
HAL Id: hal-01620046
https://hal.science/hal-01620046

Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hyper-Threaded Multiplier for HECC
Gabriel Gallin, Arnaud Tisserand

To cite this version:
Gabriel Gallin, Arnaud Tisserand. Hyper-Threaded Multiplier for HECC. Asilomar Conference on
Signals, Systems, and Computers, Oct 2017, Pacific Grove, CA, United States. �hal-01620046�

https://hal.science/hal-01620046
https://hal.archives-ouvertes.fr


Hyper-Threaded Multiplier for HECC
Gabriel GALLIN1,2 and Arnaud TISSERAND2

1CNRS, IRISA UMR 6074, INRIA Centre Rennes - Bretagne Atlantique, University Rennes 1, Lannion, France
2CNRS, Lab-STICC UMR 6285, University South Brittany, Lorient, France.

gabriel.gallin@irisa.fr , arnaud.tisserand@univ-ubs.fr

Abstract—Modular multiplication is the most costly and
common operation in hyper-elliptic curve cryptography. Over
prime fields, it uses dependent partial products and reduction
steps. These dependencies make FPGA implementations with
fully pipelined DSP blocks difficult to optimize. We propose
a new multiplier architecture with hyper-threaded capabilities.
Several independent multiplications are handled in parallel for
efficiently filling the pipeline and overlapping internal latencies
by independent computations. It increases the silicon efficiency
and leads to a better area / computation time trade-off than
current state of the art. We use this hyper-threaded multiplier
into small accelerators for hyper-elliptic curve cryptography in
embedded systems.

I. INTRODUCTION

Nowadays, numerous applications require strong security
levels on small hardware devices. Public-key cryptography
(PKC) is mandatory for providing key exchange and digital
signature. RSA, the first PKC standard, is too costly for
embedded applications, more than 2000-bit keys are currently
recommended for an average security level. Elliptic Curve
Cryptography (ECC [1]) and Hyper-Elliptic Curve Cryptog-
raphy (HECC [2]) are known to provide a given security level
at a lower cost than RSA. For instance, 226-bit ECC offers
similar security than 2048-bit RSA. Then ECC and HECC are
promoted for implementations in embedded systems.

Efficient (H)ECC hardware accelerators require efficient
arithmetic units over finite fields. The most common and
costly finite field operation in (H)ECC is the modular mul-
tiplication (MM) (see Sec. II). Various MM algorithms have
been proposed for hardware implementations (see Sec. III).
For instance, depending on the width of field elements and
type of algorithm and architecture, one FP multiplication
requires from 30 to 100 clock cycles for (H)ECC typical
field sizes. In Sec. IV, we propose a new MM architecture
over FP with generic prime, leading to efficient pipelined
implementations in FPGAs. Sec. V provides implementation
details and comparisons to similar MM from state of the
art. Sec. VI reports comparisons for some HECC application.
Sec. VII concludes the paper.

II. HECC CONTEXT

Recent research works have pointed out HECC as an
attractive alternative to ECC. HECC is based on a different
kind of curves, which allows the size of field elements to
be halved, but at the expense of an increased number of
finite field operations. In CHES 2016 paper [3], Renes et
al. presented software implementations of key exchange and

signature schemes based on HECC and Kummer surfaces over
FP . They targeted embedded processors ARM Cortex M0
and AVR ATmega. Their results show interesting speedups
compared to state of the art for ECC implementations with
similar security: 30 % for Diffie-Hellman key exchange and
up to 70 % for signature.

HECC involves more field level operations than ECC for
each key bit during scalar multiplications. However, one can
observe that in ECC most of FP operations in point addi-
tion/doubling are dependent and must be mostly executed in a
sequential way. Then, internal parallelism in ECC is quite lim-
ited compared to HECC. For instance, the formulas presented
in [3] for HECC show regular patterns of 4 up to 8 independent
MM feasible in parallel during scalar multiplication iterations
(see Fig. 4). As a comparison, ECC allows 2 MMs to be
performed in parallel on average.

The software solution in [3] was optimized for the Mersenne
prime 2127−1. In hardware, dealing with such a specific prime
value may lead to limited circuit lifetime and applications.
Then, we chose to design units for generic primes P .

III. BACKGROUND ON FP FINITE FIELD MULTIPLIERS

In [4], Montgomery presented an efficient algorithm for
MM over FP now called Montgomery modular multiplication
(MMM). Many algorithms have been derived from this paper.
They all improve efficiency by interleaving partial products
generation and modular reduction steps to reduce the width
of intermediate data and to gain some speedup. One famous
variant is the Coarsely Integrated Operand Scanning (CIOS)
method presented by Koc et al. in [5]. However, besides these
improvements, Montgomery multiplication still suffers from
strong dependencies inside the main loop of partial products
accumulation and modular reduction.

Most of modern FPGAs embed many dedicated hardware
resources for performing small integer multiplications and
accumulations (e.g. 18×18±48 bits). They are too small for
cryptographic operands but they act as efficient basic blocks
for building FP operators. In order to reach high frequencies,
DSP blocks must use several internal pipeline stages. For
instance, a typical 3-stage pipelined DSP block forces to wait
3 cycles before reusing any result from the DSP block. Due
to data dependencies, one cannot feed efficiently this pipeline
during MMM iterations with strong dependencies between
iterations. This reduces circuit efficiency with lower utilization
of DSP blocks.
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Fig. 1. HTMM decomposition into stages.

In [6], Ma et al. proposed a MMM implementation based on
Orup algorithm [7]. This implementation is known to be one
of the fastest FPGA implementations. However, to get rid of
some of internal dependencies, their method implies overheads
in terms of size of intermediate data, increasing circuit area
(see Sec. V). Many previous works reduced data dependencies
by unrolling internal loops. These works require dozens up to
hundreds of DSP blocks which is probably too costly for most
of embedded solutions.

IV. HYPER-THREADED MULTIPLIER

We chose a different approach to improve efficiency in
small hardware MM units. We decided to use the classical
CIOS method as a basis to design an hyper-threaded modular
multiplier (HTMM). Hyper-threading consists in interleaving
independent operations in the same hardware resource to fill
the pipeline as much as possible. HTMM can be seen as
multiple logical multipliers sharing the same physical resource.
The CIOS method is described in Algo. 1 where P is a prime
modulus and n is the operand width. Each operand is split
into s words of w bits such that n = s× w.

In our target accelerators, we do not use internal com-
munications of n-bit words (for FP elements) at each clock
cycle. Both operands and results of arithmetic units (including
HTMM) are transmitted using s words of w bits. Targeted
DSP blocks are at most 17-bit wide for one unsigned operand.
Using multiples of 17 bits for w saves area and power since we
can avoid internal interfaces to accommodate n-bit field ele-
ments computed on 17-bit DSP blocks (here w = 2×17� n).
Using more than 2×17 bits for w is possible but leads to much
larger architectures (this is not interesting for our applications
in embedded systems).

CIOS, cf. Algo. 1, performs iterations over words of
multiplier operand A. Each iteration corresponds to: partial
product of multiplicand B by word Ai (Algo.1:lines 4–10);
“quotient” qi determination from partial product Ai × B
(Algo.1:line 11); and finally addition of Ai ×B with product
qi × P (Algo.1:lines 12–19) for reduction step. Reduction of
partial product is done by discarding least significant word of t.
This partial reduced result is added to the next partial product
Ai+1 × B during next iteration. Each iteration is thus based
on 3 strongly dependent products, and iterations themselves
are sequential.

HTMM is based on 3 hardware stages as depicted in Fig. 1.
Each one corresponds to one step of the iteration described

Algorithm 1 CIOS algorithm (from [5]).
Require: R = 2n such as 4×P < R, P ′ = −P−1 (mod w)

and A, B two integers such that 0 ≤ A,B < 2× P
Ensure: 0 ≤ S < 2w, 0 ≤ C < 2w,

t ≡ (A×B ×R−1) (mod P), 0 ≤ t < 2× P
1: for i = 0 to s− 1 do
2: t← 0
3: C ← 0
4: for j = 0 to s− 1 do
5: (C, S)← tj +Ai ×Bj + C
6: tj ← S
7: end for
8: (C, S)← ts + C
9: ts ← S

10: ts+1 ← C
11: qi ← t0 +m× P ′ (mod w)
12: (C, S)← t0 + qi × P0

13: for j = 1 to s− 1 do
14: (C, S)← tj + qi × Pj + C
15: tj−1 ← S
16: end for
17: (C, S)← ts + C
18: ts−1 ← S
19: ts ← ts+1 + C
20: end for
21: return t
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Fig. 2. HTMM usage to compute 3 independent MMs.

above. STAGE 1 performs the partial product of one w-bit
word of A and s words of w bits from B and the addition
with the previous reduced partial product from STAGE 3.
“Quotient” qi is computed in STAGE 2. Finally in STAGE
3, the product qi × P is performed and added to the product
Ai × B computed in STAGE 1, where the least significant
w-bit word of the result is discarded.

Each stage uses fully pipelined DSP blocks to compute
partial products at a high frequency. On our target FPGAs
(see Sec. V), using the 3 internal pipeline registers of each
DSP block leads to 300 to 400 MHz frequencies instead of
about 100 to 200 MHz without full pipeline.

When computing a single MM on a pair of operands
(A(0), B(0)), the most significant word at iteration i will
be available after some delay due to internal pipeline
registers. Then it cannot be used directly into the next
iteration (i + 1). Hyper-threading use the idle stages
to compute other independent MMs in parallel. In our



HTMM, one can enter 3 independent pairs of operands
{(A(0), B(0)), (A(1), B(1)), (A(2), B(2))} before the first prod-
uct P (0) = A(0) ×B(0) is computed. This way, all the stages
are full after the very first latency, as illustrated by Fig. 2.
Our HTMM can also receive a new pair of operand (e.g.
(A(3), B(3))) slightly before the oldest product (e.g. P (0)) is
transmitted on the unit output (see right part of Fig. 2).

In the future, we will investigate the use of other numbers
of pairs of operands (it seems that 3 is probably the most
efficient one for this size of field).

V. IMPLEMENTATION AND COMPARISONS

We implemented 2 HTMM versions on 3 different Xilinx
FPGAs: Virtex 5 XC5LX110T (V5), Virtex 4 XC4VLX100
(V4) and Spartan 6 XC6SLX75 (S6). Version HTMM BRAM
uses dedicated hardware RAM blocks (BRAMs) to store the
3 pairs of operands. Version HTMM DRAM uses distributed
memory in programmable LUTs (lookup tables) of logic slices
to store the operands and all intermediate values (no block
RAM).

We implemented MM from [6] to help comparisons on the
target FPGAs. We obtained very close results for both area
and timing: e.g. 37 DSP blocks for 256-bit FP for us and [6].

In order to reduce the iterations number without increasing
too much the area, we chose w = 34 bits. In HECC, the
currently recommended width for FP elements is at least 128
bits. Then, we set s = 4 words and n = 4× 34 = 136 bits. In
the future, we will study how to use “rectangular” DSP blocks
(e.g. 17×24 bits).

Fig. 3 details the architecture of a 128-bit HTMM with
configurations of DSP blocks and pipeline registers. Boxes
colors correspond to stages of Fig. 1 and Algo. 1. Stages 1/2/3
respectively require 4/3/4 DSP blocks.

HTMM BRAM, HTMM DRAM and MM from [6] have
been implemented in VHDL using Xilinx CAD tools ISE
and iSim 14.7. Tab. I reports implementation results in terms
of FPGA resources – number of DSP blocks, BRAMs, FFs
(flip-flops), LUTs, slices –, and performances – clock cycles,
computation time – for 3 independent MMs. These results
correspond to the best place and route (PAR) strategies found
after 100 runs of SmartXplorer.

The ECC architecture presented in [6] uses a single MM
operator without any BRAM in the unit. But it uses more
BRAMs to store large field element in Montgomery domain
for Orup optimization (with full width communications in
the architecture). In parallel accelerators for HECC, we use
small internal communications (w-bit words) and BRAMs
in arithmetic units to store various operands and reduce the
bandwidth to the central memory. We then consider them as
part of the hardware cost (corresponding values are indicated
by a * in Tab. I).

For one single MM, both HTMM versions are less efficient
than [6]: 69 clock cycles for HTMM versus 25 for [6]. For
3 independent MMs, HTMM requires 79 cycles against 65
cycles for [6] but with almost half the number of DSP blocks
and much higher frequency (due to smaller internal values).

Finally, HTMM leads to faster products for about half the
cost of the best state of the art solution (Tab. I). On S6
FPGA, HTMM BRAM leads to 15 % speedup, 48 % DSP
blocks reduction, 66 % BRAMs reduction and 33 % slices
reduction for 3 independent MMs. HTMM DRAM provides
the same speedup and DSP blocks reduction with only 10 %
slices reduction but without any BRAM.

VI. HTMM USAGE IN HECC BASED ON µKUMMER

HECC is considered as an interesting solution for PKC
on low-cost processors using solutions based on Kummer
surfaces [8]. The recent paper [3] presented µKummer, a very
efficient software implementation on low-cost devices (8-bit
AVR and 32-bit ARM microcontrollers), with 30 to 70 %
speedup for key exchange and digital signature.

We work on the design and prototyping of hardware acceler-
ators for PKC (with several curve based solutions) in FPGAs
and ASICs. We implemented the µKummer HECC solution
proposed in [3] on several FPGAs to evaluate how it performs
in hardware compared to efficient ECC solutions from the state
of the art.

Fig. 4 shows the amount of parallelism in the combined
point doubling-addition operation proposed in [3] (a/s are
additions/subtractions and M/S are multiplications/squares in
field FP ).

We designed several HECC hardware accelerators using our
HTMM unit and various configurations of the architecture
(see [9] for more details). We compared the 256-bit ECC
solution from [6] and 2 of our accelerators for µKummer
HECC (named H1 and H2). H1/H2 accelerators have the
following configurations:

H1: 1 HTMM, 1 FP adder-subtractor, 1 CSWAP unit (in
charge of key management), 1 output register (for
results of scalar multiplications), 1 global memory,
1 global control and 1 program memory;

H2: H1 configuration with 2 HTMMs and 2 FP adders-
subtractors (instead of 1 unit arithmetic of each type).

One can notice that a HTMM unit handles 3 MMs in
parallel (6 with 2 HTMMs). Architecture of accelerator H1
is depicted in Fig. 5. Internal communications are handled by
(de)-multiplexors driven by the control program. Accelerator
H2 is similar with more arithmetic units.

Both H1 and H2 accelerators for HECC have been fully
implemented on V4 and V5 FPGAs for comparison to the
ECC solution proposed in [6] (known to be the fastest ECC
solution on FPGA without using hundreds of DSP blocks).
The corresponding results are reported in Tab. II. On V5
FPGA, accelerator H1 achieves area reduction by 70 % DSP
blocks, 30 % BRAMs and 49 % slices but with a 30 % duration
increase compared to ECC. Accelerator H2 (with 2 arithmetic
units of each type) reduces both duration by 15 % and area by
40 % DSP blocks, 10 % BRAMs and 10 % slices.

Our results confirm the interest for HECC compare to ECC:
either faster primitives for the same area or halve of the
area for a similar computation time. HTMM helps to design
parallel accelerators without increasing too much the internal
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Fig. 3. HTMM architecture details for 128-bit FP operands

TABLE I
FPGAS IMPLEMENTATION RESULTS: HARDWARE COST AND PERFORMANCES FOR 3 INDEPENDENT MMS.

Version FPGA DSP BRAM 18K/9K FF LUT Slices Frequency [MHz] Clock cycles Time [ns]

MM from [6]
V4 21 6*/0 1311 1201 879 252

65
258

V5 21 6*/0 1310 1027 406 296 220
S6 21 0/6* 1280 1600 540 210 309

HTMM DRAM
V4 11 0/0 1638 1128 1346 330

79
239

V5 11 0/0 1616 652 517 400 198
S6 11 0/0 1631 1344 483 302 261

HTMM BRAM
V4 11 2/0 615 364 449 328

79
241

V5 11 2/0 593 371 249 357 221
S6 11 0/2 587 359 180 304 260
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Fig. 4. Computation in combined doubling-addition in µKummer from [3].

communications inside the architecture. Using more than 2
HTMM units for µKummer is currently difficult due to the
central data memory.

VII. CONCLUSION

We proposed an hyper-threaded modular multiplier for
HECC over 128-bit generic prime fields. It leads to better
area / computation time trade-offs than the best state of the

TABLE II
IMPLEMENTATION RESULTS FOR H1/H2 HECC, AND ECC (FROM [6])

ACCELERATORS ON V4 AND V5 FPGAS.

FPGA Accelerator DSP BRAM Slices Freq. Time
Blocks 18K MHz ms

ECC 37 11 4655 250 0.44
V4 H1 11 7 1413 330 0.55

H2 22 9 2356 330 0.35
ECC 37 10 1725 291 0.38

V5 H1 11 7 873 360 0.51
H2 22 9 1542 360 0.32

art solutions. By improving the hardware efficiency (more
hardwired resources are active at each clock cycle), we are
able to be slightly faster but a lot smaller than [6] when at 3
independent modular multiplications are computed in parallel.

In the future, we plan to study other HTMM versions.
We will also study hyper-threaded schemes impact on energy
consumption and on side-channel leakage.
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