4]) can be rewritten as

n/Ln

ztom- Y Y Y Y a em

N=n/mLn Gtrajeﬁg{%]\] :L"EXM m 50 GUgIt::J i”n
with (recall (3.34))
N ;L
guiln . =
A =1 7, “NQi, T+ ), =i, 2, u4). (5.33)

=0
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5.2.1 Step 1

In this step we average over the disorder w in each column. To that end, we set

(M m;, B) = & log Z3., 1, (M, m) (5.34)
with
n/Ly
Q
28, (Mm) = > > > ST A (5.35)
N=n/mln ©ua €D} v v€X5™ o uele " ",
where
N1 0% (W) /vy s N-1
Ay = H eE“[logZLn (Q(Z’Hi"")’ai’z““i)] = H eWiln¥r, (QI+),50,mi,u) (5.36)
=0 i=0

Note that the w-dependence has been removed from ng 1, (M,m).
To prove that f{* < f5!, we need to show that for all £ > 0 there exists an n. € N such
that, for n > n. and all €,

E. [log Zf’;LQLn(M, m)| <log Z§%, 1 (M, m) +en. (5.37)
To this end, we rewrite ZIWTZLQLH(M ,m) as

n/Ln

ZORUSIED SENED DENED SEND DINP 't S

N=n/mL AM M,m M,m,Lnp,
/mLn @a€DM TEXG o uEU T,

where we note that

N—-1 'EiLn w
é _ H pUiLn [win ( )(Q(@HiJr'),Emwi,ui)ﬂ/JLn(Q(i,Hz‘+')75¢7wi»ui)]. (5.39)
Az i=0

In order to average over w, we apply a concentration of measure inequality. Set

n/Ln
Ko = U U U U {I log Ay —log Aa| > en}, (5.40)
N=n/mLn @, €D} v 2€Xg™ o uelUa """,

and note that w € Kf implies that foLn(M ,m) < emZfon’ 1, (M,m). Consequently, we can
write

Q 0
E,[log 27 (M,m)] = E,[log 22} (M,m) lx,y] +Eu[log 2% (M,m) Lyce)]
< E,[log Zlb:)an (M, m) 1gc,y] + log ZQ(,Zn,Ln(M7 m) +en. (5.41)

We can now use the uniform bound in (3.37) to control the first term in the right-hand side
of (5.41)), to obtain

E.[log 2, (M,m)] <log Zs}, 1, (M,m) + en + Cug(er) n Po,(Kn). (5.42)

Therefore the proof of this step will be complete once we show that P, (/C,,) vanishes as n — oo.
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Lemma 5.7 There exist Cy,Co > 0 such that, for alle > 0, n € N, N € {mLLn,...,Lln},
~ M, Mm,Ln
Q€ {A, B}NoxZ, Otraj € D%“N, T e XGMZ,Q and u € Uy ™

@traj,az n’
P,(|log A1 —log Aa| > en) < Cye=C2en, (5.43)

1 . NM Mvm M m Ln
Proof. Pick Oy,j € DLmN, T € Xemj,g and u € Z/I@t e

¢ consisting of those paths of length n that first cross the (€2(0,-),Zo,x0) column such
that 7o = (0,1) and 7, 1, = (1,111 +b1,0) Ly, then cross the ((1,-),Z1,x1) column such that
Ty Lp+1 = (1+1/Ly, Iy +b10) Ly, and 7y, 1, = (2,112 + b1,1) Ly, and so on. We can apply the
concentration of measure inequality stated in to the set I' defined above, with | = n,
n=en,

and consider the subset I' of

§i = —al{w; = A} + Bl{w; = B}, i €N, (5
and with T'(z,y) indicating in which block step (z,y) lies in. After noting that E, (log A1) =
log Ao, we obtain that there exist Cy,Cs > 0 such that, for alln € N, N € {m’in,,%}
Q€ {A, BYNXZ Oy, € DY\ we X3 and u e USTEn

traj,Q etrajvx n’

5.44)
)

P(|log A1 —log A3| > en) < Cy e=C2e°m, (5.45)

It now suffices to remark that

H(N,@traj,x,u): Ne {2

an’..

DM M’ M7 7Ln
15} Oy € DI vy w € X Lu € U Y| (5.46)
grows subexponentially in n to obtain that f{l =< f2Q for all Q.

5.2.2 Step 2

In this step we replace the finite-size free energy v, by its limit ¢. To do so we introduce a
third intermediate free energy,

f?{?n(M>m;aaB) :E[% log Zi?,n,Ln(M7 m)]a (547)
where )
n/Ln
L, (Mym) = 3 > Z . A (5.48)
N=n/mln ©ua €D}, v 2€X5™ o uelo 0",
with
N-1
i=0
For all Q,
A N-1
A2 _ H cuiln [d)Ln(Q(i,Hi+')7Eia«Ti7ui)_w(9(ivni+')15i@i’ui)]7 (5.50)
Az g

and, for all ¢ € {0,..., N —1}, we have (Q(,IL; +-), =, mj, u;) € Vy", so that Proposition
can be applied.
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5.2.3 Step 3

In this step we want the variational formula ) to appear. Recall ( and define, for
n €N, (M,m) € EIGH, N € {-— .,L}etraJeDLNandxe;\f@

mLy’ " traJ,Q’
@j:(Q(j,Hj—l-'),Ej,lL‘j), jZO,...,N—l, (551)
and Ny
9]
petrajvx Z (@] 17@ ) )}7 (552)
and, for u € L{é\igfz,
N-1
HY(Oppaj, v, u) = uj P(0j,uj). (5.53)
7=0

In terms of these quantities we can rewrite ng?m r, (M,m) in (5.48) as

n/Ln

O Ln IT[Q © raj L,

28 . (Mm) = Y 3 3 3 (Otraj 1) (5.54)
N=n/mLn @y, €D} zexiim™ ' 0 u€Ug I,
raj’
For n € N, denote by

Q M M LTL

Nn , @tra_] " c 'D NQ’ l’ S X t Q u S u@t m 22 n? (555)
raj,n raj, n’ no

the indices in the summation set of (5.54]) that maximize H Q(@traj, x,u). For ease of notation
we put

Q —n\N$—1 Q N2—1 Q NS2—1
@traj,n = (:?)j:() y Ty = (x?)jzo y  Up = (U?)j:o ) (5.56)
and
M,m,Ly,
= [{(N, Otraj, 2, u): 78— < N < =, Opraj € DY v xe X@tra 0 UE @tr;ﬁm}\ (5.57)

Then we can estimate
1 1 N§2—1
ElongnyL (M, m) < —logcn—i—% Z L0, uf). (5.58)
=0

We next note that u — u)(0,u) is concave for all © € Vj; (see Lemma |C.4). Hence, after
setting

N -1 N —1
v =Y ler—eyuj, dg= Y lier-ey, O €V, (5.59)
we can estimate
N1
> Lior—ey uj ¥(07,uj) < v (O ,dg) for © eV :dy>1. (5.60)
=0
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Next, we recall (5.52) and we set p, = pgﬂ Loy 50 that p,1(0) = dy /NS for all © € Vy.

. traj,n’ n
Since {© € Vy;: d} > 1} is a finite subset of V};, we can easily extend © — v3/d from

n

— — Q_
{© € Vi df > 1} to Vy; as a continuous function. Moreover, Z;-V:”O ! u} = n/L, implies

that N¥? f?]{} 03 /d pn,1(dO) = n/L,, which, together with (5.58) and (5.60)) gives

ymue ¥(O,ue) pn(dO)
Llog Z??n,Ln(M’ m) < sup va +o(1), n — 0o, (5.61)

U‘EBV}G fV$ ue pn(d@)

where we use that lim,,_ o % log ¢, = 0. In what follows, we abbreviate the first term in the
right-hand side of the last display by [,,. We want to show that lim sup,, , . % log Z§n7 1, (M,m)

< f(M,m;a, ). To that end, we assume that %log Z:‘Sn,Ln(M7 m) converges to some t € R

and we prove that ¢t < f(M,m;«, ). Since (I, )pen is bounded and V]\n} is compact, it follows
from the definition of [,, that along an appropriate subsequence both [, — I, > t and
Pn = Poo € RZTM as n — oo. Hence, the proof will be complete once we show that

loo < sup V(poo,u), (5.62)
because the right-hand side in (5.62)) is bounded from above by f(M,m;a, ).
Recall (3.21) and, for © € V,; and y € R, define

to if O (u(©,u))(te) < v,
ug " (y) =4 m i O, (uip(0,u)(m) >y,
z  otherwise, with z such that 9, (uy(0,u))(2) >y > 9 (u(0,u))(z2),
(5.63)
where z is unique by strict concavity of u — u)(0,u) (see Lemma [C.2)).

Lemma 5.8 (i) For ally € R and (M, m) € EIGH, © — ugm(y) is continuous on (Vyy,dyr),

where dyy is defined in (C.7)) in Appendiz .
(ii) For all (M, m) € EIGH and © € V,;, y — ugl’m(y) is continuous on R.

Proof. The proof uses the strict concavity of u — u(0,u) (see Lemma |C.2)).

(i) The proof is by contradiction. Pick y € R, and pick a sequence (O, )nen in V,; such
that lim, o ©, = O € V). Suppose that ug[nm(y) does not tend to ugoom(y) as n — oo.

Then, by choosing an appropriate subsequence, we may assume that lim,,_ ué/[nm(y) =u] €

[to,,,m] with uy < ug/[mm(y) The case uj > ugoom(y) can be handled similarly.

Pick uy € (ul,ugmm(y)) For n large enough, we have ugnm(y) < up < ugoom(y) By the

definition of ug[nm(y) in (5.63) and the strict concavity of u — u)(0,,u) we have, for n large
enough,

M,m M,m
m ug . (Y)(On,ug " (y)) — ua)(On, uz)
O (uip(On, w)) (uy ™ () > —2= o . (5.64)
ug, (y) — u2
Let n — oo in (5.64]) and use the strict concavity once again, to get
lim inf 8, (uh(On, w)) (ug " (1)) > By (W1 (Oos, u))(ugy ™ (1)) (5.65)

n—oo
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If ugoom(y) € (te,,,m], then implies that the right-hand side of is not smaller
than y. Hence yields that 9, (u w(Gn,u))(ug’Lm(y)) > y for n large enough, which
implies that uA@/{Lm(y) = m by . However, the latter inequality contradicts the fact
that ug[nm(y) < ug < ug[oom(y) for n large enough. If ug/[mm(y) = to.,, then we note that

lim,, 0 te, = te., , which again contradicts that tg, < ug{’bm(y) <uy < ug;om(y) for n large
enough.

(ii) The proof is again by contradiction. Pick © € V};, and pick an infinite sequence (4 )nen
such that lim,, o0 ¥n = Yoo € R and such that uglm(yn) does not converge to ug’m (Yoo). Then,
by choosing an appropriate subsequence, we may assume that there exists a u; < ug ™" (Yoo)
such that lim,, oo ug’m(yn) = u1. The case u; > ug’m(yoo) can be treated similarly.

Pick ug,us € (u1, ué\)/[m(yoo)) such that ug < ug. Then, for n large enough, we have
te < ug[’m(yn) <ug < ug < ug’m(yoo) <m. (5.66)

Combining (5.63) and (5.66) with the strict concavity of u — u)(©,u) we get, for n large
enough,
Yn > O (up(©,u))(uz) > 9, (up(©,u))(uz) > Yoo, (5.67)

which contradicts lim,, o0 ¥n = Yoo- ]

We resume the line of proof. Recall that p,1, n € N, charges finitely many © < Vi
Therefore the continuity and the strict concavity of u +— u)(©,u) on [te, m}llfor all ©@ € Vy,
(see Lemma |C.4) imply that the supremum in (5.61)) is attained at some uy " € BWJ} that

satisfies up"™(0) = uy ™ (l,) for © € Vy;. Set ubl™(0) = uy ™ (ls) for © € V;; and note
that (I,)neny may be assumed to be monotone, say, non-decreasing. Then the concavity of
u — w)(0,u) for © € V,; implies that (u% ™) pen is a non-increasing sequence of functions
on V,;. Moreover, V;; is a compact set and, by Lemma (ii), limy, o0 un " (0) = ull™(©)
for © € Vﬂm/[ Therefore Dini’s theorem implies that lim,, oo un """ = u%’m uniformly on V]\n;

We estimate

b= [ () (0, ull " (6)) pnc(d®)
V]\/[

< [ i (©) (.17 (0)) — udt(0) 1(©. k(©) () (5.68)

Vir

L @) w(e.um(©) pulde) - [ u(©) (. ultm(0)) pulde)]
V]\J

The second term in the right-hand side of tends to zero as n — oo because, by Lemma
(i), O — udl™(©) is continuous on V}; and because p,, converges in law to pog as n — co.
The first term in the right-hand side of tends to zero as well, because (©,u) — u (0, u)
is uniformly continuous on V]T/}m (see Lemma and because we have proved above that
un™ converges to us™ uniformly on V. This proves (5-62), and so Step 3 is complete.

5.2.4 Step 4

In this step we prove that
lim sup fé?n(M,m;a,B) > f(M,m;a, ) for P—a.e. . (5.69)

n—oo
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Note that the proof will be complete once we show that

lim sup fg?n(M, m,a, B) > V(p,u) for p € Ry, u € Bym. (5.70)

n—o0

Pick Q € {A, B}NoxZ p ¢ RQE and u € Bym. By the definition of Rﬁﬁ, there exists a
strictly increasing subsequence (ng)ren € NN such that, for all k¥ € N, there exists an

ng ng
Nke{ } 5.71
mLy, Ly, ( )
a @fraj € 25]]{/[ N, and a zF e XeMkm such that pg = pek ok (see (b.52))) converges in law

traj ’

to p as k — 0o. Recall ([5.28] -, and note that

traJ

= (A5, b5, b)), 5 =0,..., N, —1, (5.72)

with AH;? e {-M,...,M} and b;‘-“' € (0,1]nN L& for j = 0,..., Ni. For ease of notation we
nk
define

Of = (O, T + ), Z).25)  with T = ZAH J=0 N1 (5T3)
and
Ni—1
Ve = Nk/ ue Pkl d@ Z u@k, (5.74)
oeV,}

where we recall that u = (ue)g ey was fixed at the beginning of the section.

Next, we recall that lim,,_,~ L,/n = 0 and that L,, is non-decreasing (see (1.5])). Thus,
L,, is constant on intervals. On those intervals, n/L, takes constant increments. The latter
implies that there exists an ny € N satisfying

0<w Lﬁ;k < Lﬁk and therefore 0 < vLz, —np < 1. (5.75)
Next, for j =0,..., Ny — 1 we pick bk € (0,1] N+ such that ]bk - bk] < 7, define
= k ak R IRV
=F = (AT 5 0E, ), OF = (QG, T + ), 26, 2t ), (5.76)
and pick
2N
s? € t@f? + I such that \sf - u@?] <2/Lz,. (5.77)
k
We use (5.74) to write
Ni—1 Ny—1
Ly, Y sh=1Lg, <vk + ) (sh - u@?)) = Ly, (I +1I1). (5.78)
=0 j=0

Next, we note that (5.75)) and (5.77) imply that |Lz, I — ng| < 1 and |Lg, [1| < 2N;. The
latter in turn implies that, by adding or subtracting at most 3 steps per colum, the quantities
3? for j =0,..., N — 1 can be chosen in such a way that Zjvko ! s;“ =ny/Lz,
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Next, set

—\N.L—1 k E\Np—1 M,m, Lz
( k) kT GDL Nk’ S :(Sj)j:k(] GZ/I@T xkkﬁk7 (579)

traj’

@k

traj —

and recall (5.48) to get f5!(ng, M) > Ry with

Qi ak k Nkl ( )
IOt SR m,
nk Z;Vkolsgc Rﬁe

Further set
. RE Jppuet(©,ue)p(dO)

R = 7 — )
F Rd]f3 fv;} Ue Pk (d@)

(5.81)

and note that limy_, R;C = V(p,u), since limy_,oc pr = p by assumption and © — ug is
continuous on V. We note that R;C can be rewritten in the form

, Np—1
, RFE j=0  Uek (6, “@?)
Ry=2% = - . (5.82)
de ijo Uk

Now recall that limy_,o, ng = co. Since Nj > ny/MLy,,, it follows that limy_,. N = oo

as well. Moreover, Ny < ny/Lz, with limy_,o, 1y = co. Therefore (5.7415.75) allow us to
conclude that RE =7y /Ly, = RE[L + o(1)].
Next, note that Hjs is compact, and that (0,u) — u(O,u) is continuous on Hjs and

therefore is uniformly continuous. Consequently, for all € > 0 there exists an > 0 such that,
for all (©,u), (0", u') € Hyy satisfying |© —O'| <nand |u—u'| <1,

luh(©,u) — u' (O, u)| < e. (5.83)

We recall (5.76)), which implies that dM(@k ;) < 2/Lnk for all j € {0,..., Ny —1}, we choose
k large enough to ensure that 2/L;, <, and we use , to obtain

Nj—1 Np—1
Ri, = > s w(@f;, J) = D uer ¥(Of, uer) + T =R +1, (5.84)
=0 i=0

with |T| < eNg. Since limy_,o R) = V(p,u) and ZN’Fl Ugh = Uk > g/ Lz, (see (5.75)), if
V(p,u) # 0, then ‘R | > Cst. ng/Lg,, whereas |T| < eNj, < eng/Ly, for k large enough.
Hence T' = O(R/k) and

nu

RE, RE[1+0(1)]
RE,  RE[+o(1)]

— V(p,u), k — oo. (5.85)

Finally, if V(p,u) = 0, then R = o(Rf) and T = o(R}), so that Ry, tends to 0. This
completes the proof of Step 4.
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5.2.5 Step 5

In this step we prove (5.24)), suppressing the (a, 3)-dependence from the notation. For ) €
{A,B}Noxzz, neN, N e {n/mLy,,...,n/L,} and r € {—NM,...,NM}, we recall (5.28)
and define B B

DY = { O € DY Ty =1, (5.86)

where we recall that Iy = Z;yzfol AIl;. We set

f?g?n(Maman 7") = %logZ??n,Ln(Na M,m,r) (587)
with
Zé?n,Ln (Na M,m,r) = Z Z Z A3, (588)
Otraj €D " zexgi’r;';’g ueug:r’;’;ﬁn

where As is defined in (5.49). We further set f3(-) = Eq(f5(-)).

5.2.6 Concentration of measure

In the first part of this step we prove that for all (M, m,«a, ) € EIGH x CONE there exist
c1,¢2 > 0 (depending on (M, m, a, §) only) such that, for alln € N, N € {n/(mLy,),...n/Ly,}
and r € {—NM,...,NM},

_ 626271

Po (| f5,(M,m) = fsn(M,m)| > ) <cyp e ta (5.89)

_ c252n

]P)Q(‘fé?n(MamaN7T) _f3,n(M7maN7T)| > E) <cre In .

We only give the proof of the first inequality. The second inequality is proved in a similar
manner. The proof uses Theorem m Before we start we note that, for all n € N, (M, m) €
EIGH and € {A4, B}NoxZ, fg?n(M, m) only depends on

. . o\\1/Ln
Cppee o Chy g, with CﬁLn:(Q(j,Z))i:/_n/Ln. (5.90)

We apply Theorem with § = {0,...,n/L,}, with X; = {A,B}{_ﬁ"”’ﬁ} and with
the uniform measure on X; for all i € §. Note that |f§271L(M, m) — :?fl(M, m)| < QCuf(a)m%
for all 7+ € S and all Q1, Q9 satisfying C% = CJQEL for all j # i. After we set ¢ = 2Cy¢(a)m we

can apply Theorem with D = ¢?L,,/n to get (5.89).
Next, we note that the first inequality in ([5.89)), the Borel-Cantelli lemma and the fact
that lim,,_,oo n/Ly logn = oo (recall (1.5)) imply that, for all (M, m) € EIGH,

li_)m [f??n(M, m) — fan(M, m)} =0 forP—a.e. Q. (5.91)
Therefore ((5.24]) will be proved once we show that
liniinf fan(M, m) =limsup f3,(M,m). (5.92)

n—oo

To that end, we first prove that, for all n € N and all (M, m) € EIGH, there exist an N,, €
{n/mLy,...,n/Ly} and an r,, € {—MN,, ..., MN,} such that

lim | f3,(M,m) — f3,(M,m,Ny,ry)| =0. (5.93)

n—o0
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The proof of (5.93) is done as follows. Pick ¢ > 0, and for Q € {A, B}Yo*Z n ¢ N and
(M, m) € EIGH, denote by N and 7S} the maximizers of fé?n(M, m, N,r). Then

A (M,m, N2 ril) < f,(M,m) < Llog(3) + i, (M,m, N rid),  (5.94)
so that, for n large enough and every €2,
0 < f5,(M,m) — f&, (M, m, N3}, rl) <e. (5.95)
ForneN, N € {n/mL,,...,n/Ly,} and r € {—NM,...,NM}, we set
An N = {Q: (NG 7)) = (N7} (5.96)

Next, denote by Ny, ry, the maximizers of P(A, n,). Note that (5.93]) will be proved once we
show that, for all € > 0, |fsn(M,m) — f3n(M,m, Ny,1,)| < e for n large enough. Further
note that P(A, N, »,) > L2/n? for all n € N. For every { we can therefore estimate

| fan(M,m) = fan(M,m, Nn,rn)| < T+ 11+ 11T (5.97)
with

I =|f3n(M,m)— f5L,(M,m)], (5.98)
IT = | 8, (M,m) — f§&,(M,m, Ny, )],
III = |f3§,2n(M7m7 Nn,Tn) - f3,n(M7ma Nnarn)‘-

Hence, the proof of (5.93)) will be complete once we show that, for n large enough, there exists
an ., for which I, IT and IIT in (5.98)) are bounded from above by ¢/3.

To that end, note that, because of (5.89)), the probabilities P({I > ¢/3}) and P({I1] >
£/3}) are bounded from above by cje=¢2¢ "/9kn while

P{II > e}) < P(A5 N, ) < 1= (L2 /n?), neN. (5.99)

Since lim,,—oo 7/ Ly logn = oo, we have P({I,II,1II <¢e/3}) > 0 for n large enough. Conse-
quently, the set {I,11,11I <¢/3} is non-empty and ([5.93)) is proven.

5.2.7 Convergence

It remains to prove (5.92)). Assume that there exist two strictly increasing subsequences
(ng)ken and (t)gen and two limits lo > [; such that limg_, f35, (M, m) = Iy and limy_,
f34, (M, m) = 1;. By using (5.93)), we have that for every k € N there exist Nj € {ng/mLy,,,
oosng/Ly, Y and 1, € {=M Ny, ..., M Ny} such that limy_,o0 f35, (M, m, Ni, 1) = l2. Denote
by

ep2 gk kY e pMre o g M x Y Mmln (5.100)

traj,max’ “’max> “‘max Ln, Ny
’ Kk’ traj,max’Q etraj,maszmaX’nk

the maximizer of H Q(Gtraj, z,u). We recall that Oyraj,  and u take their values in sets that
grow subexponentially fast in ng, and therefore

lim 26 B [HYOFS a2 ukf)] = 1. (5.101)
k—o00

N traj,max’ ““max’ “max
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Since I > [1, we can use (5.101) and the fact that limy_,o nx/Ly, = 0o to obtain, for k large
enough,

traj,max’ *“max’ “'max

Eq[HOFY  4h2 Wk 4 (8- a)> 7 (h + bl (5.102)

(The term B — « in the left-hand side of ([5.102)) is introduced for later convenience only.)
Next, pick kg € N satisfying (5.102)), whose value will be specified later. Similarly to what we
did in (5.77) and (5.78), for Q € {A, B}No*Z and k € N we associate with

ko,$2 _ ko, 1ko,Q2 1ko,2 Nko_l NM»rkO
Otrajmax = (AT, 0557 0157) 528 € DL, v (5.103)
and
ko, _ (.0, Q2\Nry—1 M,m
Tmax — (.’L'j )j:0 S X@f&’ﬁnaxﬂ (5104)
and
M,m,L
ko, (, Ko\ Nig—1 Ly
un’?ax - ( J )j=8 € u®k0,ﬂ kg, (5105)

0
traj,max’xmax vnko

the quantities

=kQ ko, 2 7K, Q 7k, Q\ Ny, —1 ~M,rg,
®traj - (AHJ 7b0,j 7b1,j )j:8 S DLtkakO (5106)
and N s
— k(o F,Q\ Ny —1 s Ly
u™t = (u] )j:8 € uém o (5.107)

traj »Tmax »*

(where * will be specified later), so that

7k Q ke, Q 1 7k,Q 1 ko,Q 1 _k,Q ko, 2 -
[boy —bo | < g By —bY5 [ < g @7 —uP T < gy =0, Nig— 1. (5.108)

Njy—1
Next, put 5,? =Ly, Zj:kg ﬂf’Q, which we substitute for * above. The uniform continuity
in Lemma allows us to claim that, for k large enough and for all €2,

—k,Q =kQ _kQ ko, ko, | ko, la—1
) (8, ?) - W w2, ?)| < g, (5.100)

where we recall that, as in (5.73)), for all j =0,..., Ng, — 1,

J J J

ko, - 17k0,82 ko, 1Ko, pko,2 | Ko,Q2
" —(Q(],Hj ), A0S, pho@ pho@ pk )

6% = (@, + ), AT, 557 B o), (5.110)

Recall (5.53). An immediate consequence of ((5.109) is that

‘Hﬂ(ék,ﬂ xkg,ﬂ ﬂk,ﬂ) _ HQ(@]CO,Q xko,ﬂ uko,Q)l < Nko lQ*ll. (5111)

traj> ““max traj,max’ ““max» “max 1

Hence we can use ([5.102)), (5.111]) and the fact that N, < nkO/LnkO, to conclude that, for k
large enough,

Eq[H(O, 492 759 + (8 — ) > o (+ Bgh). (5.112)
0

traj> ““*max

At this stage we add a column at the end of the group of Ny, columns in such a way that
the conditions blf:%ko_l = bg:]%ko and blf:%ko = 1/L,, are satisfied. We put

=k, Q _ ko,QY Tk, Q  Tk,Q i k, Q 1
TNy — (AH]\?ko 7b0,Nk07b1’Nk0) - (O’bl»NkO—l’ m)a (5113)
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and we let @k = DLt T’j% , be the concatenation of @traJ (see (5.106)) and = ”k 2 We let

traj

Tho2 ¢ Xéfr;ZjVQ be the concatenatlon of xmax and 0. We further let
R [ ﬂLtk, (5.114)
and we let a"% € U%{:ZQL;Z 50 be the concatenation of u*$ (see (5.107)) and
Uy =1+ 00N, 1~ 1o)- (5.115)

Next, we note that the right-most inequality in ([5.108)), together with the fact that

Ny —1
Sl =ny /Ly, (5.116)

allow us to asset that |§k Ly, ng,/ L, | < 2Nj,. Therefore the definition of &, sk in (5.114))
implies that

=1L, g’“‘) +mY with || < 2Ny, + 2Ly, . (5.117)
L™
Moreover,
Sk o ~ k.0 —
H (O, B0 08 > H? (O, whtasd, uh) + (8 — o), (5.118)

because u’fVQ < 2 by definition (see (5.115))) and the free energies per columns are all bounded
from below by (8 — «)/2. Hence, (5.112)) and ([5.118)) give that for all 2 there exist a

k,Q M,r
Oy eDLtkjgk 1t b, = oo (5.119)

traj &

ko, M,m ~k,Q M;m, Ly,
an x € X o andau euemwogw

traj’ traj’

such that, for k large enough,

ak.Q /\k Q ~k,Q n lo—1

E [ (@traj7 ” U )] Z L::O (ll + 24 1)' (5120)

Next, we subdivide the disorder €2 into groups of Nj, 4+ 1 consecutive columns that are

successively translated by 74, in the vertical direction, i.e., Q = (£21,Q2,...) with (recall
(13-13))

o G(Ni+1)—1
Qj = (Q(Z7 (] - 1) Tk + .))i=(j31)(Nk0+1)’ (5121)
and we let q,? be the unique integer satisfying
~ 0 —~ 0
S4B 4B <ty <F 45 (5.122)

where we suppress the (2-dependence of g;. We recall that

ty/Lt,

fgf’ltk (M, m) =E tl log Z Z Z Z eLtk HQ(@traj,x,u) ’

k -
N=ty/mL¢, @,,..cDM M,m M,m, L
TEX, k
ko SrajStLy N Otraj Rt UE Metraj’ o tp

(5.123)
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~ ~ 0
set 11! = s 145 92 +--- 435, ", and concatenate

@icragj tot (@frg]l’ @fre?f’ tet (_)fr’iziqk> € DLtqu(NkO_’_l) (5124)
and
Toy = (Fhoth ghos gkl ) g pllm o (5.125)
traj,tot
and
and — (a0 ab e, a0 ) e ul et (5.126)

traj, tot’xtot "k

@kQ ~k,Q

It still remains to complete traj,tot? Lot and ﬂfO? such that the latter becomes an element

M,m,L . . ~ R .
of L{Akgl tkAk Q To that end, we recall (| m, which gives tp — t,? <5 %1 Then, using

traj,tot ’xtot 7tk

(5.117)), we have that there exists a ¢ > 0 such that

7 n
th =ty < cLy 722 (5.127)
ko
Therefore we can complete @traJ tot? xtot and . utot with
M,m M,m, Ly,
Orest € DLtk,g,?’ Trest € X®rest7Q’ Upest € Z/l@reshmrest’tk_’{ép (5-128)

such that, by m, the number of columns g,? involved in O, satisfies g,? < cng,/ Lnk

Henceforth @traj tot s xtot and u. utot stand for the quantities defined in ([5.124)) and ([5.126)), and
concatenated with Oyegt, Trest and urpest SO that they become elements of

M,m M,m,Lt
DY Xoy oo 5.129
Lo Nt Yorn o Ugka o (5.129)
respectively. By restricting the summation in ) to @frg tot :?fo? and ﬂf&?, we get
tk Q; kﬂ 7k ,Q- )
f3 tk(M m E I:ZH traj’ 0 J) + H(@restamrestaurest) ) (5-130)

where the term H (O est, Trest, Urest) 18 negligible because, by (5.127)), (¢ — ﬁ?) /ti vanishes as
k — oo, while all free energies per column are bounded from below by (5 — «)/2. Pick € > 0
and recall (5.117). Choose ko such that 2Ly, /ng, < &/2 and note that, for k large enough,

3 ¢ [Ltk%o( ), Ly 5o (1+a)} (5.131)

By (5.122)), we therefore have

tchnk 1 tkLnk 1
Uk < [sznk(; THe? Loy E} = [a,0]. (5.132)

Recalling (5.130]), we obtain

(5.133)

traj ) L traj °

L o - oy
faa,(M,m) > —Eq ZHQ Oy aho% k) ‘HQ Oy, Tk k)
b J=1 j=a
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and, consequently,

Ly N N L _
f37tk(M, m) - mE [HQ(@f;gj’xkO,Q’uk,Q) _ t:c (b— a)(NkO + 1)mTOé’ (5 134)
and, by ([5.120)),
la—l1
Lhi+=5 _
faa, (M,m) > — A — (£ — 1) (b — aymZ52. (5.135)

After taking e small enough, we may conclude that liminf,_, f3 (M, m) > l;, which com-
pletes the proof.

5.3 Proof of Proposition

Pick (M, m) € EIGH and note that, for every n € N, the set W, is contained in W, .
Thus, by using Proposition we obtain

liminf fi* (M;o, ) > sup liminf fln(M m;a, f3)
n— 00 ’ m>M+2 "0

= sup f(M,m;a,B) for P—a.e. (. (5.136)
m>M+-2

Therefore, the proof of Proposition will be complete once we show that

lim sup ffn(M, a,f) < sup limsup f; n(M m;a, ) for P—a.e. Q. (5.137)
n—oo m>M-+2 n—o0
We will not prove (5.137)) in full detail, but only give the main steps in the proof. The proof
consists in showing that, for m large enough, the pieces of the trajectory in a column that
exeed mL,, steps do not contribute substantially to the free energy.

Recall (5.27H5.32)) and use (5.32]) with m = oo, i.e.,

n/Ln
TS S S YRS SRS 539
N= letraJEDLn,N xeX@tr elxlé\;[r:jfz

With each (N, Oyraj, z,u) in , we associate the trajectories obtained by concatenating
N shorter trajectories (;)ieo,..n—13 chosen in (We, u, L, )ie/o,..,.N—1}, Tespectively. Thus,
the quantity A; in corresponds to the restriction of the partition function to the
trajectories associated with (N, ©aj, 2, u). In order to discriminate between the columns in

which more than mL,, steps are taken and those in which less are taken, we rewrite A; as
A2A2 with

= ] 2. ©iu), = ] 2.7 ©iu), (5.139)

i€Vu,m i€Vim
with @ = Y buk, ©; = (6,14 + -),Z,2;) and I; = {@Ln,...,Uip1L, — 1} for i €
{0,..., N — 1}, with w; = (w;)ses for I C N, where {0,..., N — 1} is partitioned into
Varn UV with Vi ={i€{0,...,N —1}: u; > m}. (5.140)
For all (N, Otraj, x,u), we rewrite Vum in the form of an increasing sequence {1, ...,4;} and

we drop the (u, m)-dependence of k for simplicity. We also set © = u;, +-- -+, , which is the
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total number of steps taken by a trajectory associated with (N, ©taj, 2, u) in those columns
where more than mL,, steps are taken. Finally, for s € {1,...,k} we partition I;, into

Ji,UlJ;, with J;, = {Ui.Ln,..., (G, +M+2)Ly,}, (5.141)
Jio = {(@, + M +2)Lyy +1,..., Ui, 41Ln — 1},

and we partition {1,...,n} into
JUJ with J=U 7.,  J={l,...,n}\J, (5.142)

so that J contains the label of the steps constituting the pieces of trajectory exeeding (M+2)L,,
steps in those columns where more than mL,, steps are taken.

5.3.1 Step 1

In this step we replace the pieces of trajectories in the columns indexed in Vum by shorter
trajectories of length (M + 2)L,,. To that aim, for every (N, Oaj, z,u) we set

A= [ 2" M+2) (5.143)

i€V m

with ©; = (Q(i,II; + -),Z;,1). We will show that for all £ > 0 and for m large enough, the
event

B, = {w: AVQ < 22 3™ for all (N, Oraj, z,u)} (5.144)
satisfies P, (B,) — 1 as n — oc.

Pick, for each s € {1,... ,E}, a trajectory ms in the set We, u; ,L,- By concatenating
them we obtain a trajectory in Wy, satisfying 73y, 1 = kL. Thus, the total entropy carried
by those pieces of trajectories crossing the columns indexed in {31, ..., ZE} is bounded above
by ~

[Ti1 e, 2ol < [{7 € Wi, mar, 1 = KLn}|. (5.145)

Since ﬂ/% > m, we can use Lemma in Appendix to assert that, for m large enough, the
right-hand side of (5.145|) is bounded above by e®".
Moreover, we note that an wlL,-step trajectory satisfying w1, 1 = ELn makes at most

%Ln +u excursions in the B solvent because such an excursion requires at least one horizontal
step or at least L, vertical steps. Therefore, by using the inequalities kL, < n/m and
u < n/L, we obtain that, for n large enough, the sum of the Hamiltonians associated with
(m1,...,mz) is bounded from above, uniformly in (N, Otyaj, z,u) and (71,...,75), by

" wi 7Q(’L'5,His+')

SR ) < max{Te & T e U ) (5.146)
with &, defined in (E.I) in Appendix [E| and §; = B1y,,—4y — aly,,—p) for i € N. At this
stage we use the definition in (E.3)) and note that, for all w € Qf/ =)/ 2+ the right-hand
side in ([5.146) is smaller than en. Consequently, for m and n large enough we have that, for
allw e Q% a=p)/2+e

Ay <e® forall (N, Otrajs T, U). (5.147)
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Recalling (3.37)) and noting that kL, <n /m, we can write

Ay > o F(M+2) LnCus() > e_n%cuf(a) (5.148)

)

and therefore, for m large enough, for all n and all (N, Oy, x,u) we have A\Q > e,

Finally, use ((5.147)) and (/5.148] m ) to conclude that, for m and n large enough, Qa/ Br(a=p)/2+e
is a subset of B,,. Thus, Lemma ensures that, for m large enough, lim,,_,o P, (By) = 1.

5.3.2 Step 2

Let (w;)ien be an ii.d. sequence of Bernouilli trials, independent of w, Q. For (N, Oaj, ,u)
we set u = E—E(M +2). In Step 1 we have removed uL,, steps from the trajectories associated
with (N, Otraj, x,u) so that they have become trajectories associated with (N, Otraj, z, u). In
this step, we will concatenate the trajectories associated with (N, Oyraj, ', u) with an UL,-step
trajectory to recover a trajectory that belongs to W,

For Q € {A,BYWNoxZ N e N and k € Z, let
PL(N, k)( Zlmwﬂk (5.149)

be the proportion of A-blocks on the k' line and between the N*' and the (N + ¢ — 1)
column of €. Pick n > 0 and j € N, and set

Snj = U U U {Pemie < g} (5.150)

=0k=—jt>nj

By a straightforward application of Cramer’s Theorem for i.i.d. random variables, we have
that >,y Po(Sy,;) < oo. Therefore, using the Borel-Cantelli Lemma, it follows that for
Pgo-a.e. €2, there exists a j,(€2) € N such that ¢ S, ; as soon as j > j,(€2). In what follows,
we consider 17 = ¢/am and we take n large enough so that n/Ln > j./am(£2), and therefore

Q¢ San

Pick (N,©,x,u) and consider one trajectory 7, of length uL,, starting from (N,IIy +
bn) Ly, staying in the coarsed-grained line at height Ily, crossing the B-blocks in a straight
line and the A-blocks in mL,, steps. The number of columns crossed by 7 is denoted by N
and satisfies N > u/m. If uL, < en/a, then the Hamiltonian associated with 7 is clearly
larger than —en. If uL,, > en/« in turn, then

Ly’ am

AN @) > —aL,N[1 - PR(N,IIy)(N)]. (5.151)

Since N < n/L,, |lIy| < n/L, and N > en/(amLy,), we can use the fact that ¢ S e n
to obtain

PR(N,IN)(N) > £, (5.152)

At this point it remains to bound N from above, which is done by noting that

N[mPEN, ) (N) +1— PN, IN)(N)] =G < 2. (5.153)
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Hence, using (5.152) and (5.153), we obtain N < 2n/pmL, and therefore the right-hand side
of (5.151)) is bounded from below by —«a(2 — p)n/pm, which for m large enough is larger than

—E&n.

Thus, for n and m large enough and for all (N, O, z,u), we have a trajectory 7 at which
the Hamiltonian is bounded from below by —en that can be concatenated with all trajectories
associated with (N, ©,2’,u) to obtain a trajectory in Wil Consequently, recalling ,
for n and m large enough we have

AsAy < e 20D (Mym)  V(N,©,z,u). (5.154)

n,

5.3.3 Step 3

In this step, we average over the microscopic disorders w,w. Use (5.154) to note that, for n
and m large enough and all w € B, we have

n/Ly
UJ,Q 4en (LUJ 7(71)70
22y < 3 ) N 2 D20 m). (5.155)
= N M, M ,c0,L
N=1 @traj GD%%N mEXetr:ij ue u@tr:jovzvz

We use ([D.3]) to claim that there exists C1,Cy > 0 so that for all n € N, all m € N and all J,

Pw,fu (

Llog 27O (M, m) — f2,(M, m)‘ > 5) < CreCesn, (5.156)

We set also

L1og 200 D M m) - f2,(M,m)| < e}, (5.157)

.= (N |

(Nye)traj 1-737u)

recall the definition of ¢, in (5.57) (used with (M, c0)), and use ([5.156|) and the fact that c,
grows subexponentially, to obtain lim,, Py, 5(D5;) = 0. For all (w,w) satisfying w € B,, and

(w,w) € Dy, we can rewrite ((5.155) as

798 (M) < ¢ eMEn(Mm)F5en (5.158)

n,Ln
As a consequence, recalling (3.37)), for m large enough we have

log ¢,

f(M;a, ) < P(BEUDS) Cular) + + %E(l{Bnan} (nf{)n(M, m) + 5871)). (5.159)

Since P(B¢, U Dg,) and (log ¢,) /n vanish when n — oo, it suffices to apply Proposition [5.2f and
to let € — 0 to obtain (5.137)). This completes the proof of Proposition

5.4 Proof of Proposition [5.4

Note that, for aﬂ m > M + 2, we have R7"); C Rp . Moreover, any (“@)6691@ IS BVII/,” can
be extended to Vjs so that it belongs to BVM' Thus,

sup f(M,m;a,5) < sup sup V(p,u). (5.160)
m>M+42 PERp 1 (w)EBs,
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As a consequence, it suffices to show that for all p € R, s and (U@)GGVM € BVM,

V(p,u) < sup sup sup V(p,u). (5.161)
m2>2M+2 peR ), (“)EBV]C}
If va ue p(dO) = oo, then (5.161)) is trivially satisfied since V' (p,u) = —oo. Thus, we can

assume that p(Vyr \ D) = 1, where Dy = {© € Vi xo € {AZ, B2}, 20 = 2}. Since
fVM ue p(dO) < oo and since (recall (3.37)) ¥ (O, u) is uniformly bounded by Cyu¢(a) on

(B,u) € V])\k/[, we have by dominated convergence that for all € > 0 there exists an mg > M +2
such that, for all m > my,

Jym uet(8,ue)p(dO)
Jym uep(dO)

+

Vi(p,u) < (5.162)

[Nelf0)

Since p(Vs \ Das) = 1 and since UmZM_A,_QVﬁ = Vu \ Dy, we have lim,, o0 p(Vﬂ) = 1.
Moreover, for all m > myg there exists a p, € R}y, such that pm = pm + Py, With pp, ihe
restriction of p to Vﬂ and p,,, charging only those © satisfying g = 1. Since all © € V),
with zg = 1 also belong to V]\]\j H, we can state that p,, only charges Vﬁ“ . Therefore

IVXZ ueY (0, ue)p(dO) + fvgm ueY (0, ue)p,,(dO)
fvjv\:[b U@p(d@) + fvl\J\;+2 U@ﬁm(d@)

V (P, u) = (5.163)

. . . = . —=M+2
Since © — ug is continuous on V), there exists an R > 0 such that ug < R for all © € VM+ .

Therefore we can use (5.162)) and (5.163]) to obtain, for m > my,

¢ fvﬁ uep(dO)
2 ffﬂ uep(dO) + fvlzvxluz UE P (dO)

V(pm;u) = (V(p,u) ~ RCu(a) (1= p(Vpy))- (5.164)

The fact that ﬁm(vﬂj\fﬂ) = p(Var \ Vyy) for all m > mg implies that lim,—,eo p,, (Va1 %) = 0.
Consequently, the right-hand side in tends to V(p,u) —e/2 as m — oo. Thus, there
exists a m1 > myg such that V(pm,,u) > V(p,u) —e. Finally, we note that there exists a
mg > my + 1 such that ug < my for all © € V', which allows us to extend (ue)GGV;;l to
V., such that (ue)eevﬁz € Byma. It suffices to note that Pmi € Ry C RSy to conclude
that

Vip,u) < f(M, ma; o, B) +¢. (5.165)

5.5 Proof of Proposition [5.5

It remains to remove the M-truncation from the variational formula in Proposition [5.4 To
that aim it suffices to show that

lim sup f(a, B) < sup limsup f(M;a,3) for P —a.e. Q. (5.166)

n—00 M>1 n—oo

The proof of (5.166|) is similar to that of (5.137)) in Section In the latter, the pieces of

path inside the columns where too many steps (> mL,,) were taken were replaced by a shorter
path. However, the mesoscopic strategy of displacement was not changed. This is a major

60



difference with the proof of Proposition below, since we need to compare the contribution
to the partition function of groups of trajectories that do not follow the same mesoscopic
strategy of displacement.

For m € W, we recall that N, is the number of columns crossed by 7 after n steps. We
recall (5.138H5.142) and use the same notations with M = oo to rewrite the full partition
function as

n/Ln

zep ="y > oA (5.167)

N=1 . oo rEX S 00,00,Ln
etraJeDLnyN € Otraj 2 ueu@traj,zyn

We pick N € {1,...,n/L,}, and with each Oaj € DL yandz € X Q we associate

an auxiliary mesocopic strategy denoted by @traj € DL N and T € X~M°° that is built as

traj,

follows. Let i1 be the index of the first column in which the mesoscopic displacement of ©yy,;
is strictly larger than M, i.e., (JAIL;, | > M). Until i1, both strategies (Otraj, ) and (Osraj, T)
are equal, i.e.,

0, = (Q(Z H + ),_Z,xz) = (Q(i,Hi + -),Ei,xi) =0; fori<i;—1. (5.168)

The mesoscopic displacement AIL;, of Oy.4j is large and étraj starts making mesoscopic steps
of size M to catch up with Oy,,j as soon as possible. This takes 71 € N columns indexed in
{i1,...,i1+r1—1} for which |Aﬁz| = M, x; = 1, except for the very last column (i = i;4+r1—1),
which is used to end the catch up between ((:)traj, z) and (Otraj, ). We note that there may
be other columns among {i1,...,i; + 71 — 1} in which the mesoscopic displacement of Oyy,j is
> M.

After (@traj, z) catches up with (Otraj, ), it remains equal to (Otraj, ) until a new column
appears (indexed by iz > 41 + 1) with a large mesoscopic displacement, i.e., |AlL,| > M.
Thus, ©; = ©; for i € {i1+71,...i2—1}, and so on. The resulting ©,»j and z belong to D%“N

and XM , respectively, and ©; = éi, except on k groups of consecutive columns denoted

G)trajvﬂ
by {i1,...,i1 +7m1 — 1},..., {ig,...,ix + rr — 1} and referred to as the catch-up columns in
what follows. For simplicity, the dependence in Oy of k, 41,71, .., 4%, % is omitted.

We can give a crude upper bound on the number of columns on which étraj differs from
(:)traj. The sum of the absolute values of the large mesoscopic jumps (i.e., Y% | |ATL|1{]AIL]| >
M}) performed by Oy, indeed cannot exceed n/L,. Moreover, the number of columns in
which the mesoscopic displacement is larger than M /2 is bounded above by 2n/ML,,, and
in each catch-up column where the mesoscopic displacement of ©aj is smaller than M/2,
étraj scores at least M /2 blocks in its race against ©y,j. Therefore, the number of catch-up
columns 71 + - - - + 7y is bounded above by 4n/M L,,.

In order to discriminate between the catch- up columns and the columns on which Oy;,;

and Gtraj are equal, we keep the notations of (|5 l i and we rewrite A; as A Ay with

= I Z. i), = [ Z.i®iuw) (5.169)

’LEVHJW ’LEVH,]M

where {0,...,N — 1} is partitioned into VH,M U Vir,v and ‘7H7M = U’;Zl{is, coyis s — 1}
gathers the indices of the k groups of catch-up columns.
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We also set 45 = w;, + -+ + Ui ,4r,—1, Which is the total number of steps taken by a
trajectory associated with (IV, ©aj, 2, u) in the s-th group of catch-up columns. Finally, for
each j € VH v we let v; L, be the minimal number of steps that are required to cross a column

of type @ Even though it is not necessarily true that v; < uj for all j € Vi M, it is true
by construction that for s € {1,...,k} we have us > v;, + -+ + vj,4r,—1 = Us. For each
se€{l,...,k} and each t € {0,...,rs — 1}, we define

Jig+t = { (Wi, +viy, + -+ vig44—1) L, (Wi, +vi, + -+ + Vi) L — 1}, (5.170)
so that we partition I;, U--- U I; 4., into
K UK, with Kg={U.Ln,...,(U, +vi, + 4 Vipr.—1)Ln}, (5.171)
Ky = {(@, +vi, + 4 Vigtr,-1)Ln + 1, Uiy, Ly — 13,
and we partition {1,...,n} into

TUT with T=U"_K,, T={1,...,n}\T. (5.172)

5.5.1 Step 1

In this step, we aim at replacing the Hamiltonian in the catch-up columns by an auxiliary
coarse-grained version of the Hamiltonian, which simply assigns an energetic penalty B < to
each monomers placed in solvent B. To that aim, for y € {A, B}* and 7 € W, such that
mur,1 = L, we set

ul
Yy 1(m) = 5D e my = BY- (5.173)
=1

and we recall that x( ) denotes the label of the block the step (m;—1,7;) lies in. With

the help of (5.173] and recalhng , we define the partition function associated with those
traJectorles crossmg a block- column of type © = (x, E,x) in uL steps as

Zr©uy= > el (5.174)

WEW@ﬂhL

and we note that Z (0, u) does not depend on the microscopic disorder wcanymore. Thus,
we can set

[ Z..(iw). (5.175)
7:6‘71'[1”[
In the rest of this proof, we will often state results that hold uniformly on (N, Oaj, z,u)

without recalling that N € {1,...,n/L,}, Ouaj € DL N> T E Xe 0 and u € YL,

etrdjvx n

Our aim is to show that, for all ¢ > 0, M large enough and Q € {A, B}"oXZ the set
Bl = {w: Ay < Ay e for all (N, Opaj, v, u)} (5.176)

satisfies lim,,_ oo PW(B}L v) = 1. We consider a given (IV, Otyaj, 2, u), and we set & = a1 +-- -+

us. We then pick for each i € YN/H,M a trajectory m; in the set We, u,,1,,- By concatenating
these trajectories, we obtain a trajectory @ € Wy, satisfying mgr, 1 = (r1+--- +7k)Ly. The
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difference between the Hamiltonian associated with 7 in AVQ and the one associated with 7 in
Aoy equals
3—1 Ligta Q(is+z’ni3+z+-) AQ(Q"F 1Hi3 :c+)

S S H (i) = Hyp o000 (i) (5.177)
Either 7 takes in B a number of steps that is < en/(2a) and the Hamiltonian difference in
(5.177) is bounded above by en, or the number of steps in B is larger than en/2a. In the
latter case, since 7y, 1 = (11 + -+ 1)Ly, ™ makes at most (ry +-- - + 1)Ly, + 0 excursions
in B because each such excursion requires at least one horizontal step or at least L,, vertical
steps. Therefore, by using the inequalities (r1 + -+ + r;)L, < 4n/M and u < n/L,, we can
claim that, as soon as L, > M, 7 does not perform more than 5n/M excursions in B, and
hence

‘5—1 is+ax Q(is+m’ni8+z+-) 75 Qis+ Mg ot
S S H, (Miyta) = Hy 50t () (5.178)
< max{ Zzel (fz 7) Ie Usn/Mg },

with &, , defined in (E.I)) in Appendix l El and & = Bly,,—a) — alyy,—py for i € N. At this
point we use the definition in and note that, for all w € Qa/ ]5[75 the right-hand side
in (5.178)) is smaller than en. Consequently, for M and n large enough we have that, for all

e/2a,e

we Qn,M/S’

— < e forall (NV,Ouaj,z,u). (5.179)

It remains to use ([5.179)) and (5.176)) to conclude that, for M and n large enough, QZ/ i;/g isa

subset of B1 . Thus, Lemma ensures that, for M large enough, lim, s P, ( B}L ) =1,
which completes Step 1.

5.5.2 Step 2
In this step we further simplify the expression of A\Q introduced in (5.175)) by setting

A= [ &7 w@in, (5.180)

i€Vit, i

where 9p(0;) is the number of B-blocks located in between the entrance block and the exit
block that have to be crossed entirely in the vertical direction by any trajectory that crosses a
block of type ©;. We note that M5(0;) only depends on AIl; (the mesoscopic displacement in
the column) and on the disorder in the column seen from the entrance block Q(i, II; 4 -). Our
aim is to show that, for € > 0 and for M and n large enough, we have for all Q € {4, B}NoxZ
that Ay < Agen uniformly in (N, 0, z,u).

For a given (N, ©,x,u) we pick, for each i € 17H,M, a trajectory m; € We, u,;.L,,- We recall
that 8 — o < 0, since (o, ) € CONE. In Ay the Hamiltonian associated with (m;)
bounded above by

iE‘A}H’M 15

I _
S BN () < 8oL, Y 9tp(ey) (5.181)
ZEVH,NI ievl‘[,]\/[
because, for each i € VH, M, T; must cross vertically at least Mp(©;) blocks of type B. In the

right-hand side of ([5.181]), we recognise the exponential factor in ([5.180|), and therefore this
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step will be complete once we control the entropy carried by those pieces of trajectories that
cross the columns indexed in Viyas. To that aim, we recall that ©w = 41 + - 4+ 45 and we
note that, by concatenating the paths (m;) , we obtain a trajectory 7 € Wy, satisfying

MiiLn,1 = (7’1 + 4 T’k)Ln. Thus,

Z'GVH,M

ety 0 WeriuiLal < {m € War,: map,1 = (r1+ -+ 1) La}|, (5.182)
and either u < en/log(3)L,, and the right-hand side in (5.182) is smaller than e, or u >
en/log(3)Ly and the crude bound 71 +- - -+71, < 4n/M L, allows us to write u/(r1+...,rg) >
Me/(41og(3)), and we can use Lemma [A.2]in Appendix [A]to assert that, for M large enough,
the right-hand side of ((5.182)) is bounded above by e®™.

5.5.3 Step 3

In this step, we link each mesoscopic strategy ©y;aj to its auxiliary counterpart étraj by

replacing As in (5.180) by ~
Ag= [ &7 me®In, (5.183)
iE‘A}HﬂM

As in the previous step, 9Mp(©;) is the number of B-blocks located in between the entrance
and the exit blocks that have to be crossed entirely in the vertical direction by any trajectory
crossing the ©; column. Our aim is to show that for all £ > 0 there exists an M € N such
that, for P — a.e. ) and n is large enough, that A3 < Ayee™ for all (N,0,z,u). To that aim,
it suffices to prove that for all € > 0 there exists an M € N such that, for P — a.e.Q and n
large enough, that

Y )= Y Np(6) - %” for all (N, Oaj, 2, ). (5.184)
ief/’h’]u ievn,]u "
We set
Ry = {Q € {4, BY*%: AN € {1,..., £}, 3Ouu; € Dy, (5.185)

and Z Np(6;) < Z mB(éi)_gLnn}

1€V, M 1€V, M

and we aim at showing that, for M large enough, >, <, Po(Rpu . # 0) < co.

We need to simplify the expression for R, ar. As explained earlier, for each (N, ©aj, 2, u),
the location of the catch-up columns ‘N/H, m only depends on II = (Hi)fio and the subsequence
(fﬁB(@i))ieva only depends on 2 and (IT;, IT;11) . Moreover, in the catch-up columns,

i€‘7r[’jw
the associated mesoscopic strategy of displacement (II;, IT;41)

i€V ar is completely determined
by (H“Hiﬂ)ieVH,M aild <m3(éi>)z‘e\7n,M only depends on QNand (ﬁi,ﬁiﬂ)ie‘;nM
sequence, for all i € Vi s we can rewrite Mp(0;) and Np(0;) as Np(Q(4, II; + -), All;) and
MNp(Qi, II; 4 -), AllL;), respectively, and we obtain

. As a con-

n/Ln 4n/M L,

R.uc ) U U U BRW,EVY), (5.186)

N=1 k=1 VC{O,...,N*l}: |V|:I€ ?Eml\]’v
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where

1 (2

Vyy = {Y = (Y2, Y )iev € (Z*)Y: Vi =Y, if (4,i + 1) € VZand 3T € {0} x ZV:

N-1
Y IAIL] < 2 Viny =V, (3, Tig)iey = (Yz'OaYil)iev}, (5.187)
i=0
where
R(N,E,V,Y) = {Q € {A, BYNoxZ, (5.188)

> Mal62i, i+ ), ) £ 3 Mal62i. i+, ) — |
eV eV

and where, with each Y € Uy, we associate Y = (ﬁi,ﬁi+1)iev with II the mesoscopic
displacement strategy associated with the II, which in ([5.187]) guarantees that Y € Uy v .

For N € {1,...,n/Ly},k € {1,...,4n/ML,},V C{0,...,N—1}: |[V|=kand Y € Uy,
we let M(Y) be the number of blocks that have to be crossed entirely in the vertical direction
in the catch-up columns (i.e., those columns indexed in V'). By construction, we note that
N(Y) > N(Y), so that the number of blocks that have to be crossed vertically in the catch-up
columns for the mesoscopic strategy of displacement Y is not smaller than its counterpart for
the auxiliary mesoscopic strategy of displacement Y. We then note that Q2 € R,, »; necessarily
implies that there exists N,k,V,Y such that NY) > en/Ly, and therefore N(Y) > en/L,
(since it is always the case that (Y) > N(Y) > 3.y Na(Q(E, Yi+-), AY;). Asa consequence,

we can bound Pq (R, ar # 0) as follows:

Po (R, v #0) (5.189)
n/Lyn 4n/MLy,

235 3 S Pa(RIN.EVIY)).

N=1 k=1 Vc{0,...,N=1}: [V|=k  YeUnyv: N(Y)>en/Ln

By a standard application of Cramer’s Theorem we obtain that the probability under the sum
of the right-hand side in is uniformly bounded by e~¢"™/L» with ¢, > 0. At this stage
we note that, uniformly in N and k, we can bound |V C {0,..., N —1}: |[V| = k| from above
by ( 4://1\]—}72)’ which for M large enough has an exponential growth rate that is smaller than
ce. Moreover, uniformly in N, k,V

L n \k an n/L M\ 5ty
< o (M Ln < 2WL, " — )M, .
Wyl =2 ( 2k )(kL,) = 2 <8n/MLn>( 8) (5.190)

The upper bound in can be understood as follows. First, in each catch-up columns
we have to choose the length of the mesoscopic displacement and this gives rise to the term
(”é{;"), since the sum of all mesoscopic increments is bounded above by n/L,,. Next, we have
to choose the sign of these k increments and this gives a factor 2. Finally, in each catch-up
columns we have to choose the height of the entrance block (II;). Once again, the fact that the
sum of all mesoscopic displacement is smaller than n/L,, tells us that the difference between
the height of the exit block of a given catch-up column and the height of the entrance block of

the following catch-up column is bounded by the sum of the absolute value of the mesoscopic
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increments that have been made in between these two columns. But once again, since the
sum of these mesoscopic displacements in absolute value is smaller than n/L,, the number
of choices for the heights of all entrance blocks in catch-up columns is bounded above by
(n/kLy)*. This completes the proof because when M is chosen large enough the exponential
growth rate in the right-hand side of is smaller than c..

5.5.4 Step 4

In this step, we recall the coarse-grained version of the Hamiltonian defined in (5.173)) and
we use it to introduce, in the catch-up columns, those trajectories moving according to the
auxiliary mesoscopic strategy, i.e., for (N, Oaj, x,u) we set

I Z..©:w) (5.191)

i€ViL,m

with ©; = (Q(i,IL; 4 -),Z;,1). Our aim is to prove that, for € > 0 and M large enough, we
have for all Q € {4, BYNo*Z and all n € N that Ay < Ase™ uniformly in (N, O, z, u).

For each i € VH M, we pick m; € Wg Since v;L, is the minimal number of

17U17
steps required to cross the column indexed by i, and since ‘ﬂB(éi) is the number of B-
blocks that have to be crossed vertically by any trajectory crossing a block column of type
@Z, we can assert that the number of steps performed by m; in the B blocks belongs to
{NB(6:)Ln, ..., MNp(0;) Ly, + 3L,}. Therefore, recalling the definition and the crude

bound 7 —|— —|— rp < 4n/MLn, we can assert that, for all (N, Otraj, x, u) and all (m)z‘effn €
®i€‘~/n,M Wémvz‘»Ln’
k rs—1 0 A ~
S AN e 2 5 3 Me@k 12 (5192
s=1 x=0 736‘71‘[,M

Thus, it suffices to choose M so large that 12a/M < e to complete the proof of the step.

5.5.5 Step 5

In this step we replace, for each of the pieces of trajectories crossing the catch-up column, the
coarse-grained Hamiltonian H by the original Hamiltonian. Thus, we set

= [I %7 ®:wv). (5.193)

lGVH,M
Our aim is to show that, for € > 0 and M large enough, we have for all Q € {4, B}No*Z that
B? M= {w: Ay < Ag e for all (N, Otraj, T, u) } (5.194)

satisfies P, (Bn v) — 1asn — oco. We will not give the details of the proof, because it is
completely similar to that of Step 1. The only difference is that we replace @ = 4y + - - - + U,
by 0 =014+ 0.
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5.5.6 Step 6

Let (w;)ien be an i.i.d. sequence of Bernouilli trials, independent of w, 2. For (N, Oraj, x, u)
we set 4 = lec:l s — Us. By changing the u; into v; in those catch-up columns, we remove
uL, steps from the trajectories associated with (N, ©Oyaj,z,u), so that they have become
trajectories associated with (IV, (:)traj, Z,v). In this step, we will concatenate the trajectories
associated with (N, (:)traj, Z,v) with an uL,-step trajectory to recover a trajectory that belongs
to Wm M-

Therefore, our aim is to show that for all £ > 0 there exists an M € N such that, for P —
a.e.Q and for all w,w € {A, B}, we have for n large enough that Ay Ag < eE"Z(wif))’Q(M) for

n,

all (N, ©,z,u). The proof is completely similar to that of Step 2 in the proof of Proposition
(see Section [5.3.2)). For this reason, we will not repeat the details.

5.5.7 Step 7

In this step, we average over the microscopic disorders w,w. We recall (5.176)) and (|5.144]),
and we set B, pf = B}L’M ﬂBfle. With the help of Steps 1-6 above we can state that for every

e > 0 there exists an M € N such that, for P — a.e.Q and for w € B,, s and @ € {A, B}, we

have (recall (5.169))

Ay = Ay Ay < 528D (M) for all (N, O, 2, ). (5.195)

Next, we recall (3.11)) and (5.138)), and we use (5.195)) to state that for all ¢ > 0 there exists
an M € N such that, for P — a.e. Q and n large enough and for w € B, ys and @ € {A, B},

n/Ly

Zop <efm N > S 2490, (5.196)

N=1 . oo reX S 00,00,Lp,
etraJGDLn,N € etraij ueu@traj,z,n

We use (D.3) to claim that there exists C,Cy > 0 such that, for all for all 2, all n € N, all
M € N and all J,

Pw,a< +log Zf:,JL]f)’Q(M) — f,?(M)‘ > 6) < Cre~C2n, (5.197)
We set also N
Duy= ) {(% log 2\ (ar) — f,?(M)‘ <eb, (5.198)

(Naetraj 7337'“)

recall the definition of ¢, in (5.57) (with M = m = c0)), and use ([5.197)) and the fact that
cn, grows subexponentially in n, to obtain lim, . ]P’W’Q(Df% ) = 0. For all (w,w) satisfying
w € By and (w,w) € Dy, pr, we can rewrite (5.196|) as

Zw’gn < ¢, enfn(M)+Ten, (5.199)

n,
Consequently, recalling (3.37]), for M large enough we have

log ¢,
F (e, B) < P(BS 3 U DL ) Curla) + —2

1
+ ~E(Lp, yyon,.a0) (Rf(M) +Ten) ). (5:200)

Since P(By, ), U Dy ) and limy, o0 (log ¢,,) /n = 0, the proof of Proposition is complete.
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6 Proof of Theorem [1.1} slope-based variational formula

We are now ready to show how the variational formula in (5.2)) can be transformed into the
variational formula in ([1.14). We recall that, by the definition of R, in (3.63), the variational
formula in ([1.14)) can also be written as

f(a, B;p) = sup sup sup (6.1)

MZ]. ﬁeﬁp,lw ’UEB_ D(ﬁ?”)

Let Fy;  and F be the counterparts of BVM and B for Borel functions instead of continuous
functions, i.e.,

Fp,, = {(UQ)@EVM € RVM . ue >te VO € Vi, © — ug Borel} (6.2)
and B o
F ={v=(va,vB,vr) € DxD X [1,00)}, (6.3)
where
D = {l — v; on [0,00) Lebesgue measurable with v; > 1+1 VI > 0}. (6.4)

The proof of Theorem is divided into 4 steps, organized as Sections In Step 1 we
show that the supremum over By; —in (5.2) may be extended to Fp,, 1-e,

N N
sup sup (p, ) = sup sup (p,u). (6.5)
pERP’M (“9)9691\/, EBVM D(p7 'U,) peRp,]\/I (ue)@EV]W E]:vju D(ﬂ? 'LL)
In Step 2 we show that the supremum over B in (1.14) may be extended to F,ie.,
N(p N(5
Sup sup — (p,v) = sup sup M (6.6)

PERp, M vEB D(ﬁ,’l)) ﬁEﬁpﬁM veEF D(ﬁ77))

Then, the proof of Theorem is achieved with the help of Steps 3 and 4 which, combined
with Theorem [5.1] allow us to show

N —
f(a,B;p) > sup sup sup —([_)’U), (6.7)
M>1peR, 5 ver D(P0)
N(p,v)

f(a, B;p) < sup sup sup — (6.8)

M>15eR, 5 ver D(Pv)

Along the way we will need a few technical facts, which are collected in Appendices [CHG

6.1 Step 1: extension of the variational formula

For ¢ € (0, 00), let u(c) = (ue(c))gey,, be the counterpart of the function v(c) introduced in
(2.82.10). For © € V) and ¢ € (0, 00), set

te if OF (uy(0,u))(te) <c,
ue(c) = z  otherwise, with z such that 9, (u(0,u))(z) > ¢ > 9 (u(©,u))(2),
(6.9)

68



where 2 exists and is finite by Lemma[C.7]in Appendix[C] and is unique by the strict concavity
of u = (O, u) for © € Vs (see Lemma in Appendix |C)). The fine properties of ©

ug(c) are given in Lemma in Appendix
For (a, 3) € CONE and p € M;(V)) such that va to p(dO) < oo, set

, - N(p,u)
a9(p;a, B) = ueSESM Dip.u)’ (6.10)

with the convention that N(p,u)/D(p,u) = —oo when D(p,u) = oco. The equality in (6.5]) is
a straightforward consequence of the following lemma.

Lemma 6.1 For (o, 3) € CONE and p € M1(Vyr) such that g(p;a, 3) >0

g(p; o, B) = gg?’ g with w = u(g(p; o, B))- (6.11)

Moreover, u = for p-a.e. © € Vyy for all u € v, satisfying g(p; o, B) = gEZ’Z).

Proof. The following lemma will be needed in the proof.

Lemma 6.2 For (o, 8) € CONE and e > 0 there exists at. > 0 such that, for all p € M1(Vs)
and allu € F5;  satisfying D(p,u) € (t.,00),

<e. (6.12)

Proof. Pick ¢ > 0. By Lemma there exists a C: > 0 such that ¥(0©,u) < &/2 for
© € Vy and u > max{C.,te}. For R € (0,00), set B~(R) = {© € Vi: ug < R} and
BT(R) ={© € V);: ug > R}, and write

N(p,u) B fB’(C'E) ueY(0,ue)p(dO) fB+(CE) ueY (0, ue)p(dO)
D(p,u) Dip,u) + D) . (6.13)

By the definition of C. and since ug > tg for all © € V;;, we can bound the second term in
the right-hand side of by /2 > 0. The first term in the right-hand side of in
turn can be bounded from above by C.Cy(cr)/D(p,w) (recall (3.37)). Consequently, it suffices
to choose t. = 2C.Cys(r) /e to complete the proof. O

We resume the proof of Lemma By assumption, we know that g(p) > 0, which entails
that [;; tep(d®) < oco. Thus, Lemma B.4{(iv) tells us that D(p,u(c)) < oo for all ¢ > 0. We

,) < g(p), and pick u € F5; such that D(p,u) < oo.

(
N(p, ) ( ) [ (p,u) — N(p, @)]

argue by contradiction. Suppose that &
Write

where

N(p,u) — N(p,u) = /v ue(0,ue) — ue(0, te) p(dO). (6.15)
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The strict concavity of u — 1w (0,u) on [tg, 0o) for every © € V), together with the definition
of @ in (6.11]), allows us to estimate

waw—N@w>smm/'@@—u@pw@» (6.16)

Vm

Consequently, (6.14]) becomes

N(p,u) _ N(p,u)+ g(p)[D(p,u) — D(p,u)]
Dipu) = Dipu) + Dipu) — Do) (6.17)
Define G = z — [N(p,u) + g(p)z]/[D(p, u) + z] on (—D(p, u), 00). Note that N(p,n)/D(p,u)

< g(p) implies that G is strictly increasing with lim,; ,» G(x) = ¢(p). Use Lemma to
assert that N(p,u)/D(p,u) < 3g(p) when D(p,u) > tlg(p)' But then, for all u satisfying
2

D(p,u) < typ, BIT) gives

N(p,u) _
< —D . 1
Do < Gty ~ (0| < gl (6.18)
Consequently,
N(p, u) 9(p) =
uES}%)M Dlp.u) < maX{Q,G<tg<2p) — D(p, u)> < g(p), (6.19)

which is a contradiction, and so g(p) = N(p,u)/D(p,w).
It remains to prove that if u € F5; satisfies g(p) = N(p,u)/D(p, u), then u = u for p-a.e.

© € V. We proceed again by contradiction, i.e., we suppose that a such u is not equal to

@ for p-a.e. © € Vyy. In this case, both inequalities in (6.16) and (6.17) are strict, which

immediately yields that ggg Z; < g(p). O

6.2 Step 2: extension of the reduced variational formula

Recall 1 D and, for («, ) € CONE and p € ./\/ll(R+ UR, U {I}) such that fooo(l +
1) [pa+ pB](dl) < oo, set )
N(p,v)

h(p; c, B) = sup =——.
vEF D(,O,U)

Recall (2.812.10). The equality in is a straightforward consequence of the following

lemma.

(6.20)

Lemma 6.3 For (o, ) € CONE and p € M;(Ry URy U{Z}) such that h(p; a, ) > 0,

(

=
i

<l
N~—

For v € F satisfying h(p;a, 3) = gg% v =10 for p-a.e. (k,l) € {A, B} x [0,00) or k =T.
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Proof. The proof is similar to that of Lemma [6.1] The counterpart of Lemma [6.2] is
obtained by showing that for («, 3) € CONE and ¢ > 0 there exists a . > 0 such that, for all
peMi(RyURy U{Z} and all v € F satisfying D(p,v) € (te,0),

N —

Vip,v) (6.22)

D(p,v)

and on the limit given in Lemma [C.1|(ii).

It remains to show that h(p;a, B) = N(p:2) and that v € F satisfying h(p; o, B) = N(p.v)

N(p,v)

D(p,0) D(pv)
necessarily satisfies v = v for p-a.e. (k,l) € {A, B} x [0,00) or k = Z. The proofs are similar
to their counterparts in Lemma and require the strict concavity of u +— uk(u,l) for l € R

and of u — u¢z(u), as well as the definition of v in (2.842.10)). O

6.3 Step 3: lower bound

The inequality in (6.7)) is a straightforward consequence of the following lemma.

Lemma 6.4 For all (o, 8) € CONE, p € Ry m and v = (va,vp,vz) € F there exists p € Ry mr
and u = (u@)GeVM € Fy,, satisfying

(6.23)

Proof. Since p € ﬁpyM, there exist p € Ry a and h € £ such that p = G, ). For © € Vi
and k € {A, B}, set dyo = ly0/hke if hi,e > 0 and di e = 0 otherwise. Put

Ug = hA,@ VAdae + hB@ UB,da.e + hI’@ vz, ©O€ VM (6.24)
To prove ([6.23)), we recall (3.61)) and integrate (6.24]) against p. Since p = G, 3, it follows that
D(p.)= [ e p(d®) = Dip.u). (6.25)

VM

Since h € £ we can assert that
(hao,hpe,h10), (haeva dse,hBe VB ds e, h10v1) € L(O; ue), O €V,  (6.26)
which, with the help of , allows us to write
ue ¥(0,ue) > hae v de F(VA,dy 65 da0) (6.27)
+hB.e VB, ds.e {R(UB,dB,@, dpe) + ﬁ_Ta] + hz,e vz ¢z(v1; v, B).

After integrating (6.27) against p and using that p = G, 4, we obtain

[ uwev(©.ue)plae) > [ /0 " vat 6w 1) pald) (6.28)

Vum

+/ v [k, 1) + 252] pr(dl) + pr oz ¢r(vr;a, B)|.
0

Thus, (6.23) is immediate from (6.25)) and (6.28]). O
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6.4 Step 4: upper bound

The proof of is a straightforward consequence of the following lemma.

Lemma 6.5 For all (o, 5) € CONE, p € Ry, and u € By;,,. there exist p € Rpm andv € F

such that

N(p.uw) _ N(p.v)
D(p,u) = D(p.v)

(6.29)

Proof. Since u € By;, , Proposition in Appendix Q allows us to state that there exist

h € € and r € U(h) such that

ue ¥(0,ue) = haporaei(rae, hA@) + hperpe [F(rse hB@) + 829
+hrerre ¢z(rre), VO € Vi,
and _
haerae t+hperpe+hrerre =ue, VO € V.
Define pa n, pB,h, pz,n to be the probability measures on V. given by

dpi,h hie
—(0) = : , ke{A B,T}.
dp ©) J5,, hw.e p(dO) { J

For I e Ry, set

VA = EpAh[rA@}hAezl], B = Eth[rBe‘hBBZI]’

and
vz = Epz, [777@ ]

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

The fact that r € U(h) implies that vz > 1 and v; > 141 for [ € Ry and k € {A, B}. More-
over, the Borel measurability of © — hy g for k € {A, B} implies the Lebesgue measurability

of I + vy for k € {A, B}. Therefore, (va,vp,vr) € F.
By the concavity of a — ak(a,b) and pu+— poz(p), we obtain that

i ! ~
Epun [TA,G Rlrae,l) | g = l} < wvagk(vagl),

Eth[rBe( (rpe. 1)+ 23%) | 122 =l} < vp, [Rvps 1) + 552,

Eor [TI,G) GZ)I(TI,@)} < vz ¢z(v1).

Integrate (6.30) against p, to obtain

/V ue ¥(0,ue) p(d0) = fVM hae p(dO) Eoan [TA,e R(TA,67 fl{:%z)]
M

+ fVIV[ hI’Q p(d@) EPI,h [TI79 ¢I(TI @)]

(6.35)

(6.36)

+ Jp,, PBep(dO) B,y , [0 (R(rBe; ;lLBZ) + 559)].
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Set p = G 1. In the right-hand side of (6.36|) take the conditional expectation with respect to

}ll‘:’(z) d ,{g - in the first term and the second term, respectively. Then use the inequalities

s S
in (6.35)), to obtain

/ o (0, ue) p(dO) < / T vas R vanl) padl) (6.37)
Vur 0

+/ vpy [R(vpg, 1) + 252] pr(dl) + pr vz ¢z(vr, o, B).
0

Similarly, integrate (6.31]) against p and take the conditional expectation with respect to ,ll‘:’@

,©

! :
and 722, to obtain
B,©

/ U p(d@) = / VA ﬁA(dl) + / VB ﬁB(dl) + prvz. (6.38)
VM 0 0

At this point, (6.36) and (6.38)) allow us to conclude that N(p,u)/D(p,u) < N(p,v)/D(p,v).
Since v € F, this completes the proof. ]

7 Phase diagrams: proof of Theorems [2.1], and

7.1 Proof of Theorem [2.1]

We first state and prove a proposition that compares f, fp and fp,, and deals with the
regularity and the monotonicity of fp. Recall the definition of o* in ([2.20)).

Proposition 7.1 (i) f(«a,8) = fp(a, B) for (o, ) € CONE: 8 < 0.
(i1) x — fp(z,0) is continuous, convex and non-increasing on [0, 00).
(i1i) fp(x,0) > fp, for x € [0,a*) and fp(z,0) = fp, for x € [a*, o).

Proof. (i) Note that for (a,3) € CONE: 3 < 0 and v > 1 we have ¢Z(v,a, B) = &(v,0),
because the Hamiltonian in (3.6)) is always non-positive. Thus, (1.14) and (2.1 imply (i).

(ii) Since (a, B) = f(a, B) is convex on R? (being the pointwise limit of a sequence of convex
functions; see (1.9)) and is everywhere finite, it is also continuous. Therefore (i) implies that
x € [0,00) — fp(z,0) is continous and convex. The monotonicity of x — fp(z,0) can be read

off directly from (2.1)).

(iii) It is obvious from (2.1) and (2.13)) that fp(z,0) > fp, for every x € [0,00). Recall
(2.20)). Since z — fp(x,0) is continuous and non-increasing, it follows that fp(z,0) > fp, for

xz € [0,a*) and fp(z,0) = fp, for x € [a*, 00). O
We are now ready to give the proof of Theorem [2.1]

Proof. (a) Pick @ > 0 and note that every element of J, can be written in the form (a+73, 3)
(with 8 > —a/2), so that fp is constant and equal to fp(a,0) on J,. By the convexity of

(o, B) — f(a,B) and by Proposition [7.1[i), we know that go: 8 — f(a+ 8,8) — fp(a,0) is
convex and equal to 0 when 8 < 0. Therefore g, is non-decreasing, and we can define

Be(a) =inf{8 > 0: f(a+p,8) > fp(a,0)}, (7.1)
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so that (o + 3,5) € D if and only if 8 < f.(). It remains to check that S.(a) < co.

To that aim, pick any p € 7_31, such that pr > 0 and any v € B such that vz > 1
and D(p,v) < oo, recall , and note that limg_,o N(a + 3,83; p,v) = oo because
limg_,oo ¢z(vz;00 + B,8) = 00. The last observation is obtained by considering a trajec-
tory in W, 1, that starts at (0,0) ends at (L,0), and in between stays in the A-solvent except
when the microscopic disorder w has 3 consecutive B-monomers, in which case the trajectory
makes an excursion of size 3: one step south, one step east and one step north, inside the
B-solvent. Such a trajectory has energy ScL for some ¢ > 0.

(b) This is a straightforward consequence of the fact that fp(a, 8) = fp(a—£,0) for (o, ) €
CONE. 0

7.2 Proof of Theorem 2.7

Proof. (a) We want to show that o* € (0,00). To that aim, we first prove that fp(0,0) >
fp,, which by the continuity of = — fp(z,0) implies that a* > 0. It is easy to see that
pSao(dl) + (1 — p)dpo(dl) € R,, since this corresponds to trajectories travelling along the
z-axis while staying on one side. Thus, implies that fp(0,0) > R(u*,0), where u*
is the unique maximizer of u + &(u,0) on [1,00). Moreover, by Lemma [B.Ifii), we have
R(u,l) < R(u*,0) for every [ € [0,00), u > 1+ 1 and (u,l) # (u*,0). Since d4,(dl) does not
belong to R,, it follows that fp, < fp(0,0), and therefore the continuity of z + fp(z,0)
implies that o* > 0.

It remains to show that o* < oco. Recall Hypothesis[2 We argue by contradiction. Assume
that fp(n,0) > fp, for all n € N. Then Hypothesis [I| and Lemma tell us that there exists

a sequence (pp)nen in 7T, such that

NDfﬁna Un; N, 0)
DD(ﬁTL; Un)

with v, = v(fp(n,0)), where we recall (2.8H2.10). For simplicity, we write fo = fp, and
v = v(f2) (recall (2.84{2.10)) until the end of the proof. Since fp(n,0) > fo for n € N,
Lemma (ii) yields vy 4, < 04, for I € [0,00),n € N. Note that Lemma is stated for

fixed (a,3) € CONE, which is not the case here because (a, ) = (n,0). However, in the
present setting Lemma ii) remains true for vy since, by definition, the value taken by
va,(c) for [ € [0,00) and ¢ € (0,00) does not depend on (c, ).

f(nv O) = fD(n’O) =

> fp, >0, neN, (7.2)

We can write

Fo(n.0) — fo :fooo Un, A1 [F(Un,A, 1) — f2](Pn,a + Pn,z 00)(dl) (73)

DD(ﬁ’nn U’VZ)
1o~ vn,BalR(vn,B s 1) — 5 — folpn,B(dl)
DD(ﬁna Un)

+

Y

and the concavity of v — vk(v,l), together with the fact that v, 4; < U4, for all I € [0,00)
and 0y (vi(v,1))(0a,) = f2, implies that

Da1R(0A1,1) — Un,AiR(Vn,a, 1) 2> fo(Uag — Vnay)- (7.4)

Since & is uniformly bounded from above and v,, g; > 141 for every [ € [0,00), we can claim
that, for n large enough,

Un,B,l [fi(’l}n’B’l, l) — % — fg] < —%(1 + l), le [0, OO) (75)
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Consequently, (7.2)) and (7.3H7.5|) allow us to write
/ Va[R(0A, 1) — f2](Pn,a+ pn.z0)(dl) — Z/ 141 pn,p(dl) > 0 for n large enough, (7.6)
0 0

which clearly contradicts Hypothesis [2] because p, € 7, for n € N. The proof is therefore
complete.

(b-c) By the definition of D, Dy and D; in , and , we know that D = D1 UDy
and D1 NDy = (). Thus, Theorem [2.1)(a) implies that (b) and (c) will be proven once we show
that J, N Dy = for a € [0, ") and J, N Dy = 0 for a € [a*, 00). Moreover, Theorem [2.1|(b)
tells us that fp is constant and equal to fp(c,0) on each J, with a € [0,00). Consequently
it suffices to show that fp(«,0) > fp, for a € [0,a*) and fp(«,0) = fp, for a € [a*,00). But
this is precisely what Proposition (iii) states.

(d) Pick o € [0, 00) and assume that Hypothesis [I| holds. Then there exists a po € Op. o0 such
that poz > 0. Set v = v(fp(a,0)) and

ﬂNC(Py(a)) = inf {B >0: ¢z(va0; 6+, B) > R(5A70,0)}. (7.7)

The proof will be complete as soon as we show that B.(y(a)) = Be(v(a)) (recall ( (2-6)). Note
that, by the convexity of 8 — ¢z(04,0; 0 + B, 3), and since ¢z(v4,0; + a,ﬂ) = £(0a,,0) for
B < 0, we necessarily have that ¢z(va0;+ 5,8) > k(va,,0) for all g > Bc(’y(a)). From
Propositions [7.1] n i) and [F - , we have that

f(@,0) = fp(a,0) = NplreD) (7.8)

Dp(pa,v)’

and

Np(ﬁa,@) = /OOO @AJE(T)AJ,Z) [ﬁa,A +ﬁa7150](dl) + /Ooo B, [ (’UBl,l) 2] ﬁa7B(dl). (7.9)

By the definition of v = v(fp(a,0)) in 2.10)), we have that 0, (v £(v,0))(04,0) = fp(e,0).

For notational reasons we suppress the dependence on « of fp.

First, assume that ¢7(v4,0;6 + o, ) = K(0a,0,0) (we also suppress the dependence on
(B + «,B)). Then, since v — voz(v) and v — vik(v,0) are both concave and ¢z(v) > &(v,0)
for all v > 1, we have that v — v¢z(v) is differentiable at v4 o and

&, [’U I%(U, 0)](17),470) = &, [U ¢1(v)](®A70) = fD. (710)

Thus, for any p € 7_€p and v € B, we set ¥ € B such that ¥ = v, except for ¥z, which takes the
value v4,. In other words,

() _ Np(p,0) + prlvrdz(v) — V4,05 (04,0, 0)]
(p,v) Dp(p,9) + pzlvz — Va0
Np(p,?) + pr.fp(vz — Da0)

Dp(p,d) + pr(vr —vap)

S| =

(7.11)

where we use ([7.10)), the concavity of v — véz(v) and the fact that ¢z(v40) = &(v4,0,0) by
assumption. At this stage we recall that, by definition, Np(po) fp. Hence (7.11)) entails

~ Dp(p,0) —
that (2% < fp. Thus, B(v(e) > Be(v(@)).
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The other inequality is mu_ch easier. Indeed, if we consider 8 such that ¢z(va,0; 0+, 5) >
#(V4,0,0), then N(pa,v) > Np(pa,v) because pr, > 0. As a consequence, f(a + f,3) >
fp(a,0), so that 8 > Bc(v(a)), and therefore B.(v(a)) < Be(v(a)).

(e) We recall that for a € [o*, 00) we have v = v(fp,) and therefore 04 is constant. In (c)
we proved that S.(v(a)) = Be(y()) on [a*, 00). The definition of B.(y()) in can be
extended to a € [0, 00). Since a* > 0, the proof of (d) will be complete once we show that o —
Be(v(a)) is concave, continuous and non-decreasing on (0, 00) and that limg 0 Be(7(a)) < o0.

By using the same argument as the one we used in the proof of Theorem (a), we can
claim that limg_,o ¢7(Va,0; 0 4+ 3,8) = oo for every a € [0,00). Consequently, Bc(v(a)) IS
[0,00) for every a € [0,00). Moreover, the convexity of (a, ) — ¢7(va0;, 5) implies the
convexity of («, ) — ¢z(va0;a + B,8) — K(Va,0,0), which is also non-negative. Therefore,
the set {(a,): a € [0,00),0 € [— Z,Bc( ()]} is convex, and consequently o — B(y(c)) is
concave on [0, c0). This concavity yields that a — B.(y(c)) is continuous on (0, c0), and since
it is bounded from below by 0, also that it is non-decreasing.

It remains to show that lima_see Be(7(c0)) < co. To that aim, we define 3.(c0) by choosing
a = 00 in . Since ¢z(v4,0;00,8) < ¢pz(va,0;a + B, ) for every o > 0 and 3 € [-§,00),
it follows that B.(y(a)) < B.(co) for every a € (0,00). Therefore it suffices to prove that
Be(00) < oo. But this is a consequence of the fact that limg oo ¢7(T4,0; 00, ) = co. This
limit is obtained by using again the same argument as the one we used in the proof of Theorem

2.1]n).

(f) This is a straightforward consequence of the fact that f = fp on D; and fp is a function
of a — .

(g) This is a direct consequence of the definition of the Dy-phase in (2.16)) and the fact that
fp, does not depend on « and 3 (see (2.13))). O

7.3 Proof of Theorem [2.11]

The proof of Theorem has much in common with that of Theorem [2.7]in Section For
this reason we only focus on the points that need to be adapted from the proof of Theorem [2.7]

Proof. (a) The proof of @* € (0, 00) follows the same scheme as the proof of Theorem 2.7|(a)
The bound fp(0,0) > &(u*,0) remains valid (u* being the unique maximizer of u — &(u,0)).
Moreover, {p € R,: Kp(p) = K,} does not contain any element of the form x84 (dl) + (1 —
x)0po(dl), since the fraction of horizontal steps taken in solvent B can obviously be reduced
by allowing the path to sometimes travel in solvent A with a non-zero slope. This implies
that fp(0,0) > fp,(0,0), and therefore a* > 0.

The upper bound is also similar to that of Theorem [2.7] -(a The only difference i s that
fp, depends on n, so that we write fa(n) as well as vn = v(fg . Both . and . are
still true, whereas some attention is needed to adapt (7.5 since f2 depends on n. However,
it suffices to pick any p € R, \ T, such that Ka(p) + KB( p) < oo and ©* € B, and such that
vp; =1+ 1for (k1) € {A, B} x [0,00) and 97 = 1, to obtain that

f2(n) = fp(n,0) > ﬁ > — %n, (7.12)

where ¢; € R and ¢3 = [;°(1+1) pp(dl)/Dp(p,v*). Since p < p. and p € R\ T, it follows
that K4(p) > 0 and Kg(p) > 0, and hence co € (0,1). Thus, (7.5) still holds with a right-hand
side of the form — (i — %)(1+1), which contradicts Hypothesis I 3l and completes the proof.
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(b) The proof is literally the same as that of Theorem [2.7|(b-c-d).

(c) This is again a consequence of the fact that f = fp on D and that fp is a function of
a— . O

A Uniform convergence of path entropies

In Appendix we state a basic lemma (Lemma about uniform convergence of path
entropies in a single column. This lemma is proved with the help of three additional lemmas
(Lemmas A.4), which are proved in Appendix The latter ends with an elementary
lemma (Lemma that allows us to extend path entropies from rational to irrational pa-
rameter values. In Appendix we extend Lemma to entropies associated with sets of
paths fullfilling certain restrictions on their vertical displacement.

A.1 Basic lemma

We recall the definition of k7, L € N, in (3.2) and & in (3.3).

Lemma A.1 For every € > 0 there exists an L. € N such that

|kr(u,l) — k(u,l)| <e for L> L. and (u,l) € Hp,. (A.1)

Proof. With the help of Lemma below we get rid of those (u,l) € H N Q? with u large,
i.e., we prove that lim, ,o k1(u,l) = 0 uniformly in L € N and (u,l) € H;. Lemma
in turn deals with the moderate values of u, i.e., u bounded away from infinity and 1 4+ |I|.
Finally, with Lemma we take into account the small values of u, i.e., u close to 1+ |I|. To
ease the notation we set, for n > 0 and U > 1,

Hepu ={(w,l) € Hp: 1+ |l +n <u < U}, Hopv ={(u,l) e H: 1+ |l| +n<u<U}.

(A.2)
Lemma A.2 For every e > 0 there exists an Uz > 1 such that
Llog|{r e Wy mupi =L} <e VLeNuel+F:iu>U.. (A.3)
Lemma A.3 For everye >0, 7> 0 and U > 1 there exists an L.,y € N such that
|Rr(u,l) — R(u,l)| <e VL > Leyu, (u,l) € Hppu- (A.4)
Lemma A.4 For every ¢ > 0 there exist n. € (0,3) and L. € N such that
|Rr(u,l) — Rp(u+mn,l)| <e VL > L, (u,l) e Hp,n € (0,775)0%. (A.5)
Note that, after letting L — oo in Lemma[A4] we get
|R(u,l) — R(u+n,0)| <e Y (u,l) € HNQ? ne(0,7.)NQ. (A.6)
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Pick e > 0 and 7. € (0,3) as in Lemma Note that Lemmas yield that,

for L large enough, (A.1) holds on {(u,l) € Hp:u > 1+ |I] + %}, Next, pick L € N,
(w,) € Hp:u <1+l + % and ng € (&, n.) N &, and write

|kr(u,l) — R(u,l)| <A+ B+C, (A.7)
where

A=|kp(u,l)—Fr(u+nr,l)|, B=|kr(u+nr,l)—k(u+nw,l), C=|k(u+nL,l)—F(u,l)|

(A.8)
By (A.6), it follows that C' < . As mentioned above, the fact that (v + nr,l) € Hy and
uw+ng > |I] + 5 implies that, for L large enough, B < ¢ uniformly in (u,l) € Hp: u <
1+ |I| + %&. Finally, from Lemma we obtain that A < e for L large enough, uniformly in
(u,l) € Hp: u <1+4|l] + . This completes the proof of Lemma O

A.2 A generalization of Lemma

In Section |5| we sometimes needed to deal with subsets of trajectories of the following form.
Recall (3.1)), pick L € N, (u,l) € Hy, and By, B € £ such that

By >0VvI>0Al >By and B;—Bg>1. (AQ)

Denote by WL(U, l, By, B1) the subset of W (u,l) containing those trajectories that are con-
strained to remain above ByL and below B;L (see Fig. , ie.,

WL(U,Z,Bo,Bl) = {7’(’ € WL(U,Z)Z B()L < T2 < B1L for ¢ € {1, . ,uL — 1}}, (Al())

and let 1
EL(U,Z,BO,Bl) = Elog ’WL(U,Z,Bo,Blﬂ (A.ll)

be the entropy per step carried by the trajectories in WL(u,l,BO,Bl). With Lemma
below we prove that the effect on the entropy of the restriction induced by By and Bj in the
set W (u,!) vanishes uniformly as L — oo.

Lemma A.5 For every e > 0 there exists an L. € N such that, for L > L., (u,l) € Hy and
By, By € Z/ L satisfying By — By > 1, B; > max{0,1} and By < min{0, [},

‘RL(U,Z,BQ,Bl) - RL(U,Z)| <e. (A.12)

Proof. The key fact is that B; — By > 1. The vertical restrictions By > max{0,[} and
By < min{0,!} gives polynomial corrections in the computation of the entropy, but these
corrections are harmless because (B; — By)L is large. O

A.3 Proofs of Lemmas [A.2HA . 4]
A.3.1 Proof of Lemma [A.2]

The proof relies on the following expression:

L+1
L+1 ~ 1L\,
’Uu,L:’{TFEWuLITFuL,l:L}‘:Z( , )((u . ) >2 , (A.13)
r=1
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uL steps

BqL

(0,0)

BolL

Figure 16: A trajectory in WL(U, l, By, By).

where r stands for the number of vertical stretches made by the trajectory (a vertical stretch
being a maximal sequence of consecutive vertical steps). Stirling’s formula allows us to assert
that there exists a g: [1,00) — (0, 00) satisfying lim, - g(u) = 0 such that

L
<“L ) <edWul 4 >1 LeN. (A.14)
Equations (A.13HA.14]) complete the proof.

A.3.2 Proof of Lemma [A.3

We first note that, since u is bounded from above, it is equivalent to prove (A.4)) with £ and
R, or with G, and G given by

G(u,l) = ui(u,l), Gr(u,l) = ukp(u,l), (u,l) € Hp. (A.15)

Via concatenation of trajectories, it is straightforward to prove that G is Q-concave on HNQ?,
ie.,

G()\(ul, ll)—l—(l—)\)(UQ,lg)) > )\G(ul, l1)+(1—)\)G(U2, lz), A€ Q[O,l}? (ul, ll), (UQ, lz) € HQQQ.
(A.16)
Therefore G is Lipschitz on every K NHNQ? with K C H (the interior of H) compact. Thus,
G can be extended on H° to a function that is Lipschitz on every compact subset in .
Pick n > 0, M > 1, € > 0, and choose L. € N such that 1/L. < e. Since H, nm C HO
is compact, there exists a ¢ > 0 (depending on 7, M) such that G is c-Lipschitz on H, .
Moreover, any point in H,, y is at distance at most € from the finite lattice Hp,_ , - Lemma
therefore implies that there exists a ¢. € N satisfying

|Gqr. (u,1) — G(u,l)] < ¢ V(u,l) € Hoomms ¢ > G- (A.17)

Let L' = g.L., and pick ¢ € N to be specified later. Then, for L > ¢L" and (u,l) € Hr M,
there exists an (u',l") € Hp, pa such that |[(u,l) — (W, 1) < &, u > W/, |I] > |I'| and
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u—u > || —|l'|. We recall and write
0<G(u,l) —Gr(u,l) <A+ B+C, (A.18)
with
A=|Gu,l) - G\ 1|, B=|GW,I)-Gp, 1), C=GL,I')—Gp(ul). (A.19)

Since G is c-Lipschitz on Hy ar, and since |(u,l) — (v/,1')|oo < €, we have A < ce. By
we have that B < e. Therefore only C' remains to be considered. By Euclidean division, we
get that L = sL' +r, where s > g and r € {0,..., L — 1}. Pick 7y, ma,...,ms € Wr/(u/,|I']),
and concatenate them to obtain a trajectory in Wy (v, |I'|). Moreover, note that

ul —u'sL' = (u—u')sL' + ur (A.20)
> (11l = [VDsL + 1+ [i)r = (L = sL') + (JIIL — s|'|Z"),

where we use that L—sL' =r, u—u' > |l|] —|I'| and u > 1+|l|. Thus, (A.20) implies that any
trajectory in Wy, (v, |I'|) can be concatenated with an (uL — u'sL’)-step trajectory, starting
at (sL’,s|l'|L’) and ending at (L, |I|L), to obtain a trajectory in Wy (u, |I|). Consequently,

Gr(u,l) > $logrp (u',l') > 275G (1), (A.21)

But s > ¢ and therefore Gp/(v/,l") — Gp(u,l) < %GL/(U/,ZI) < %Mlog?) (recall that log3 is
an upper bound for all entropies per step). Thus, by taking ¢ large enough, we complete the
proof.

A.3.3 Proof of Lemma [A 4]

Pick L € N, (u,l) € Hp, n € %, and define the map T': Wy (u,l) — Wr(u +n,1) as follows.
Pick m € Wr(u,l), find its first vertical stretch, and extend this stretch by % steps. Then,
find the first vertical stretch in the opposite direction of the stretch just extended, and extend
this stretch by % steps. The result of this map is T'(w) € Wr(u+n,1), and it is easy to verify
that 7" is an injection, so that (W (u,l)| < [Wr(u +n,1)|.

Next, define a map T: Wr(u +1,1) — Wr(u,l) as follows. Pick ™ € Wr(u +n,l) and

remove its first % steps north and its first % steps south. The result is T'(7w) € Wr(u, 1), but

T is not injective. However, we can easily prove that for every € > 0 there exist n. > 0 and
L. € N such that, for all n < n. and all L > I, the number of trajectories in W, (u+n,1) that
are mapped by T to a particular trajectory in = € Wr(u,1) is bounded from above by e,
uniformly in (u,l) € Hz and 7 € Wi, (u, ).

This completes the proof of Lemmas
B Entropic properties
Recall Lemma where (u,1) + &(u, () is defined on H N Q2.

Lemma B.1 (i) (u,l) — uk(u,l) extends to a continuous and strictly concave function on

H.
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(ii) For all u € [1,00), | — RK(u,l) is strictly increasing on [—u + 1,0] and strictly decreasing
on [0,u —1].

(iii) For alll € R, limy o R(u,l) = 0.

(iv) limy| o0 R(u, 1) = 0 uniformly in u > 1+ |I].

(v) For alll € R, u — uk(u,l) is continuous, strictly concave, strictly increasing on [1+]l|, 00)
and limy, o0 uk(u,l) = co.

(vi) For alll € R, u > uk(u,l) is analytic on (1 + |l|,00) and

vli_)Iglo Ou(uk(u,l))(v) =0, (B.1)
thBrl Ou(uf(u, 1)) (v) = OF (ui(u, 1)) (1 + |I]) = oo. (B.2)

Lemma B.2 For all € > 0 there exists R, > 0 such that
Ou(uk(u,l))(v) <e, forle|0,00),v>R.V2+I. (B.3)

Recall the definition of {v(c),c € (0,00)} in (2.842.10]).

Lemma B.3 (i) For all c € (0,), v(c) € B.

(it) For (k,l) € {A,B} x (0,00), ¢ — vy (c) is strictly decreasing and ¢ — vz(c) is non-
1ncreasing.

(i3) If (cn)nen € (0,00)N satisfies lim, o0 Cn = oo € (0,00), then v(c,) converges pointwise
to v(Coo)-

(iv) D(p,v(c)) < oo for all p € Mi(Ry URL U{Z}) satisfying [;°(1+1)(pa + pp)(dl) < 0o
and all ¢ € (0, 00).

Recall the definition of {u(c),c € (0,00)} in (6.9).

Lemma B.4 (i) For all ¢ € (0,00), u(c) € By, .

(ii) For all © € Vy, ¢ — ug(c) is non-increasing on (0,00).

(i4) If (cn)nen € (0,00)N satisfies lim, o0 ¢ = oo € (0,00), then u(cy,) converges pointwise
to u(coo)-

(iv) D(p,u(c)) < oo for all p € My1(Vyr) satisfying va te p(dO) < oo and all ¢ € (0,00).

B.1 Proofs of Lemmas [B.1-HB.4

B.1.1 Proof of Lemma [B.1l

(i) In the proof of Lemma we have shown that & can be extended to H° in such a way
that (u,l) — u&(u,l) is continuous and concave on H". Lemma allows us to extend & to
the boundary of H, in such a way that continuity and concavity of (u,) — uk(u,l) hold on
all of H. To obtain the strict concavity, we recall the formula in , i.e.,

ufi(u, 1) = { ZZEZ)/"Z”I/”D’ ﬁig (B.4)

where (a,b) — ak(a,b), a >14+b,b>0, and u — pk(p), p > 1, are given in [6], Section 2.1,

and are strictly concave. In the case [ # 0, (B.4) provides strict concavity of (u,l) — uk(u,l)
on Ht = {(u,l) € H:1 > 0} and on X~ = {(u,l) € H: 1 < 0}, while in the case I = 0 it
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provides strict concavity on H = {(u,0),u > 1}. We already know that (u,l) — ufi(u,l) is
concave on H, which, by the strict concavity on H, H~ and H, implies strict concavity of
(u, 1) — uk(u,l) on H.

(ii) This follows from the strict concavity of [ — & (u,l) and from the fact that &(u, ) = &(u, —1)
for (u,l) € H.

(iii-iv) These are direct consequences of Lemma [A.2]

(v) By (i) we have that v — wuR(u,l) is continuous and strictly concave on [1 + [I|,00).
Therefore, proving that lim, ,. uk(u,l) = oo is sufficient to obtain that u +— wuk(u,l) is
strictly increasing. It is proven in [6], Lemma 2.1.2 (iii), that lim, . uk(u) = oo, so that
completes the proof for [ = 0. If [ # 0, then we use again and the variational
formula in the proof of [6], Lemma 2.1.1, to check that lim, ,~ ak(a,b) = co for all b > 0.

(vi) To get the analyticity on (1 + |I|,00), we use (B.4) and the analyticity of (a,b) — ar(a,b)
and g +— pi(p) inside their domain of definition (see [6], Section 2.1).
We note that for every [ € R,

upz(u) > uk(u,0) > uk(u,l), we[l+|l],00), (B.5)

where the first inequality is well known and the second inequality comes from Lemma [B.1(ii).
Since, by Lemma [B.1v), u — u&(u,l) is concave and increasing on [1 + |I|,c0), and
imply (B.I).
It remains to prove (B.2)). To that aim, we recall that an explicit formula is available for
R (u,l), namely,
R(u,l) = w(u/|l],1/]l]), forl#0, (B.6)

where k(a,b), a > 1+b, b > 0 is given in [6], Section 2.1 (in the proof of Lemmas 2.1.1-2.1.2).
The latter formula allows us to compute d, (ui(u,1))(1+14¢,0) = G(1+ } + £, }) with

a+1-b)(a—1—-b
G(a,b) = %IOg [(a+1—§>—25a,,,§ga—1—b)—zaa,b)} (B.7)

and with
o = sriy | (0 + 1) = ((a = b)2 + (2 = 1)) ]
fap = sty | — (0= 1)+ ((a= )2 +62 = 1) 2], (B.8)

so that the proof of (B.2) will be complete once we show that for all b > 0 it holds that
lim, g+ G(1+b+¢,b) = co. The latter is achieved by using first (B.8|) to check that 014p4cp =
1L+b +(3- %H))5+ o(e) and €144 = 5 +0(¢) as € — 0T, and then by substituting these two
expansions into (B.7)) at (a,b) = (1+b+¢,b), which implies the result after a straightforward
computation.

B.1.2 Proof of Lemma [B.2]

The proof is based on the following lemma.

Lemma B.5
lim 0, [uk(u,1)](2+1,1) = 0. (B.9)

l—00

82



Proof. We recall 1m , and we note that 9, (ui(u,))(2+1,1) = G(l + %, %) Thus, the
B.5)

proof of Lemma [B.5[ will be complete once we show that lim,_,q+ G(1 4 2b,b) = 0. The latter
is achieved by using (B.7)) and (B.8]) to compute

_ 1 (24b)b
G(1+2b,b) = 5 log |:[2+b(1—1_2~_b+0(b)>](b+0(b)) (B.10)

which immediately implies the result. (]

We resume the proof of Lemma Once Lemma is proven, we use the concavity of
u +— uk(u,l) for I € R to obtain that for & > 0 there exists a l. > 0 such that 9, [uk(u,)](u,l) <
e forall I: |l| > 1. and u > 2+ [. Thus, it remains to show that there exists a R. > 0 such
that O, [uk(u,l)](u,l) < e for l € [0,l] and u > R.. By contradiction, if we assume that the
latter does not hold, then there exists ¢ > 0 and two sequences (I,)nen € [0, 1]N and (up)nen
such that u, > 1+1, for n € N and lim,,_,oc u,, = 00 and such that 9, [uk(u,l)]|(un,l,) > €
for n € N. As a consequence, we can write

Unk(Up, ln) — (14 L)L+ 1, 1) > e(uy, — 1 — 1), (B.11)
and, with the help of Lemma (ii), we obtain
UnF(Un, 0) > upk(un,ly) > e(uy, — 1 —1), forn €N, (B.12)

which clearly contradicts Lemma (iii) because lim,,_yoo U, = 00.

B.1.3 Proof of Lemma [B.3l

(i) We must prove that [ — v4,(c) and [ — vp,(c) are continuous on [0,00). We give the
proof for vy, the proof for vp being similar. Let (I,),en be a sequence in [0, 00) such that
limy, 00 In = lo € [0,00). We want to prove that lim, o vay,(c) = va . (c). For simplicity,
we set vp, = vay, (c) for n € Nand v = v4,._(c). We also set g,,(u) = uk(u,l,) for n € N and
u > 141, and goo(u) = ufi(u,lo) for u > 1+ lo. By Lemmas[B.1|(i) and (v), we know that g,
converges pointwise to g as n — 0o, and that g, and g are strictly concave. Consequently,
Ou(gn) converges pointwise to 0, (goo). We argue by contradiction. Suppose that v, does not
converge t0 vs. Then there exists an n > 0 such that v, > vy + 1 along a subsequence or
vp, < Voo — M along a subsequence. Suppose for simplicity that v, < vs — 1 for n € N. Then
the strict concavity of g, implies that 9y, (gn)(veo — 1) < Ou(gn)(vn) = ¢, and therefore, letting
n — oo and using the strict concavity of g, we obtain 9y (goo)(Veo) < Ou(goo) (Voo — ) < c.
This provides the contradiction, because 9y(¢goo)(vo0) = ¢ by definition. The proof is similar
when we assume that v, > vo + 7 for n € N.

(ii) For (k,1) € {A, B} x [0, 00), this is a straightforward consequence of the definition of v(c)
in (2.82.9), of the strict concavity of u — uk(u,l) and of the continuity of u — 0, (uf(u,l))
for every | € [0,00) (see Lemma [B.1j(v-vi)). For ¢ — vz(c) we do not have strict monotonicity
because u — 0y (u¢z(u)) is not proven to be continuous.

(iii) Similarly to what we did in (i), we consider (cp)neny a sequence in (0,00) such that
limy, 00 ¢n = €0 € (0,00), and we want to show that lim, o vgi(cn) = vki(co) for k €
{A,B} and | € [0,00) and lim, o v7(cn) = vr(cs). Again we argue by contradiction.
Suppose, for instance, that vz(cy,) does not converge to vr(co). Then there exists an 1 > 0
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such that vz(c,) < vz(eso) — m or vz(cy) > vr(cso) + 1 along a subsequence. Suppose for
simplicity that vz(cn) > vz(cso)+n. Then 9, (upz(u))(vz(coo)+n) > 0 (upz(w))(vz(cn)) > cn
for n € N. Let n — oo to obtain afj(u@;(u))(vz(coo)) 0, (upz(u))(vz(coo) +1M) > €o0, which
contradicts the definition of vr(c) in 2.10)). The proof is similar when we assume that
vr(cn) < vr(cso) —m for n € N.

(iv) This is a consequence of Lemma which implies that for all ¢ € (0,00) there exists a
lc € [0,00) such that vy (c) < 2+ for all I > I.. Moreover, and the fact that (a, 8) €
CONE entail that vg;(c) < vay(c) for I € [0,00), and therefore [;™(1+1)(pa + pp)(dl) < oo
combined with the finitness of vz(c) imply D(p,v(c)) < oco.

B.1.4 Proof of Lemma [B.4

(i) The proof is similar to that of Lemma [B.3|i), except for the fact that when we consider
O, — O as n — oo in V), we have (by Lemma the pointwise convergence of g, (u) =
uh (O, u) t0 goo(u) = u)(Oo,u), but we do not have the pointwise convergence of dgy,(u) to
0goo(u) since g is not a priori differentiable. However, the strict concavity and the pointwise
convergence of g, towards go, gives us

0 goo(u) > limsup 0~ gn(u) > hH_1>in a+gn(u) > a+goo(u)> (B.13)

n—o0

with which we can easily mimick the proof in Lemma [B.3{i)

(ii) The proof is similar to that of Lemma [B.3[ii), except for the fact that the monotonicity of
¢ — ue(c) is not proven to be strict because u +— 9(uy (O, u)) is not proven to be continuous.

(iii) We mimick the proof of Lemma [B.3(iii). Let (¢;)nen be a sequence in (0, 00) such that
lim,, o0 ¢ = €0 € (0,00), and assume that there exists an n > 0 such that ug(c,) > ue(coo)+
n along a subsequence. Then 9, (ui)(0,u))(ue(cs) + 1) > 0y (up(O,u))(ue(cn)) > ¢y for
n € N. Let n — oo to obtain 9; (u)(0,u))(ue(cx)) > 0y (up(0,u))(ue(c) + 1) > Coo,
which contradicts the definition of ug(cx) in (6.9).

(iv) The proof is similar to that of Lemma [B.3|(iv). The role of Lemma is taken over by
Lemma

C Properties of free energies

C.1 Free energy along a single linear interface

Also the free energy u — ¢7(u;, 3) defined in Proposition can be extended from QN
[1,00) to [1,00), in such a way that p — ué?(u; e, 3) is concave and continous on [1,00).
By concatenating trajectories, we can indeed check that pu ~— u¢?(u;a, 3) is concave on
QN [1,00). Therefore it is Lipschitz on every compact subset of (1,00) and can be extended
to a concave and continuous function on (1,00). The continuity at g = 1 comes from the fact

that ¢Z(1;, 3) = 0 and lim,, 1 ¢* (1) = 0, which is obtained by using Lemma below.

Lemma C.1 For all (o, ) € CONE:
(i) p— pet (u; o, B) is strictly increasing on [1,00) and limy, oo u¢* (3 @, B) = 00
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(i) limy, o0 d)I(,U; o, B) =0.

(iii)
lim 9, (uz(u o, 5))(v) =0, (C.1)
lim OF (ugr (u; a, 3))(v) = O (ubr (s o, §))(1) = oo. (C.2)

Proof. (i) Clearly, ¢Z(u;a, 8) > %(u,0) for g > 1. Therefore Lemma (iv) implies that
limy, 00 p¢® (5, B) = o0o. Thus, the concavity of u — u¢®(u;a, B) is sufficient to obtain
that it is strictly increasing on [1, 00).
(ii) See [7], Lemma 2.4.1(i).
(iii) To prove (C-1]), we pick x € {4, B}? such that x(0) = A and y(—1) = B. We recall
and consider © = (x,0,0,0,2) € Vyint,42,m such that [4(©) = Ip(©) = 0. By Proposition
we have
uh(Og,u) > upz(u), u € [l,00), (C.3)

and , together with Lemma and the concavity and monotonicity of u — u¢pz(u),
imply .

It remains to prove (C.2). For all (a,3) € CONE we know that u — u¢z(u;a,3) is
continuous and strictly concave on [1,00). Therefore we necessarily have

lim 9 (upz(w)(v) = 8 (udz(u))(1). (C.4)

v—1+

Moreover, since (u¢z(u))(1) = (um(u 0))(1) = 0 and since ¢z(u) > &(u,0) for u > 1, we have
O (upz(w))(1) > 9 (uk(u,0))(1) and (B.2) gives &; (ufi(u,0))(1) = oo, which completes the

proof of (C.2). O

Recall Assumption in which we assumed that pu — u¢”(u;a, 3) is strictly concave on
[1,00). The next lemma states that the convergence of the average quenched free energy d)%
to ¢ as L — oo is uniform on Q N [1,00).

Lemma C.2 For every («, ) € CONE and € > 0 there exists an L. € N such that

pr(p) —d(w)| <e  Vpel+Z, L> L. (C.5)

Proof. Similarly to what we did for Lemma[A1] the proof can be done by treating separately
the cases p large, moderate and small. We leave the details to the reader. U

C.2 Free energy in a single column

We can extend (©,u) + (0,u) from Vi, to V), by using the variational formula in (3.48)
and by recalling that & and ¢Z have been extended to H and [1,00) in Appendices and
Pick M € N and recall (3.18). Define a distance dy; on V) as follows. Pick ©1,05 € V),

abbreviate
©1 = (x1, AL, bo 1,011, 21), ©2 = (x2, Ally, by 2, b1 2, 22), (C.6)

and define

M(01,02) = Z {Xl(éfjm + |AIL — Ally| + |bo,1 — bo2| + [b1,1 — b1 2| + |x1 — 2| (C.7)

85



so that JM((@l,ul), (O2,u2)) = max{|u; — uszl|,dr(01,02)} is a distance on V;;}m for which
V;\}m is compact.

Lemmas and below are proven in Section
Lemma C.3 For every (M, m) € EIGH and (a, 3) € CONE,
(u,©) = uy(0,u; v, ) (C.8)

. . . 3 k,m . T
is uniformly continuous on V,;  endowed with dpy.

Lemma C.4 For every © € Vyy, the function u +— up(©,u) is continuous and strictly con-
cave on [tg,00).

Below we list several results that were used in Section [l The proofs of these result are
given in Section Proposition below says that the free energy per column associated
with the Hamiltonian given by (5 — «)/2 times the time spent by the copolymer in the B-
solvent is a good aproximation of (0, u) when u — oo uniformly in © € V);. This proof of
this proposition will be given in Section

Proposition C.5 For all (o, ) € CONE and all € > 0 there exists R, > 0 and L. € N such
that
B—a —
‘w(@,u) ~Llg Y eTWT‘ <e ©€Vy, u>toVR., L>L. (C.9)

TE€EWe u,L
where T(r) = 3244 l{X(Lm_l,m) = B} is the time spent by m in solvent B.

Lemmas [C.6HC.§ below are consequences of Lemma [C.4] and Proposition The proofs
of Lemmas and will be given in Sections [C.3.4] and [C.3.6] Lemma [C.6] shows that
(0, u) is bounded from above uniformly in © € V), as u — oo. Lemma dentiﬁes the
limit of 9 (uv(0,u)) as u — oo for © € Vyy. Lemma is the counterpart of Lemma
for 0, (uy(©,w)) instead of (O, u).

Lemma C.6 For all (a, ) € CONE and € > 0 there exists a C. > 0 such that

o 3 if © €V \Vomt,1m, u>teVCe, 10
< — .
V(0w < 5%04 +e if © € Vamt,1m, u>teVCO, ( )

Lemma C.7 For all (o, 3) € CONE,
fim 05 (@) = { o O Y Vi ©11)
im uh(©,u))(v) = o . — )
v=ro0 ¥ 22 if © € Vampiu-
Lemma C.8 For all (o, ) € CONE and € > 0 there exists a V> > 0 such that
€ if ©€Vm\ Vaint,B1,m, U > 2teV VL,
o, © < — C.12
u (Uw( ,’LL))(’U) — { B—Ta + e Zf 9 E Vnint7B71,M, v Z 2t(—) \/ \'/8 ( )
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C.3 Proof of Lemmas [C.3HC.§|
C.3.1 Proof of Lemma

Pick (M, m) € EIGH. By the compactness of V,; ", it suffices to show that (u, ©) — u (O, u)
is continuous on V]T/}m. Let (©n,un) = (Xn, AlLy, b pn, b1 n,upn) be the general term of an
infinite sequence that tends to (0, u) = (x, AIL by, by, u) in (V7 dar). We want to show that
limy, 00 U (On, uyp) = utp(©,u). By the definition of JM, we have y, = x and AIl, = AII
for n large enough. We assume that © € Vi, so that ©, € Vi, for n large enough as well.
The case © € Vi can be treated similarly.

Set
Rm = {(a,h,1) € [0,m] x [0,1] xR: h + |I| < a} (C.13)

and note that R,, is a compact set. Let g: Ry, = [0,00) be defined as g(a, h,l) = ak(3, %)
if h > 0 and g(a, h,1) = 0 if h = 0. The continuity of %, stated in Lemma [B.1|i), ensures that
g is continuous on {(a, h,l) € Ry,: h > 0}. The continuity at all (a,0,l) € R, is obtained by

that k is bounded on H.

In the same spirit, we may set R}, = {(u, h) € [0,m] x [0,1]: h < u} and define ¢': R, —>
[0,00) as ¢'(u, h) = u¢® (%) for h > 0 and ¢'(u, h) = 0 for h = 0. With the help of Lemma
we obtain the continuity of ¢’ on R}, by mimicking the proof of the continuity of g on R,.

Note that the variational formula in can be rewriten as

u(0,u) = sup Q((h), (a),la,lB), (C.14)
(h),(a)eL(la,lB;u)

with
Q((h), (a),la,1p) = g(aa, ha,la) + glap, hp,lp) + ap 55 + ¢ (a*, hT), (C.15)

and with l4 and [p defined in (3.39). Note that £(l4, Ip; u) is compact, and that (h), (a) —
Q((h), (a),la,lp) is continuous on L(l4, Ip; u) because g and ¢’ are continuous on R,, and
R,., respectively. Hence, the supremum in (C.14)) is attained.

Pick ¢ > 0, and note that g and ¢’ are uniformly continuous on R,, and R/, , which
are compact sets. Hence there exists an 7. > 0 such that |g(a,h,l) — g(a’,h',I")] < e and
lg'(u,b) — ¢’ (v, 0')| < e when (a,h,l),(d,h,lI') € Ry, and (u,b), (v, V) € R, are such that
la —d|,|h— 1|, [l =U|,|lu—u| and |b—¥| are bounded from above by 7.

Since limy,—y00 (On, upn) = (O, u) we also have that lim,_,« by = bo, limp o0 b1, = b1 and
limy, 00 y, = w. Thus, lim,, o0 {4, = {4 and lim,, o I, = Ip, and therefore |14, — 14| < 7.,
llgn —B| < ne and |u, —u| <. for n > n. large enough.

Forn € N, let (hy), (an) € L(Ia,n, IBn; un) be a maximizer of (C.14)) at (0, u,), and note

that, for n > n., we can choose (hy,), (@) € L(la, Ip; u) such that [@a, —aanl, |[aBn—aBn

)

, |ﬁ3,n — hp | and |?L£ — hZ| are bounded above by 7.. Consequently,

|Ei£ - CLZ’Z—|, ‘EA,TL - hA,n

UpP(On, upn) — uhp(©,u) < Q((hn), (an),lan, IBn) — Q((ﬁn), (an),la,lp) < 3e. (C.16)

We bound u) (0, u) — un,1)(©y,, uy) from above in a similar manner, and this suffices to obtain
the claim.
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C.3.2 Proof of lemma

The continuity is a straightforward consequence of Lemma [C.3} simply fix © and let m — oco.
To prove the strict concavity, we note that the cases © € Vip p and © € Vpine, i can be
treated similarly. We will therefore focus on © € Vit ur.

For [ e R, let
N ={(a,h) € [0,00) x [0,1]: a > h+ |l]}, N ={(a,h) € Nj: h > 0}, (C.17)

and let g;: N — [0,00) be defined as g;(a,h) = a%(%,%) for h > 0 and g;(a,h) = 0 for
h = 0. For | # 0, the strict concavity of (u,l) — ufi(u,l) on H, stated in Lemma [B.I|i),
immediately yields that g; is strictly concave on /\/’fL and concave on N;. Consequently, for all
(a1,h1) € Njt and (as, ha) € N\ N}, g; is strictly concave on the segment [(u1, k1), (u2, ho)].

Define also g: Ny + [0,00) as g(a,h) = a¢* (%) for h > 0 and g(a,h) = 0 for h = 0.
The strict concavity of u — u¢®(u) and of u — u&(u,0) on [1,00), stated in Assumption
and in Lemma immediately yield that § and gg are concave on Ny and that, for h > 0,
a — g(a,h) and a — go(a, h) are strictly concave on [h, 00)

Similarly to what we did in , we can rewrite the variational formula in as

u(©,u) = sup Q((n), (a)) (C.18)
(W) ()€L(la, 153 u)

with
Q((h),(a)) = gi,(aa, ha) + giy(ap, hp) + ap 55% + §(u — ax — ap,1 —ha — hg), (C.19)

and the supremum in is attained. In what follows we will restrict the proof to the
case l4,lp > 0 for the following reason. If [, = 0 for k € {A, B}, then the inequality go < g
and the concavity of g ensure that there exists a (h), (a) € L(l4, Ip; u) maximizing
and satisfying hy = ax = 0, which allows to copy the proof below after removing the k-th
coordinate in (h), (a).

Next, we show that if (h),(a) € L(la, lp; u) realizes the maximum in (C.18)), then
(h), (a) ¢ L(1a, lp; u) with

L(>a, lg;u) = Lalla, Ip; w) U Lp(la, Ip; w) UL (La, 1p; w) (C.20)

and

La(la, Ig; uw) ={(h),(a) € L(I4, Ip; u): ha=0 and as > la},

Lp(la, Ig; u) ={(h),(a) € L(Ia,lg;u): hg =0 and ap > Ip},
L4, 1g; u) = {(h), (a) € L(I4, I; u): hy =0 and a; > 0}. (C.21)

Assume that (h),(a) € Z(ZA, Ig; u), and that hy > 0 or h > 0. For instance, (h),(a) €
LZ(l4, I; w) and hy > 0. Then, by Lemma (iv)7 Q strictly increases when ay4 is replaced
by aa+a’ and a” by 0. This contradicts the fact that (h), (a) is a maximizer. Next, if (h), (a) €
L(l, Ip; u) and hy = kT = 0, then hg = 1, and the first case is (h), (a) € La(la, I; u),
while the second case is (h), (a) € LX(l4, Ip; u). In the second case, as before, we replace a4
by a4+ a’ and a” by 0, which does not change CNQ but yields that a4 > [4 and therefore brings
us back to the first case. In this first case, we are left with an expression of the form

Q((h), () = gis(ap, 1) + ap 552 (C.22)
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with hq = h* = 0 and a4 > l4. Thus, if we can show that there exists an x € (0, 1) such that

giy(aa, )+ gi,(ap, 1 —x) > g1, (ap, 1), (C.23)

then we can claim that (h),(a) is not a maximizer of (C.18) and the proof for (h),(a) ¢

L(la, Ip; u) will be complete.
To that end, we recall (3.4]), which allows us to rewrite the left-hand side in (C.23|) as

gia(an, )+ g, (ap, 1 —2) =aak($2, &) +ap (2, 32) + ap ﬁ_TO‘ (C.24)

Tala 5 I

We recall [6], Lemma 2.1.1, which claims that & is defined on DOM = {(a,b): a > 1+b,b > 0},
is analytic on the interior of DOM and is continuous on DOM. Moreover, in the proof of this
lemma, an expression for 0y x(a,b) is provided, which is valid on the interior of DOM. From
this expression we can easily check that if a > 1, then limy_,g 9y k(a,b) = oo. Therefore, by
the continuity of k on (aa/l4,0) with a4/la > 1 we can assert that the derivative with respect
to = of the left-hand side in at x = 0 is infinite, and therefore there exists an x > 0

such that (C.23) is satisfied.

It remains to prove the strict concavity of u — w)(0, u) with © € Vi a. Pick ug > ug >

to, and let (h1),(a1) € L(la, I; u1) and (h2), (a2) € L(la, IB; ug) be maximizers of ((C.18)
for u; and wue, respectively. We can write

(a1), (h) = (aa1,ap1,at), (ha, hpa, b)),
(a2), (h2) = (aa2,ap2,a3), (ha2, hpa, h3). (C.25)

Thus, (%),(%) € L(la, lp; “5*2) and, with the help of the concavity of gi,, 91,9

proven above, we can write
w9, 1) > Q((U42), (142)) > § (w1 (0, w) + uz (O, up)). (C.26)

At this stage, we assume that the right-most inequality in (C.26)) is an equality and show that
this leads to a contradiction, after which Lemma will be proven.

We have proven above that (a1), (h1) ¢ L(L4, I; u1) and (a2), (ho) & L(14, Ip; ug). Thus,
we can use (C.19) and the strict concavity of g;,, g, on N, J;,/\/l; and the concavity of g on
Ny to conclude that necessarily

(aa1,ha1) = (aa2,ha2) and (ap1,hpi1) = (a2, hp2). (C.27)

As a consequence, we recall that u; > us and we can write
u%:ul — a1 —ap2 > Uz —GA2 —AB2 :ugzo, (C.28)
and therefore, since (ay), (h1) ¢ £X(L4, Ip; u1), it follows that A > 0 such that (recall (C27))
Wt =1—ha1—hp1=1—has—hpga=h%>0. (C.29)

Hence we can use the strict concavity of a — g(a, h%) to conclude that u{ = ug , which clearly
contradicts (C.2§]).
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C.3.3 Proof of Proposition

The proof is performed with the help of Lemma stated in section |E| For this reason we
use some notations introduced in Lemma [E.1]

We pick v,n7 > 0 (which will be specified later), and we let K € N be the integer in
Lemma, associated with «, 3,1,7. For © € Vy, u > tg and 7 € We u,L, we let Ny
be the number of excursions of 7 in solvent B in columns of type ©. We further let also
(Iz) = (Iz(1),...,I:(N;)) be the sequence of consecutive intervals in {1,...,uL} on which 7
makes these N, excursions in B, so that (Ix) € &, n, and T'(7) = Zf\[:”l | I (7)]-

Pick © € Vs, u > te and partition Weu,1, into two parts:

Vot = ={reWeoyr: T(r) >~ul} and VO

wloy win = 1T € Weur: T(m) <~yuL}. (C.30)

There exists a ¢ > 0, depending on «, 8 only, such that
|H“ (m) — T(m) 252 | < T (x) < cyul, me Vi (C.31)

Since any excursion in solvent B requires at least 1 horizontal steps or L vertical steps, we
have that Ny <wu+ L for 1 € We 1. Since u+ L < uL/K as soon as u, L > 2K, it follows
that

VR f e gpn: T(U) >qul), L>2R, u>teV2R, neVS (C.32)

I(r) e U Ly

and therefore w € QZLWI? implies that |H2 (x) — T(m)252| < nul for w € Ve L’Y Conse-
quently, for w € QZZ;{, we have
‘H?’w(ﬂ) —T(W)’Bé—a’ <uL(n+c¢y), ©€Vy, u>2KVte, L>2K, 7€ Weu,r- (C.33)
Rewrite
O,w
e LD M LRI (CHM ) ENCED
WEW(—)J%L ' ’
where A is an error term given by
oHL Y \e oHL o
A= E[i log Z QuL %) ] - [ log E < K] (C.35)
TEWo,u,L TEWo,u,L

By (3.37)), we obtain that |A| < 2Cy;.

To conclude, we set n = e/3, v =¢/3c. By Lemma [E.]] n there exists an L, € N such that,
for u > 2K\/t@ and L > L., we have P((QZLUK) ) < €/6 Cys. Thus, we can use and

- to complete the proof of Proposition
C.3.4 Proof of Lemma

Pick € > 0. By applying Proposition with £/2, we see that there exists an R, /2 > 0 such
that

YV(O,u) < hmsup T log Z +5, ©¢ Yu, u>tgV R, /5. (C.36)

WEWQ w, L
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We first consider the case © € Vs \Vnint’B’l,M. Since («, 3) € CONE, we can use (C.36) to
obtain
$(O,u) <limsup FlogWeurl +5, u>teV R, /5. (C.37)
L—oo

Thus, (C.37) and Lemma imply that there exists a C: > R, /5 such that (6, u) < ¢ when
u>tgVC.and © € Vy \Vnim’B’LM. The case © € Vllint, B,1, M can be treated similarly
after noticing that T'(m) = uL for m € We 4,1 and © € Vyine, B.1,Mm-

C.3.5 Proof of Lemma

The proof is a straightforward consequence of the strict concavity of u + ut) (0, u) for © € Vyy,

Proposition and Lemma

C.3.6 Proof of Lemma

Pick € > 0. The proof will be complete once we show the following two properties:

(1) There exists a T, > 0 such that

5 o ) € if ©€Vy\Vaint,1m: te > T:, .38
- te) < — .
w (WO u)RO) SN sa o it @ e Vimpia: te > T.. (C.58)
(2) For all T' > 0 there exists a V. 7 > 0 such that
5 o £ if ©€Vy\Vanpim:te<T, v>teVVer,
. < s
U (’LL’QD( 7u))(v) = 5;C¥ +e if ©¢ Vnint,B,l,M: to <T, v>tgV ‘/a,T-
(C.39)

We prove for the case © € V), \Vnint,B,LM (the case © € Vyint B,1,m can be treated
similarly). To that aim, we assume that there exists a sequence (©y,)nen in Vs \ Vaint.B.1.M
such that tg, < T for n € N and a sequence (u,)pen such that u, > tg, for n € N,
lim,, oo U, = 00 and

0, (u(On,u))(u,) >, mneN. (C.40)
By concavity of u — u)(0,,,u) for n € N (see Lemma [C.4)), we have

UnY(On, up) — to, Y(On, te,) > € (up, —to,), neN. (C.41)

Therefore, the uniform bound on free energies in (3.37) and the inequality tg, < T allow us
to rewrite (C.41) as
T(Cu+e
W(Op, up) > € — (;f) n €N, (C.42)
mn

which contradicts Lemma [C.6] because lim,, o 1, = 00.

It remains to prove ((C.38). This is done in a similar manner for the case © € Vys \
Vhint,B,1,M (the case © € Vyine 1,0 can again be treated similarly), by assuming that there
exists a sequence (©p)nen in Vs \ Vhint,B,1,m such that lim,,_, te, = oo and

07 (uh(On,u))(2te,) > ¢, neN. (C.43)
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Thus, similarly as in (C.41HC.42)), the concavity of u — u)(0,,u) and (C.43)) give

Op,t
+ w neN. (C.44)
At this point we use Proposition to assert that there exist R. > 0 and L. € N such that,

for n satistying tg, > R. and L > L., we have

¢(@TL7 2t@n) >

| ™

B—a
V(Onte,) > iplog Y. T — g (C.45)

7T€W@7t®n L

B-a
(O, 2te, ) < ﬁlog Z ™M= 4

T€Wen 2tg,, L

By using ((C.44HC.45)), we obtain that, for tg, > R. and L > L.,

PN

B=a Bz
I YL D YL R T

ﬂew@nﬂtenl TFGW@J,@n’L

uses some key ingredients that are provided which we can rewrite as

2t@1nL log[We, 2te,,| + fgﬂ“L min{T(7), 7 € We, 216, .} (C.A4T)

> ﬁ(;:‘L min{7T(7),n € W@mt@mL} + 5

Since ©,, € Vs \Vnint,B,l,M, there exist m1 € Weo,, 1o, .1 and m2 € We,, 2t 1 such that

T(?Tl) = ZB(@n) = min{T(ﬂ'),T( € W@n,temL}? (0.48)
T(m2) = I1g(©n) = min{T(r), ™ € We, 210, ,L}-

Thus, for te, > Re and L > L., the inequality in (C.47)) becomes
ﬁ log |Wen72t®n7L| 2 %, (049)

which obviously contradicts Lemma

D Concentration of measure

Let S be a finite set and let (Xj,.A;, 1;)ics be a family of probability spaces. Consider the
product space X = [[;csXi endowed with the product o-field A = ®;es.A; and with the
product probability measure p = ®;cst;-

Theorem D.1 (Talagrand [12]) Let f: X — R be integrable with respect to (A, ) and, for

i €S8, let di > 0 be such that |f(x) — f(y)| < d; when z,y € X differ in the i-th coordinate
only. Let D =), s d?. Then, for all e > 0,

u {m €X: ’f(a:) - /fdu‘ > g} < 9 5p. (D.1)
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The following corollary of Theorem was used several times in the paper. Let (o, ) €
CONE and let (&;)ien be an i.i.d. sequence of Bernouilli trials taking the values —« and S with
probability 3 each. Let l € N, T: {(z,y) € Z* x Z?: |[x —y| = 1} — {0,1} and T' C W) (recall
(T.1)). Let Fj: [~a,a]' — R be such that

ﬂ(x17 . 7371) = log Z 622:1 x; T((mq,m)). (D'Q)
mel

For all z,y € [—a, a]' that differ in one coordinate only we have |Fj(z)—Fj(y)| < 2. Therefore
we can use Theoremwith S={1,...,1}, Xi=[—a,a] and pi; = 1(6_o + Jp) for all i € S,
and D = 4a?l, to obtain that there exist C7,Cy > 0 such that, for every [ € N, T € W, and
T: {(x,y) €Z> x Z*: |x —y| = 1} — {0, 1},

Can?

P(|Fi (&1, - &m) — B(Fi(&r, - -+, &m))| > n) < Crem

(D.3)

E Large deviation estimate

Let (&)ien be an i.i.d. sequence of Bernouilli trials taking values § and —«a with probability

% each. For N < n € N, denote by &, y the set of all ordered sequences of N disjoint and

non-empty intervals included in {1,...,n}, i.e.,
Enn ={Ij)1i<jen C{1,...,n}: [; = {minJj,... ,max [;} V1 < j < N,
maxl; <minlj4 V1<j<N-land [; #0V1<j<N}. (E.1)

For (I) e &N, let T'(I) = Zjvzl |1;| be the cumulative length of the intervals making up (I).

Pick v > 0 and K € N, and denote by EA'JK the set of those (I) in Uj<n<(n/K) En,N that have
a cumulative length larger than yn, i.e.,

g?ZK = U?v/fl (I) € & n: T(I) > yn}. (E.2)
Next, for n > 0 set
N
Gk = (1 |22 =5 =T (E.3)
(negy . U i=ticl;

Lemma E.1 For all (o, ) € CONE, v > 0 and 1 > 0 there exists an K €N such that, for
dl K > K,

3 Y1 ¢\ __
Jim P((Q,7%)) =0 (E.4)
Proof. An application of Cramér’s theorem for i.i.d. random variables gives that there

exists a ¢, > 0 such that, for every (I) € 57][(,

g

iZ@ﬁw

j=liel,

> nT(I)) < emonT) < gmenm, (E.5)
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where we use that T'(I) > yn for every (I) € 577 - Therefore
Pe((Q)%)%) < 1€ cle™ ™, (E.6)
and it remains to bound \SAT;Y x| as

n/K n/K n
Ele=Y H(Dcbun: T 2 m}| < Y (2 N), B.7)
N=1 N=1
where we use that choosing (I) € &, y amounts to choosing in {1,...,n} the end points of
the N disjoint intervals. Thus, the right-hand side of (E.7)) is at most (n/K )(27:} %), which

for K large enough is o(e“M7) as n — co. O

F On the maximizers of the slope-based variational formula

In this appendix we prove that, when restricted to ﬁp, M, the supremum of the variational
formula in ([1.14]), which equals the truncated free energy f(«, 8; M,p), is attained at some
pE ﬁp, u and for a unique ¥ € B. For ease of notation we suppress the M, p-dependence of
f(a, B; M, p) in the proofs of this section.

~ Recall (6.20) and for M € N, p € (0,1) and (a, 3) € CONE, let Op rr,a,3 be the subset of
Rp,m containing those p that maximize the variational formula in (1.14)), i.e.,

N 0,V _
Pl 5 M,p) = h(5; 0 8) = sup 22D for pe Oy prs. (F.1)
veEB D(pﬂj)
Recall (2.8H2.10) and set
5 = o(f(a, B M, p)). (F2)

Theorem F.1 For all M € N, p € (0,1) and («, 8) € CONE the following hold:

(1) The set Op pr.a,8 i non-empty.

(2) For all p € Opprap and all v € B satisfying f(o, B; M,p) = N(p,v)/D(p,v), v =10 for
p-a.e. (k1) € {A,B} x [0,00) or k =T.

Proof. The following proposition will be proven in Section below and tells us that the
maximum of the old variational formula in (2.15) is attained for some p € R, . Recall the
definition of g(p; o, B) for p € Ry ar in (6.10).

Theorem F.2 For all (o, 3) € CONE, there exists a p € Rpn such that f(a,5; M,p) =
9(ps ., B).

We give the proof of Theorem subject to Theorem [F.2| To that aim, we pick («, 3) €
CONE and note that, by Theorem there exists a p € Rp ar such that f(«, 5) = g(p; o, B).
In what follows, we suppress the («, §)-dependence of g(p; o, 3).

Since f(a, B) = g(p), (3.64) ensures that g(p) > 0, and by applying Lemma we obtain

that
N(p,u(f(, B)))
D(p,u(f(a,B)))

[, B) = (F.3)
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Apply Lemma which ensures that there exist a p € 7@,, and a v € F such that
N(pulf(,8)) _ N(p.v) )
D(p,u(f(e, B))) — D(p;v)

Then h(p) > 0, and we use Lemma which tells us that

N(pw) _ N(p.o(h(p))

D(p,v) — D(p,v(h(p)))

Now ([F.3HF.5) and the variational formula in (1.14)) are sufficient to complete the proof of
(1). The proof of (2) is a straightforward consequence of Lemma O

(F.5)

F.1 Proof of Theorem [F.2

We give the proof of Theorem subject to the following lemma, which will be proven in
Section [F1.1] below.

Lemma F.3 For allt >0 and u € BVM there exists an mo € N such that, for all p € R, m
and v € By, = satisfying v < u and N(p,v)/D(p,v) > t, there exists a p € RZL?\/[ such that
N(5,0)/D(prv) > N(p,v)/D(p,v).

Let (pn)nen in Rp ar be such that n +— g(pn; o, ) is increasing with lim, o g(pn; o, B) =
f(a, B). Obviously we can choose (pn)nen such that g(pn;a, 5) > f(a,5)/2 for all n € N.
Thus, with the help of Lemma we obtain

_ N(pn,ulg(pn)))
D(pp, u(g(pn)))’

Apply Lemma [F.3] to see that there exists an mo € N such that for all n € N there exists an
P € R}y such that

9(pns @, ) neN. (F.6)

N(pn, u(g(pn))) o N(pn,ulg(pn)))

D u(g(pn)))  Dlpnula(pn)))’ 7
A straightforward consequence of is that
lim P W) gy (F.8)

n—c0 D(pn, u(g(pn)))

Moreover, p, € M1(V°) for all n. > ng, and since V,,° is compact we have that j,, converges
weakly to poo € R;"}JV[ along a subsequence. Lemma implies that n +— u(g(p,)) is non-

increasing and converges pointwise to u(f(a,8)) as n — oo. Since Vj,’ is compact, Dini’s
Theorem tells us that the convergence of u(g(pn)) to u(f(a, 8)) is uniform on Vy;. Therefore,
using the uniform continuity of (u, ©) — u(0,u) (see Lemma |C.3), we obtain

N(poo, u(f(a, 8)))
D(poo, u(f(a, B)))’

which completes the proof of Theorem

fla,B) =

(F.9)
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F.1.1 Proof of Lemma [F.3|

First, we state and prove Claim below, which will be needed to prove Lemma Pick
m > M + 2, and note that for © = (x, All, by, b1, ) € Vi \ V1 we necessarily have zg = 2.
Define T,,,: Vr — Vﬁ as

Tn(©) =

{ 0 if @ e VY, (F-10)

(:) = (X, AH,bo,bl, 1) if @ = (X, AH, bg,bl,Z) S VM \W/[,
Claim F.4 Forallp e Rpy andm e N:m > M +2, p o T e Ry

Proof. First note that T},: Vs — Vﬁ is continuous with respect to the djs-distance. Next,
pick p € Ry a. By the definition of Ry »s, there exists a strictly increasing sequence (Nj)ren
and (H?)jGNO, (b;?)jeNo, (CU?)jeNo such that p = limy_,o piv, (2, TIF, B% 2%). The continuity of
T,, implies that
po Tyl = lim py, (Q,11F, 0% 2F) o T1, (F.11)
k—o00

and we can easily check that
pn, (TR 08 2F) o Tt = ppy, (Q,TTF % 2, (F.12)

where for j, k € Ny we define

ko . k 1k 1k ~ky - 7
J 1  otherwise. '
Consequently, p o T,,1 € Ry, ur- O

We resume the proof of Lemma Pick t > 0, p € Rpm, u € BVM and v € BVM
satisfying v < w and N(p,v)/D(p,v) > t. Pick m € N: m > M + 2, whose value will be
specified later, and set p,, = p o T,,1, which belongs to R, » by Claim Write

J\f(pm,v)_f\f(p,v)_/1 : . _A+1B
Dipmt) Dipo) o G'(t)dt with G(t) = 1D (F.14)
with
A= | vei@.ve)p(de) B[ u5u(B.u) - vev(®,ve)p(d0)  (F15)
Vum Vu\Vu
C= ve p(dO) D= vg — Ve p(dO). (F.16)
Vi Vur\Vir

Note that the sign of the derivative G’(t) is constant and equal to the sign of

A A 07 vy o~
B—-—-D= vo|=(1—-2)—v(0,ve) + -21(0,vz)|p(dO). F.17
D= [ ool (1-58) w0+ B u@ rg) st@e). (a7

Therefore Lemma [F.3] will be proven once we check that for m large enough the right-hand
side of (F.17) is strictly positive, uniformly in v < w. To that aim, we recall Lemma
which tells us that (0, ve) < t/2 for every © € Vy;\ V}y, provided m is chosen large enough
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(because vg > tg > m), and we recall (3.37), which tells us that w(é,vé) < Cyt(a) for
© € Vi \ Vyy. We further note that

vg < max{ue: XS V%H} < oo forevery © € Vyy, (F.18)

which, together with the fact that % = N(p,v)/D(p,v) >t > 0 and vg > tg > m for
© € Vi \ V), ensures that for m large enough the right-hand side of (F.17) is strictly
positive, uniformly in v < u. This completes the proof of Lemma [F-3]

G Uniqueness of the maximizers of the variational formula

In this appendix we first prove, with the help of Lemma , that for © € Vs and u > tg the
variational formula in Proposition has unique maximizers. This uniqueness implies that,
for a given column type and a given time spent in the column, the copolymer has a unique
way to move through the column. We next use this uniqueness to show, with the help of
Proposition @ that for u € BVM the maximizers of are Borel functions of © € V).

Recall (3.60) and pick h € €. Set

Uh) = {(rae;rp0:r7,0)ocy,, € ([0,00)*): 1o > 1+ ,ii% Vk e {A, B} VO € Var,

rre > 1Yk e {A,B} VO € Vy,
© 1o Borel Vk € {A, B, T}}, (G.1)

where we recall that }ZZ’ZZ = 0 by convention when I ¢ = he = 0.

Proposition G.1 For allu € By;  there exist h € & and r € U(h) such that, for all © € Vu,

ue P(0,ue) = haeraek(rae, ,lfﬁ) (G.2)

+ hporpe [F(rse %) + 259 + hrerre ¢zlrre),

and
haerae+hperse +hrerre = ue. (G.3)

Proof. Forl e R, let
N ={(a,h) €[0,00) x [0,1]: a > h+[I]}, N;" ={(a,h) € Nj: h >0}, (G.4)
let g;: Nj — [0,00) be defined as g;(a, h) = a i (4, %) for h > 0 and g;(a,h) = 0 for h =0, and

let g: No — [0,00) be defined as g(a,h) = a¢z(%) for h > 0 and g(a,h) = 0 for h = 0. We
can rewrite (3.48)) as

wp(©,u;a, ) = sup  fru,[(h), (a)] (G.5)
(h),(a)EL(O;u)
with
Frats[(R), (@)] = g (an, ha) + g, (aB, hp) + ap 55 + §(az, ha). (G.6)
Lemma shows that, subject to some additional conditions, the maximizer in the right-
hand side of (G.5) is unique. This allows us to prove the continuity of this maximizer as a
function of © on each subset of a finite partition of V), which implies the Borel measurability
of this maximizer and completes the proof of Proposition
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Lemma G.2 For all © € V) and u > te there exists a unique (h), (a) € L(O;u) satisfying:

(i) u_d}(@?u; a,B) = flAulB[(h‘)’ (a)].

(it) hy >0 if ar, > 0 for k € {A, B, Z}.

(ii) @ = hx = 0 if Iy = 0 for © € Vine s and k € {A, B}.
(iv) @y = hy, =0 if I, = 0 for © € Vhint k2m and k € {A, B}.

Proof. We prove existence and uniqueness.

Existence. The existence of a (h1), (a1) € £(©;u) satisfying (i) is ensured by the continuity
of fi, 1, and the compactness of £(0;u). Assume that © € Vige ar, la = 0 and (hy,a,a1.4) #
(0,0). Then

go(ar,a,hia)+ glarz,hi 1) < glaia, hia) + glar,z, b 1) (G.7)
2

§(a1’A;a1’I, hl’A;th’Z) =g(ar,a+arz, hia+hiz),

IN

where we use the inequality go < g and the concavity of §g. Thus, by setting (h2), (a2) =
(0,h1,B,h1,4 + h17),(0,a1 B,a1,4 + a1 1), we obtain that (hg), (a2) € L(O;u), satisfies (iii)
and

flAJB((h2)7 (a2)) 2 flA,lB((hl)a (al))v (GS)

which implies that (hg), (a2) also satisfies (i). The case © € Viyt ar, g = 0 and the case
O c Vninka,M, lp. =0, k € {A, B}, can be treated similarly, to conclude that there exist
(h), (a) € L(O;u) satisfying (i), (ili-iv). We will show that (ii) follows from these as well. The
proof will be given for the case © € Vint, m and l4,lp > 0, since (iii) already indicates that
hiy =a =0if ly =0 for k € {A, B} and © € Viyy pr. The case © € Vyine i can be treated
similarly.

In the proof of Lemma|C.4 we showed that (h), (a) € £(©,u) maximizing necessarily
satisfies hy > 0 if ay > [, for k € {A, B} and hz > 0 if az > 0. Thus, we only need to exclude
the cases hy = 0 and ap = I, > 0 for k € {A, B}. We will therefore assume that hp = 0
and ag = lp, and prove that this leads to a contradiction. The case hy = 0 and ag = l4
is easier to deal with. We finally assume that az > hz > 0 (the case ar = hz being easier).
We pick ¢ > 1 and x > 0 small enough to ensure that az — cx > hz —x > 0, and we set
(h)z, (a)z = (ha,z,h — x),(aa,lp + cx,a;r — cx). The proof will be complete once we show
that for z small enough the quantity

fiats (W)e: (@)2) = fratn (), (@) = g1 (15 + co.w) = Vo +ex (55%)  (G9)

is strictly positive with V,, = g(az, hz) — glaz — cx, hz — x).
At this stage, we note that u — p¢z(u) is concave on [1,00), and therefore is Lipshitz on

any interval [r,¢] with r > 1. Since az/hz > 0, there exists a C' > 0, depending on (az, hz)
only, such that V, < Cx for z small enough. Therefore (G.9) becomes

flA,lB((h)$7 (a)w) - flA,lB((h)v (a)) > Jdip (ZB + C.%',:L') - (C +c %a) x (G.IO)

for « small enough. By the concavity of g;,, and since g;,(lp + cx,0) = 0, we can write
gzl + cx,x) > x 0201, (Ip + cx,x) for > 0. By the definition of g;,,, and with , we
obtain that

0291, (lp + cx, ) = (1—1—%)82/-;(1%— oL Lz, (G.11)

s 1s
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We now recall [6], Lemma 2.1.1, which claims that & is defined on DOM = {(a,b): a > 1+b,b >
0} and is analytic on the interior of DOM. Moreover, in the proof of this lemma, an expression
for Oy k(a, b) is provided that is valid on the interior of DOM. From this expression, and since
¢ > 1, we can check that limgg O2k(1 + cs, s) = oo, which suffices to conclude that the right-
hand side of is strictly positive for x small enough. This completes the proof of the
existence in Lemma

Uniqueness. The uniqueness of (h), (a) is a straightforward consequence of the strict concav-
ity of g;, and g;, when l4 # 0 and [p # 0 and of the concavity of gy and g. We will not write
out the proof in detail, because it requires us to distinguish between the cases © € Vim, M and
© € Vyintm, between I, = 0 and I # 0, k € {A, B}, and also between zg = 1 and zg = 2.
The latter distinctions are tedious, but no technical diffulties arise. ]

We resume the proof of Proposition We pick u € By;, , and for each © € VY we apply
Lemma at ©,ug, to obtain a (h)e, (a)e € L(O;ug) satisfying (i-iv). We set (h): © €
Vu +— he and (a): © € Vi — ae, and we recall (3.60). If we can show that © — (h)e
is Borel, then it follows that (h) € &, because (ii) and the fact that (h)e,(d)e € L(O;ue)
for © € Vs ensure that the other conditions required to belong to &£ are fulfilled by (h).
Moreover, if we can we show that © — (a)g is Borel, then the proof of Proposition will
be complete, because we can set

A4(8)
A(©)’

(74(0),75(0),72(0)) = ( & 5%). eevu, (G.12)

B —
B(0©)’ hz(O)

S| QI
> Q1

with the convention 7(©) = 1 when ax(0) = hp(©) = 0 for k € {A, B,T}, after which
(7) € U(h) and (h), (7) satisfy (G.2) and (G.3]).

To complete the proof it remains to show that © + (h)e, (@)e is Borel. Recall the partition

Var = Vine,mr U (U pye(1,21 44,8} Vint ke, M) » (G.13)

and partition these five subsets in the right-hand side of ((G.13)) into smaller subsets depending
on the values taken by [4 and [g. For Viy a, this gives

Vint,M ={0 ¢ vint,M: la,lp >0} U{O € th’M: la>0,lp=0} (G.14)
u{e e Vint,M: la=0,lp>0U{O € Vint,M: la=1p =0},

and on each of these subsets the fact that (h)e,(a@)e are the unique elements in £(O;ug)

satisfying (i-iv) implies that © — (h)e, (a)e are continuous and therefore Borel. Since each
subsets in the right-hand side of (G.14) belongs to the Borel o-field generated by dj; (recall
(C.7)), we can conclude that © — (h)g, (@)e are Borel on Vj;. This completes the proof of

Proposition O
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