Hyper-Threaded Multiplier for HECC

Gabriel GALLIN and Arnaud TISSERAND

CNRS – Lab-STICC – IRISA HAH Project

Asilomar, Oct. 2017

Public-Key Cryptography (PKC)

- Provides cryptographic primitives such as digital signature, key exchange and specific encryption schemes
- First PKC standard: RSA
 - \geq 2000-bit keys recommended today
 - Too costly for embedded applications
- Elliptic Curve Cryptography (ECC):
 - Better performances and lower cost than RSA
 - Allows more advanced schemes
- Hyper-Elliptic Curve Cryptography (HECC):
 - Evolution of ECC focusing on larger sets of curves
 - Supposed to have a smaller cost than ECC

ECC, HECC, Kummer-HECC

	$\mathbb{F}_{\mathcal{P}}$ elements size	ADD	DBL	source
ECC	$\ell_{\rm ECC}$	12M + 2S	7M + 3S	[1]
HECC	$\ell_{\rm HECC} \approx \frac{1}{2} \ell_{\rm ECC}$	40M + 4S	38M + 6S	[5]
Kummer	$\ell_{ m HECC}$	19M -	[8]	

► ECC:

- Size of $\mathbb{F}_{\mathcal{P}}$ elements $2\times$ larger
- Simpler ADD and DBL operations
- ► HECC:
 - Smaller $\mathbb{F}_{\mathcal{P}}$
 - More operations in $\mathbb{F}_{\mathcal{P}}$ for ADD / DBL
- Kummer-HECC is more efficient than ECC [8]:
 - ARM Cortex M0: up to 75% clock cycles reduction for signatures
 - AVR AT-mega: up to 32% cycles reduction for Diffie-Hellman

M multiplication, S square on field $\mathbb{F}_\mathcal{P}$

Curve-Level Operations in Kummer

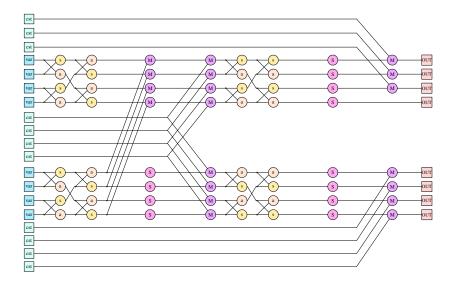
No ADD operation but still DBL

▶ Differential addition: $xADD(\pm P, \pm Q, \pm (P - Q)) \rightarrow \pm (P + Q)$

xADD and DBL can be combined:
 xDBLADD(±P, ±Q, ±(P − Q)) → (±[2]P, ±(P + Q))

For details see [8], [3] and [2]

xDBLADD $\mathbb{F}_{\mathcal{P}}$ Operations



Scalar Multiplication

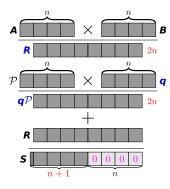
Montgomery ladder based crypto_scalarmult [8]:

Require: *m*-bit scalar $k = \sum_{i=0}^{m-1} 2^i k_i$, point P_b , $cst \in \mathbb{F}^4_{\mathcal{D}}$ **Ensure:** $V_1 = [k]P_b$, $V_2 = [k+1]P_b$ $V_1 \leftarrow cst$ $V_2 \leftarrow P_h$ for i = m - 1 downto 0 do $(V_1, V_2) \leftarrow \text{CSWAP}(k_i, (V_1, V_2))$ $(V_1, V_2) \leftarrow \text{xDBLADD}(V_1, V_2, P_b)$ $(V_1, V_2) \leftarrow \text{CSWAP}(k_i, (V_1, V_2))$ end for return (V_1, V_2) CSWAP $(k_i, (X, Y))$ returns (X, Y) if $k_i = 0$, else (Y, X)

- Constant time, uniform operations (independent from key bits)
- ▶ Some parallelism between xDBLADD internal $\mathbb{F}_{\mathcal{P}}$ operations
- CSWAP: very simple but involves secret bits (to be protected)

Montgomery Modular Multiplication (MMM)

$$\begin{array}{ll} R = A \times B & n \times n \to 2n \text{ bits} \\ q = (R \times (-\mathcal{P}^{-1})) \mod (2^n) & n \times n \to n \text{ bits} \\ q \mathcal{P} = q \times \mathcal{P} & n \times n \to 2n \text{ bits} \end{array}$$



- Objective: $A \times B \mod \mathcal{P}$
- Proposed in [7]
- Variants are actual state-of-the-art for F_P multiplication (with generic P)
- Final reduction step discards n LSBs

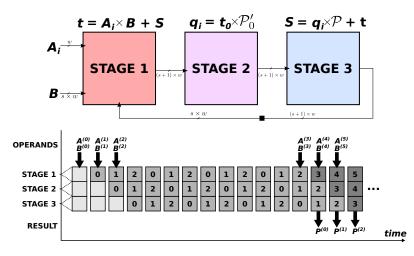
Modular Multiplication: Dependencies Problem

- In practice, MMM is interleaved
 - Operands are split into s words of w bits such that $n = s \times w$
 - Iterations over partial products and reductions on words
 - Coarsely Integrated Operand Scanning (CIOS) from [4]
- Impact on hardware implementation
 - Dependencies \rightarrow latencies between internal iterations
 - Hardware pipeline in DSP slices cannot be filled efficiently
- Proposed solution: Hyper-Threaded Modular Multiplier (HTMM)
 - Based on simple CIOS algorithm
 - Use idle stages to compute other independent MMMs in parallel

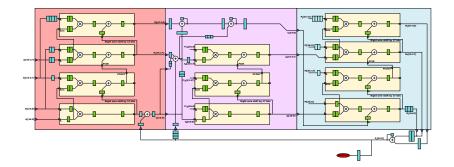
HTMM Internal Architecture

HTMM architecture: 3 hardware stages

- Stages are fully pipelined (several clock cycles per stage)
- 3 to 4 DSP slices in each stage



HTMM Internal Architecture (details)



HTMM Implementations

- Xilinx FPGAs
 - Virtex 4 XC4VLX100 (V4)
 - Virtex 5 XC5VLX110T (V5)
 - Spartan 6 XC6SLX75 (S6)
- Comparison with fastest MMM implementation in literature
 - Design presented in [6]
 - Implemented on the same FPGAs for fair comparison
- 2 versions of HTMM:
 - HTMM_DRAM : operands stored in FPGA slices (LUTs)
 - HTMM_BRAM : operands stored in FPGA BRAMs
- Parameters for HTMM:
 - $\mathcal{P}
 ightarrow$ 128 bits
 - w = 34 bits, s = 4
 - Operands size $n = s \times w = 134$ bits

HTMM Implementations Results

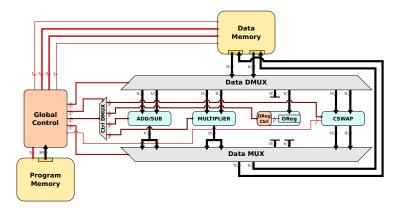
Results for 3 independent multiplications:

Unit	FPGA	DSP	BRAM	FF	LUT	Slices	Freq.	Nb.	Time
			18K/9K				(MHz)	cycles	(ns)
[6]	V4	21	6/0	1311	1201	879	252		258
	V5	21	6/0	1310	1027	406	296	65	220
	S6	21	0/6	1280	1600	540	210		309
HTMM	V4	11	0/0	1638	1128	1346	330		239
DRAM	V5	11	0/0	1616	652	517	400	79	198
	S6	11	0/0	1631	1344	483	302		261
HTMM	V4	11	2/0	615	364	449	328		241
BRAM	V5	11	2/0	593	371	249	357	79	221
	S6	11	0/2	587	359	180	304		260

S6: -47% DSPs, -66% BRAMs, -66% slices, -15% duration

For only 1 single M, HTMM is less efficient (69 cycles against 25)

Typical Architecture Model



Parameters specified at design time:

- Width w and nb. words s for internal communications
 - $(s \times w = n)$
- Types and number of units

256b ECC vs 128b HECC (similar theoretical security)

FPGA	Version	DSP	BRAM	Slices	Freq.	Nb.	Time
			18K		(MHz)	cycles	(ms)
V4	ECC	37	11	4655	250	109,297	0.44
	H1	11	7	1413	330	183,051	0.55
	H2	22	9	2356	330	115,211	0.35
V5	ECC	37	10	1725	291	109,297	0.38
	H1	11	7	873	360	183,051	0.51
	H2	22	9	1542	360	115,211	0.32

Gain H1 on V5: -70% DSPs, -30% BRAMs, -49% slices, +30% duration

Gain H2 on V5: -40% DSPs, -10% BRAMs, -10% slices, -15% duration

ECC results from [6]

Conclusions and Perspectives

- HTMM is more efficient than state of the art for 3 independent MMs
 - leads to better area / computation time trade-offs
 - more hardwired resources are active at each clock cycle
- μ Kummer based HECC is an efficient alternative to ECC
 - More complex formulas but larger internal parallelism
 - Large exploration space for architectures and arithmetic
- Future works
 - Study other HTMM versions
 - Study hyper-threaded schemes impact on energy consumption
 - Study hyper-threaded schemes impact on side-channel leakage

References

- D. J. Bernstein and T. Lange. Explicit-formulas database. http://hyperelliptic.org/EFD/.
- [2] Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter. Fast cryptography in genus 2. Journal of Cryptology, 29(1):28–60, January 2016.
- [3] Pierrick Gaudry.
 Fast genus 2 arithmetic based on theta functions. Journal of Mathematical Cryptology, 1(3):243–265, 2007.
- [4] Çetin K. Koç, Tolga Acar, and Burton S. Kaliski, Jr. Analyzing and comparing Montgomery multiplication algorithms. *Micro*, *IEEE*, 16(3):26–33, June 1996.
- [5] T. Lange. Formulae for Arithmetic on Genus 2 Hyperelliptic Curves. Applicable Algebra in Engineering, Communication and Computing, 15(5):295–328, February 2005.
- [6] Yuan Ma, Zongbin Liu, Wuqiong Pan, and Jiwu Jing. A high-speed elliptic curve cryptographic processor for generic curves over GF(p). In Proc. 20th International Workshop on Selected Areas in Cryptography (SAC), volume 8282 of LNCS, pages 421–437. Springer, August 2013.
- Peter L. Montgomery. Modular multiplication without trial division. Mathematics of Computation, 44(170):519–521, April 1985.
- [8] Joost Renes, Peter Schwabe, Benjamin Smith, and Lejla Batina. µKummer: Efficient hyperelliptic signatures and key exchange on microcontrollers. In Proc. Workshop on Cryptographic Hardware and Embedded Systems (CHES), volume 9813 of LNCS, pages 301–320. Springer, August 2016.