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In order to characterize errors of Digital Image Correlation (DIC) algorithms, sets of virtual images are often generated from a reference 
image by in-plane sub-pixel translations. This leads to the determination of the well-known S-shaped bias error curves and their 
corresponding random error curves. As images are usually shifted by using interpolation schemes similar to those used in DIC algorithms, the 
question of the possible bias in the quantification of measurement uncertainties of DIC softwares is raised and constitutes the main 
problematic of this paper. In this collaborative work, synthetic numerically shifted images are built from two methods: one based on 
interpolations of the reference image and the other based on the transformation of an analytic texture function. Images are analyzed using an 
in-house subset-based DIC software and results are compared and discussed. The effect of image noise is also highlighted. The main result is 
that the a priori choices to numerically shift the reference image modify DIC results and may lead to wrong conclusions in terms of DIC error 
assessment.

1. Introduction

Digital Image Correlation (DIC) is an advanced experimental full-
field measurement technique, which was first proposed in solid
mechanics in the 80 s by Peters and Ranson [1]. The basic principle
of DIC consists in matching speckle patterns in grey level images of a
sample in some reference configuration and several deformed states,
assuming convection of the grey level distribution during the transfor-
mation. The metrological assessment of such pattern matching proce-
dures remains of high interest, as there is still no normalization or
adapted procedure validated by the community of users.

One way to characterize, at least partly, metrological performances
of DIC is to experimentally generate displacement fields with precisely
prescribed displacements or strains [2–8]. In practice, this approach is
difficult (or even impossible) to implement because the actual value of
the prescribed displacement field to be used as a reference for DIC
measurements is often difficult to reach or to control precisely. In
addition, it is often complex to separate the various error sources. Even
for the simplest case of in-plane uniform sub-pixel image shifting, large

difficulties arise with the classical translation experiment because of
positioning errors, optical aberrations, stage imperfections, encoder
errors, misalignments, motion drift, etc [6,9]. Obviously the associated
errors can alter the DIC error evaluation.

An alternative way is to test DIC in situations for which displace-
ment fields are numerically imposed between a reference and some
transformed images. The first question is to get a digital un-deformed
image that best reflects an image obtained in real imaging conditions,
i.e. obtained with classical spray painting, for instance. The most
natural way is undoubtedly to capture a real speckle pattern of a given
specimen using a digital camera [4,10–16] or using an imaging device
dedicated to the sample observation (scanning electron microscope for
instance) whose accuracy has to be assessed [15–20]. The main
advantage of this approach is to allow the characterization of the
measurement errors using the most realistic images with exact speckle
characteristics in terms of size, grey level histograms and gradients, as
induced by the actual imaging conditions of the experiment: actual
contrast on the sample, lighting conditions, actual performance of the
used optics. However, this image may also include some unquantified
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results are then analyzed in relation to the considered input images
(interpolation scheme used to shift the images, direction of displace-
ment searched by DIC). In the third part, results are discussed for
several image shifting schemes and for noisy images.

2. Methodology

This section presents the methodology and the tools used for this
work (Fig. 1). TexGen software [23] which mimics a texture function is
used to generate an un-deformed image. Several sets of shifted images
are built from the un-deformed image by using three shifting schemes:
polynomial interpolation, Fourier transform and TexGen software,
which makes use of the third shifting method. The DIC errors obtained
with the set obtained by TexGen software will be compared to those
obtained with the other sets obtained with either polynomial interpola-
tion or Fourier transform.

2.1. Undeformed image generation

The un-deformed synthetic image, named Iundef, is obtained using
TexGen software [23], as for results presented in [24,25]. This software
was designed to be a virtual imaging system that imitates a camera: it
implements photometric mapping and digitization of a continuous
speckle function based on a modified Perlin noise in the real space,
assuming here a 100% fill factor. The integration of each pixel is
performed by an oversampling technique. A Gaussian noise with zero-
mean and prescribed standard deviation Sn can be added to images,
with an intensity fixed to Sn =2, 4, 8 or 16 grey levels, in order to
account for the effect of image noise. When no noise is superimposed to
images, the only image noise to be considered corresponds to the
quantization errors, images being coded on 8 bits. In this work, Iundef
image has a size equal to 1024×1024 pixels. Fig. 2 shows several
zooms of this image and its grey level histogram.

2.2. Shifted image generation

From the Iundef image, shifted images, named Idef, are obtained by
three different ways symbolized by a shifting function named S (Fig. 1):

(i) Interpolation of Iundef using several schemes: bilinear or bicubic
interpolation, cubic spline interpolation (S=poly);

(ii) Transformation of the un-deformed image by shifting the signal in
Fourier space as shown in [11] (S=FT);

(iii) Use of TexGen software, based on an analytically known speckle
texture function corresponding to the un-deformed image. This
function can be translated, then mapped and sampled to give the
translated images that are referred to as “TexGen images” in the
following (S=TG).

Fig. 1. Methodology.

or random features which will be hard to reproduce in a realistic way; 
these ones include image noise (digitization, read-out noise, black 
current noise, photon noise), under or over sampling because of an 
imperfect CCD fill factor of the camera sensor, as well as optical 
imperfections such as distortion. Another solution is to numerically 
generate the image. This way, most of the image characteristics can be 
prescribed by the user (e.g. image noise, speckle size, but possibly also 
image imperfections, etc.) [7,17,21–29]. To generate speckle painting 
representative contrasts, methods based on the construction of a 
continuous speckle pattern in 2D space from the random spatial 
distribution of individual Gaussian marks or from the definition of a 
continuous luminance field based on a modified Perlin noise function 
have been proposed. The speckle image is then generated by a 
photometric mapping and the luminance function defining the marks 
is digitized on a regular grid corresponding to each pixel of the image, 
with integration procedures designed to mimic a real image sensor.

The second question is to shift the un-deformed image by a specified 
displacement field. The generation of the transformed images is usually 
realized by considering one of the three methods described hereafter. 
The first method consists in interpolating the un-deformed image. It 
allows us to create numerically shifted images for any type of image 
(real or computer-generated). It can be performed in direct space using 
polynomial, spline or other interpolation schemes [14,15,30,31] or in 
Fourier space [10,12,32,33]. If interpolation in direct space is used, any 
kind of strain field can be produced while with the Fourier method only 
limited image transformations are possible (translation, dilation, mod-
ulation). The second shifting method is based on oversampling of the 
undeformed image and on generation of reference and deformed image 
by pixel averaging (binning process). An integer-pixel displacement in 
oversampled images corresponds to a subpixel displacement after 
binning. This method can be applied to real and synthetic images. For 
example, it has been applied by Doumalin et al. [17] for synthetic 
images of grids tracked by DIC, or more recently by Reu [9] and by 
Barranger et al. [7]. The third method applies only to speckle fields 
generated from a continuous luminance field. As the texture is a 
mathematical function expressed in real space, any transformation 
can be applied assuming convection of image intensity [23] and the 
deformed texture is digitized with exactly the same principles as the 
reference one.

The different methods presented here allow us to obtain sets of 
images and to assess DIC displacement field measurement accuracy. For 
that purpose, the most common analysis consists in considering uniform 
in-plane sub-pixel image translations. This allows constructing the so-
called S-shaped bias error curve and their associated random error 
curve [11,21,25,32,33], whose characteristics and amplitude depend 
on image properties and on both chosen DIC formulation and para-
meters. It has been shown in Bornert et al. [24] that this error regime 
only corresponds to the “ultimate error regime” reached when the 
chosen subset shape function best fits the actual displacement field. 
This ultimate error regime has recently been studied through a 
collaborative benchmark, using synthetic images for which uniform 
in-plane sub-pixel translations were imposed [25].

To assess DIC performances, the metrological properties of the 
image matching should not depend on the chosen algorithm to obtain 
the sets of images, but only on the image characteristics and on the DIC 
algorithm under use (formulation and associated parameters). The 
objective of the collaborative work presented in this paper is to study 
whether image shifting by interpolation introduces some biases in the 
assessment of errors, in particular when the same interpolation scheme 
is used in the DIC analysis. The paper is composed of three parts. The 
first one presents the methodology developed to achieve the goal: 
description of the way to generate the un-deformed image and the sets 
of shifted images, of the features of used DIC algorithms, and of the 
process to determine bias and random errors. The second part deals 
with results in DIC errors analysis when the same scheme is used to 
obtain shifted images and to shift the subsets in the DIC process. These



For the three cases, the imposed displacement, named uimp, varies
from 0 to 1 pixel with a step of 0.02 pixel. Note that Iundef(x) and
Idef(x) are the grey levels of the un-deformed image and the shifted
image at integer positions x respectively. As Idef is the Iundef image
shifted by uimp, the grey level Idef(x) is equal to the grey level
calculated by S at non-integer position (x-uimp) (Idef(x) = S(Iundef)
(x-uimp)). The shifted images are obtained from the un-deformed image
without noise. For the analysis of the effect of noise, the latter is added
to each shifted image and to the un-deformed image before application
of DIC algorithms.

2.3. DIC algorithms

Sets of images are then analyzed using an ad hoc homemade subset-
based DIC software. It allows us to select, if wanted, exactly the same
interpolation scheme as the one used to generate the shifted images Idef
(Fig. 1) A new shifting function named Sd which corresponds to
polynomial interpolation (Sd=poly) or Fourier schemes (Sd=FT) on a
DIC subset with a size d, is introduced. The software is based on a
Newton-scheme minimization of the classical Sum of Squared
Difference (SSD) criterion with a zero-order subset shape function
(Eq. (1)):

∫u I x S I x u dSSSD( ) = ( ( ) − ( )( + ))
d

d
0 1

2

(1)

I0(x) and I1(x) are respectively the grey levels of the initial and
final images used for the DIC computation at integer positions x and
S I x u( )( + )d

1 the grey levels interpolated for non-integer positions (x
+u).

Subset size d is set to 16×16 pixels. Polynomial interpolation of
grey levels is obtained by bilinear or bi-cubic interpolation, bi-cubic
spline interpolation. All cases are studied in the paper.

2.4. Error calculation

The methodology to evaluate DIC errors is based on a statistical
analysis of n subsets. Measured displacements ui are evaluated for all
positions of a regular square grid in the initial image I0, with a pitch of
16 pixels such that subsets at adjacent positions do not overlap,
ensuring the statistical independence of the corresponding errors. The
subsets near to image edges are excluded to eliminate measurement
artifacts linked to boundaries (n=3844). The displacement error for a
subset i is defined by:

Δu u u= −i
i

imp (2)

where uimp is the imposed displacement.
The standard deviation σu (random error) and the arithmetic mean

(bias error) are calculated with the n subsets [24,25].

2.5. Studied cases

Table 1 summarizes the cases studied with the different shifting
methods (polynomial interpolation, Fourier or TexGen), the added

noise level and the “direction” of the material transformation searched
for DIC. For this latter parameter, we studied both the direct transfor-
mation (from I0=Iundef to I1=Idef) and the reverse one (from I0=Idef
to I1=Iundef). These combinations are studied to evaluate their level of
influence on the evolution of the bias and random errors. It is noted that
in most papers on DIC errors assessment based on virtual image
shifting, the sole “direct” method is considered.

3. Results

This section is devoted to the presentation of results corresponding
to the use of the same scheme to obtain both shifted images and shifted
subsets in the DIC process, i. e. studied cases presented in the four first
lines of Table 1 (grey area).

Fig. 3a and b present the bias errors and the random errors versus
prescribed displacements, respectively, for various interpolation
schemes and for the direct transformation. Fig. 4a and b present the
same results considering the reverse transformation. Thumbnails in

Fig. 2. Synthetic un-deformed image: (a) Sub-images, (b) grey level histogram.

Table 1
Studied cases, direct transformation =(I0 = Iundef , I1 = Idef) and reverse transforma-
tion =(I0 = Idef , I1 = Iundef).

Iundef S: Shifting
Methods for
Idef

Added Noise
(grey levels)

Sd: DIC
Shifting
Methods

Transformation

TexGen Bi-linear 0, 2, 4, 8 or 16 Bi-linear Direct
Reverse

Bi-cubic 0, 2, 4, 8 or 16 Bi-cubic Direct
Reverse

Bi-cubic spline 0, 2, 4, 8 or 16 Bi-cubic spline Direct
Reverse

Fourier 0, 2, 4, 8 or 16 Fourier Direct
Reverse

Fourier 0 Bi-linear Direct
Reverse

Fourier 0 Bi-cubic Direct
Reverse

Fourier 0 Bi-cubic spline Direct
Reverse

TexGen 0, 2, 4, 8 or 16 Bi-linear Direct
Reverse

TexGen 0, 2, 4, 8 or 16 Bi-cubic Direct
Reverse

TexGen 0, 2, 4, 8 or 16 Bi-cubic spline Direct
Reverse

TexGen 0, 2, 4, 8 or 16 Fourier Direct
Reverse



plots of Fig. 4 present the same results in a scale similar to that of
Fig. 3a and b in order to facilitate comparisons.

As expected for an isotropic texture, all bias curves are central-
symmetric with respect to the point (0.5, 0) and all random error curves
are symmetric with respect to the vertical median axis corresponding to
x=0.5. Indeed an image translation with a shift u smaller than 0.5 pixel
and with an error Δu, is equivalent to the image translation with a shift
–u, with an error Δu− , deduced by a central symmetry. Such a
symmetric image is statistically equivalent to the initial image for such
a texture. In addition, the translation –u is itself equivalent to the
translation 1-u regarding the one-pixel periodicity of DIC errors
[11,25]. Bias errors for displacements u and 1-u are thus opposite and
random errors are equal, provided the set of measurement points
considered for the statistical analysis is representative. Because bias
curves have an S-shape evolution, the amplitude AΔu defined as the gap
between maximum and minimum error over all imposed displacements
allows us to compare bias errors for the different cases. Concerning the
random error, evolutions can be very different. Studied cases are then
compared using the highest values σmax of the standard deviation
curves. All these values are summarized in Table 2.

3.1. Direct and reverse transformation effect

The well-known ‘S-shape’ for bias error curves and ‘bell-shape’ for

random error curves presented in Fig. 3a and b for direct transforma-
tion are in accordance with literature. Different amplitudes depend on
the interpolation scheme used to generate and process images. For the
bias error (Fig. 3a), amplitudes range from 8.0×10−2 pixel for bi-linear
polynomial interpolation, 6.3×10−3 pixel for bi-cubic polynomial
interpolation, 1.4×10−3 pixel for Fourier transform (noted TF in
figures), to 1.1×10−3 pixel for bi-cubic spline interpolation (see
Table 2). For the random error (Fig. 3b), the maximal value also
depends on the DIC interpolation scheme. The amplitude of the maxima
evolves from about 1.1×10−2 pixel for bi-linear polynomial,
3.4×10−3 pixel for bi-cubic polynomial, to about 2.0×10−3 pixel for
Fourier transform and for bi-cubic spline. Considering the reverse
transformation (Fig. 4a and b), it appears that an almost null bias
value is always observed, except for the Fourier interpolation (Fig. 4a).
The possible observed gap around the null bias may result from
computation errors in the correlation criterion minimization. This
important observation shows that a misinterpretation can be done
when one assesses DIC errors by such a way. The explanation is linked
to the use of interpolation scheme. It is presented in next section.

Fig. 3. Bias (a) and random (b) errors for direct transformations, for various interpolation
schemes used for both DIC analysis and image shifting (non-noisy images).

Fig. 4. Bias (a) and random (b) errors for reverse transformations, for various interpola-
tion schemes used for both DIC analysis and image shifting. Thumbnails present the
results in the same scale as in plots in Fig. 3 (non-noisy images).



3.2. Polynomial interpolation case

To explain the trends previously observed, we choose to show the
calculation of SSD criterion from unidirectional grey level profiles and a
bilinear polynomial scheme as plotted Figs. 5 and 6. Fig. 5a represents
Iundef(x) the grey levels of pixels at integer positions x (blue diamonds)
and S(Iundef)(x) the interpolated grey level profile for real values of x
(blue curve). From these data, S(Iundef)(x-uimp) (red circles) is
calculated. It allows to determine Idef(x) the grey levels pixels at
integer positions x (red circles) in Fig. 5b. Note that Fig. 5a and b are
shifted by uimp in order to best compare both grey level profiles with
the naked eye.

Considering the reverse transformation (Fig. 5b and c), one has
I x I x( ) = ( )def0 and I x I x( )= ( )undef1 . Solving Eq. (1) needs to interpolate
grey levels of I1 (blue diamonds) on d (white zone). These values
S I x S I x( )( ) = ( )( )d d

undef1 are represented in Fig. 5c by a blue line. Values
S I x u S I x u( )( + ) = ( )( + )d d

undef1 are deduced at non integer values x u+ .
When interpolation scheme is the same for both transformed images
and DIC computation (S=Sd), SSD difference writes as:
S I x u S I x u( )( − ) − ( )( + )undef imp undef . The optimum of the SSD criterion
also corresponds to u u= − imp and therefore leads to a null error.
Indeed, Fig. 5c shows that grey levels I x( )0 (red circles) and
S I x u( )( − )d

undef imp (dark-blue dots) are equal. Note that the grey level
profile I x( )0 , shifted by uimp, is plotted in Fig. 5c (red dashed line) and
superimposed on I x( )1 .

Fig. 4 shows weak errors different from zero due to quantification
noise, which is not taken into account in the previous reasoning, and
that acts in DIC optimization process and does not allow achieving the
theoretical optimal displacement. The explanation presented here in a
particular case of linear interpolation stays valid for other polynomial

interpolation schemes.
In the case of the direct transformation (Fig. 6a and b), Fig. 6a

represents I x I x( ) = ( )undef0 the grey levels of pixels at integer positions x
(blue diamonds) and S(Iundef)(x) the interpolated grey level profile for
real values of x (blue curve). From these data and as in Fig. 5a, S(Iundef)
(x-uimp) (red circles) can be calculated. It allows to calculate Idef(x)
(red circles) in Fig. 6b. Then I1(x)= Idef(x) is also interpolated to
calculate S I x u S I x u( )( + ) = ( )( + )d d

def1 at the non-integer positions
x u+ . Consequently, the both shifting functions S and Sd account to
evaluate S I x u( )( + )d

1 and grey level differences between I x( )undef (blue
diamonds) and S S I x u x u( ( )( − ))( + )d

undef imp (red diamonds) appear, as
illustrated in grey level profiles presented in Fig. 6b for the optimal of
the SSD criterion which corresponds to u u= imp. As in Fig. 5c, the grey
level profile I x( )0 , shifted by -uimp, is superimposed on the profile I x( )1
(blue dashed line) in Fig. 6b. These differences also exist with the other
polynomial interpolation schemes but they are smaller because they
introduce curvatures that lead to closer profiles.

Considering the random error curves for reverse transformation for
all interpolation schemes (see Fig. 4b and Table 2 except Fourier
transform), the main observation is that the maximum of random error
is generally smaller than for direct transformation and is almost
independent of the prescribed sub-pixel displacement. A mean value
of about 0.7×10−3 pixel is observed. Following the work by Roux and
Hild [13], this value can be linked to the standard deviation of the
actual image noise Sn, the average of the squared grey level gradient

I∇ 2 of the image, and the subset size d considered in this work,
according to:

σ S

d I
∝

∇
u
th n

2 (3)

Iundef S: Shifting Methods for
Idef

Added Noise (grey
levels)

Sd: DIC Shifting
Methods

Transformation Bias amplitudeAΔu ×10−3 Random error maximum
σmax ×10−3

TexGen Bi-linear 0 Bi-linear Direct 80 11
Reverse ≈ 0 1

Bi-cubic 0 Bi-cubic Direct 6.3 3.4
Reverse ≈ 0 0.9

Bi-cubic spline 0 Bi-cubic spline Direct 1.1 2
Reverse ≈ 0 0.7

Fourier 0 Fourier Direct 1.4 2
Reverse 1.3 1.2

Fourier 0 Bi-linear Direct 15 5.4
Reverse 12 4.9

Fourier 0 Bi-cubic Direct 26 2.5
Reverse 27 2.4

Fourier 0 Bi- cubic spline Direct 3.0 1.7
Reverse 2.7 1.6

Fourier 0 Fourier Direct 1.4 2
Deverse 1.3 2

TexGen 0 Bi-linear Direct 16 4.6
Reverse 17 5.6

TexGen 0 Bi-cubic Direct 26 2.7
Reverse 24 3

TexGen 0 Bi-cubic spline Direct 2.9 1.8
Reverse 0.9 2

TexGen 0 Fourier Direct 2.5 2.2
Reverse 2.9 2.1

Table 2
Summarize of the bias and random error values for all situations in the case of noiseless images.



I∇ 2 can be evaluated from these images to be 30 grey levels per pixel.
With d =16 pixels, a value of σu

th=0.7×10−3 pixel is found for Sn
=0.35 grey levels (in the case of quantification noise), which gives a
good order of magnitude of the image noise due to image quantization
[25].

3.3. Fourier transform case

Concerning Fourier transform (S=FT and Sd=FT), curves are
almost the same for both directions of the transformation (see
Table 2, Figs. 3 and 4). Indeed, if the signal, I x( )undef

R for x real, is
well discretized (regarding Shannon's criterion), the shifting by Fourier
transform does not change the signal. In that case, one can consider
S I x I x( )( ) = ( )undef

R
undef
R for each x and for Sd as well. Then the SSD

difference can be expressed as I x I x u u( )− ( + − )undef
R

undef
R

imp and
I x u I x u( − )− ( + )undef

R
imp undef

R for both direct and reverse transformations,
respectively. At the optimum of the SSD criterion for both ways
(i.e.u u≈ imp (direct) and u u≈ − imp (reverse)), the difference has the
same expression I X I X( )− ( )undef

R
undef
R with X x≈ (direct) or X x u≈ − imp

(reverse). Consequently, in this specific case, bias and standard devia-
tion results should in principle be null and not be influenced by the
direction of transformation. A slight effect is however observed as a
consequence of two facts described hereafter. First, the generated un-
deformed images are not periodic, so that the shifting theorem does not
rigorously apply for the generation of the deformed image (high

frequencies associated with discontinuities at image boundaries are
not well reproduced). Second, Fourier shifting in the DIC algorithms is
applied on subsets (which by the way also are non-periodic) much
smaller than the whole image so that the resulting interpolation differs
from the one used to generate the deformed image. This leads to errors
slightly higher for the Fourier approach when analyzing the reverse
transformation than for the other interpolation schemes, which are
more local and work in exactly the same manner in the DIC and the
image generation processes. Note that the presented FT results are
obtained with Fourier transform shifting in the DIC process performed
with twice the subset size d to limit edge effect and frequency filtering
due to small size d. True FT based DIC algorithms, in which interpola-
tion is implicitly performed on windows with size d, would probably
have led to slightly larger errors.

4. Discussion

The preceding results show that it is possible to conclude in a wrong
way about error assessment in DIC. We suppose that it occurs when
image polynomial interpolation scheme used for DIC is exactly the same
as the one used to generate the shifted images (S=Sd=poly). To discuss
these results, we analyze the DIC errors when shifted images are
obtained without interpolation scheme (S‡poly). Two methods are
tested in this section: TexGen software (see Section 2.1) (S=TG), and
Fourier transform (S=FT) which is a method usually used for DIC
studies in literature [11,13,32]. The discussion will lead first from
noiseless images then from noisy images.

4.1. TexGen shifted images

We first focus on quantifications of DIC errors obtained when both
Idef and (obviously) Iundef are non-noisy TexGen images (S=TG).
Fig. 7a and b present the curves corresponding to bias and random
errors versus the prescribed sub-pixel displacement, for various inter-
polation strategies of the DIC software (same symbols as in Figs. 3 and 4
are used), respectively. Both direct and reverse transformations are

Fig. 5. Matching example of 1D grey level profiles for linear interpolation, reverse
transform and u u= − = −0. 3imp pixel: (a) Iundef (b) I0 and (c) I1,I0: dark-blue dots in red

circles. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Matching example of 1D grey level profiles for linear interpolation, direct
transform and u u= = 0. 3imp pixel: (a) I0 (b) I1,I0: gaps between blue diamonds and

red diamonds. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)



considered in these figures. The error amplitudes are summarized, for
all studied situations, in Table 2 (last four lines). Bias and random
errors are always present and curves are similar for both transforma-
tions. For a given DIC interpolation scheme Sd, the small differences
between both transformations can be attributed to statistical conver-
gence effects.

Bias error amplitude depends on the interpolation scheme
(Sd=poly, FT) used in the DIC software (see Fig. 7a). As already
reported in [11], spline interpolation diminishes this bias amplitude in
comparison to other polynomial interpolation schemes and gives the
same order as for Fourier transform: it is about 2.6×10−2 pixel for bi-
cubic polynomial, 1.6×10−2 pixel for bi-linear polynomial, 2.9×10−3

pixel for bi-cubic spline interpolations and 2.5×10−3 pixel for Fourier
transform. The sign of this bias error depends on the interpolation used.

In contrast to curves obtained in Section 3, bias error curves for
direct transformation are similar but amplitudes are smaller. Indeed,
when using TexGen shifting (S=TG), polynomial interpolation is used
once only in DIC process contrary to interpolation shifting process for
which interpolation is also used to create shifted images (S=Sd=poly).
When reverse transform is considered, errors are higher with TexGen
(S=TG, Sd=poly) than with polynomial interpolation shifting
(S=Sd=poly).

Let us now focus on random errors obtained in the same conditions.
They are presented in Fig. 7b. These errors versus prescribed displace-
ment present ‘bell-shaped’ curves with one or two maxima depending
on the DIC interpolation scheme. The amplitude of the maxima

Fig. 7. Bias (a) and random (b) errors evaluated when considering pairs of TexGen
images, for both direct (-•-) and reverse (-○-) transformations (non-noisy images).

Fig. 8. Bias (a) and random (b) errors evaluated when considering pairs of Fourier-shifted
images, for both direct (-•-) and reverse (-○-) transformations (non-noisy images).

diminishes from about 4.6×10−3 pixel for bi-linear polynomial, 
2.7×10−3 pixel for bi-cubic polynomial, 2.2×10−3 pixel for Fourier 
transform, to 1.8×10−3 pixel for bi-cubic spline, for direct transforma-
tion. As previously observed for bias curves, random error curves 
slightly depend on the choice of direct or reverse transformation. 
Differences between these results and those obtained with S=Sd=poly, 
FT and direct transformation (see Section 3) are relatively small 
excepted for the bi-linear polynomial interpolation (for direct transfor-
mation 11×10−3 pixel versus 4.6×10−3 pixel).

Consequently, using TexGen shifting (S=TG), both bias and random 
errors are typically due to image features (grey level, speckle sizes and 
distributions, grey level gradients, etc.) and obviously to image proces-
sing algorithms implemented in DIC software, but not to the method 
used to shift images. The almost-zero bias observed in Section 3, when 
image polynomial interpolation scheme used for DIC is exactly the same 
as the one used to generate the shifted images (S=Sd=poly), is then a 
trap to be avoided.

4.2. Fourier-shifted images

In this section, we study DIC errors for a shifting of images by 
Fourier transform (S=FT). Both ways of transformation are considered. 
Fig. 8a and b present the curves corresponding to bias and random 
errors versus the prescribed sub-pixel displacement, for various inter-
polation strategies of the DIC software (symbols having the same



meaning as in Figs. 3, 4 and 7), respectively. Error amplitudes are
summarized, for all studied situations, in Table 2 (lines 5–8).

The comparison between TexGen and Fourier results (S=TG or FT)
shows that error amplitudes are similar. We can conclude that both
shifting approaches S are equivalent in terms of bias and random errors
and do not introduce any additional artifact contrary to polynomial
interpolation schemes. However, the principle of TexGen is more
relevant: the calculation of grey levels better fits the real physical laws.
Furthermore, good results obtained with Fourier transform (Sd=FT) are
hardly linked to conditions of Shannon theorem: the physical signal
must be sufficiently well sampled. This hypothesis is not always verified
in real cases. Shifting by Fourier transform has a last drawback contrary
to TexGen shifting: only a translation can be considered while TexGen is
compatible with any transformation like a heterogeneous strain.

4.3. Influence of image noise

To complete the analysis, noisy images are studied. Fig. 9a and b
present bias error curves for direct and reverse transformations
respectively and for Sn =4 GL. Only the cases (S=Sd=poly, FT) and
(S=TG, Sd=poly, FT) are studied because Fourier and TexGen schemes
give similar error trends as shown Section 4.2. All the results are
summarized in Table 3.

Fig. 9b shows that for polynomial interpolations, a bias is now
present when considering the reverse transformation, compared to
noiseless images presented in Fig. 3b. This can be explained by the fact
that initial and final images contain different added noises. This induces
bias errors whatever the way of transformation. For spline cubic
interpolation and Fourier transform, bias curves are insensitive to the
direction of the transformation (compare Fig. 9a and b, and see
Table 3). Considering reverse transformation, values are lower for the
bi-linear interpolation (3.0×10−2 pixel) and almost identical for the bi-
cubic interpolation (2.0×10−2 pixel).

These results are also illustrated in Fig. 10 that presents amplitudes
of bias errors versus values of image noise for both direct and reverse
transformations, Fig. 10a corresponding to images shifted using TexGen
and Fig. 10b corresponding to images shifted by interpolation of the un-
deformed image. As well as it has been previously reported for Sn =0
(Fig. 7a), bias curves for S=TG are almost independent of the direction
of the transformation (Fig. 10a). Fig. 10b clearly shows the same trend,

Fig. 9. Bias errors for both direct (a) and reverse (b) transformations for various
interpolation schemes used for both DIC analysis and image shifting, with image noise
of Sn =4 GL.

Table 3
Summarize of the bias and random error values for all situations in the case of noisy images (Sn =4 GL).

Iundef S : Shifting Methods for
Idef

Added Noise (grey
levels)

Sd: DIC Shifting
Methods

Transformation Bias amplitudeAΔu ×10−3 Random error maximum
σmax ×10−3

TexGen Bi-linear 4 Bi-linear Direct 57 27
Reverse 30 27

Bi-cubic 4 Bi-cubic Direct 17 16
Reverse 20 16

Bi-cubic spline 4 Bi-cubic spline Direct 13 14
Reverse 14 14

Fourier 4 Fourier Direct 0.7 13
Reverse 0.7 13

TexGen 4 Bi-linear Direct 24 27
Reverse 24 27

TexGen 4 Bi-cubic Direct 46 16
Reverse 44 16

TexGen 4 Bi-cubic spline Direct 16 14
Reverse 14 14

TexGen 4 Fourier Direct 0.9 13
Reverse 1.2 13



except for the bi-linear polynomial interpolation. In this case, for small
values Sn< 8 and for direct transformation, the bias error due to this
interpolation is higher than the one due to the noise. Results given by
Fourier transform interpolation (Sd=FT) are less sensitive to the noise;
this transformation acts as a filtering of the high-frequency content of
the image [9].

Lastly, the influence of image noise on random errors is presented in
Fig. 11a and b for direct and reverse transformations, respectively, with
images having a 4 GL noise level (see also Table 3). For a given
interpolation scheme Sd, all curves are almost superimposed according
to the direction of the transformation, except for the bi-linear poly-
nomial interpolation. The classical bell-shape of the random curve is
not recovered (except for the bi-linear polynomial and direct transfor-
mation), and the random error gets larger for displacements close to 0
and 1 for all schemes. This observation has recently been highlighted in
[25]. However, for moderate noise level as it is the case in Fig. 11, this
phenomenon is still inconspicuous. The constant value of about
0.7×10−3 pixel reported for noiseless images in Section 3 and in
Fig. 4b is now about 1.2×10−2 pixel (value of the random error for a
prescribed displacement of 0.5 pixel) for noisy images. This result is a
direct consequence of the increase of the image noise level according to
Eq. (3).

To summarize, one can say that the more the presence of noise in

the image, the less the effect of the way of transformation on bias and
random errors.

5. Conclusion

This work deals with the DIC “ultimate error regime” reached when
the chosen subset shape function fits well with the actual displacement
field. In this context, the evaluation of this ultimate error regime is
generally performed using real or synthetic images that are numerically
shifted with sub-pixel rigid body motions. To this end, a speckle pattern
image has been generated from an adapted analytic texture function. It
has then been shifted by the same methods used in DIC (classical image
polynomial interpolations in space domain or shifting in Fourier space)
and by transforming the analytic texture function (TexGen images).
Considering image polynomial interpolations for shifting and DIC, and
direct transformation (I0 = Iundef), classical tendencies are recovered
with different amplitudes depending on the interpolation scheme. If
reverse transformation is imposed (I0 = Idef), an almost zero bias and a
random error independent of the prescribed sub-pixel displacement are
observed. When the analytic texture function is transformed to shift
images (TexGen images), bias and random errors are due to the image
characteristics (grey level, speckle sizes and distributions, grey level
gradients, etc.) and the chosen interpolation scheme implemented in
the DIC software. Fourier transformation scheme as an alternative to

Fig. 10. Amplitude of the bias errors function of image noise for both direct (-•-) and
reverse (-○-) transformations and (a) for images shifted using TexGen or (b) by
interpolation of Iundef.

Fig. 11. Random errors for both direct (a) and reverse (b) transformations, for various
interpolation schemes used for both DIC analysis and image shifting, with image noise of
Sn = 4 GL.
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shift images (without polynomial interpolation) gives the same error 
tendencies and shows that no bias is introduced by using Fourier or 
TexGen shifting.

Accordingly, these results illustrate the fact that an evaluation of 
DIC error can be directly linked to the assumptions taken to generate 
the synthetic shifted images, and thus may be not representative of the 
actual behavior of the DIC software. These choices may corrupt the 
result of the DIC algorithm error assessment, in particular when the 
same polynomial interpolation scheme is used to shift images and 
subsets in DIC for a reverse formulation (I0 = Idef). This effect 
diminishes when noise is added to the images.
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