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Behaviour and damage of injected
carbon-fibre-reinforced polyether ether
ketone: From process to modelling

F Berthet1, F Lachaud2, J Crevel1,2 and M-L Pastor3

Abstract
Short-carbon-fibre-reinforced polyether ether ketones are materials of great interest for the aeronautical industry. In
this study, a design of experiment was carried out to understand the effect of process parameters on micro- and macro-
scale properties of injection-moulded short-carbon-fibre-reinforced polyether ether ketone (90HMF40). Mould tem-
perature was found to be the most significant parameter; it had a positive effect, essentially on failure stress and strain.
Once the damage and plasticity scenarios were understood, a micromechanical model based on Mori–Tanaka homogen-
ization theory was developed, featuring micro-damage and coupling with macro-plasticity. This model gave good pre-
dictions for quasi-static tensile tests.
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Introduction

Composite materials are of major interest in the trans-
port field, especially in aircraft construction, because of
their excellent specific properties.1,2 They are made up
of reinforcement particles lighter than commonly used
materials, such as steel, which are incorporated in a
resin to transfer stress. Thermosetting resins, such as
epoxy, are used for their easy processing3 and good
mechanical properties, but they are difficult to recycle.4

It is because they avoid this inconvenience that thermo-
plastic resins are of great interest. In addition, they
have better impact and chemical (aeronautical fluids)
resistance.2,5 The aviation-certified-thermoplastic cur-
rently used is PEEK (polyether ether ketone), which
has been largely investigated since its first commercial-
ization by ICI in the 1980s. The addition of short
carbon fibres considerably improves the mechanical
properties of the composite.6 The best known carbon-
fibre-reinforced PEEK used in the aeronautical field is
the unidirectional AS4-APC2 prepreg, manufactured in
an autoclave.7 With this process, only simple and
double curvature parts can be produced, and the injec-
tion-moulding technique is widely used for complex
shapes. Moreover, short fibres can reinforce parts,
depending on the distribution of their orientation,

length and concentration.8,9 Hence, the major limita-
tion of this process is related to the lower strength of
materials obtained by injection compared to autoclaved
laminated composites.10 Another problem encountered
concerns the prediction of how the material will behave
in a structure as the microstructure (fibre and matrix
properties) can be altered by process parameters, lead-
ing to a heterogeneous material. Thus, it is essential to
take these modifications into account when predicting
material behaviour, a step that is not performed in a
macroscopic model. The aim of the multi-scale model-
ling approach is to predict heterogeneous material
behaviour from its microstructure and component
properties.11,12 The mean-field theory is one of the
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possible ways to attain this objective. This analytical
path is easier to implement than full-field homogeniza-
tion (based on finite elements) and is less time consum-
ing. Shear lag models have been developed13,14 for
injected material but are restricted to one dimension.
Models based on Eshelby’s solution with a non-dilute
composite material enable a three-dimensional stiffness
tensor to be predicted. Bounding models (Voigt, Reuss,
Hashin-Shtrikman, Lielens)15–19 can monitor the valid-
ity of any models developed but are little used for
mechanical prediction. The self-consistent model
designed by Hill20 is implicit and results in the material
being too stiff. However, the well-known Mori–Tanaka
model, improved by Benveniste,21 is very efficient for
fibre-reinforced-composites.

Thus, the aim of the present study was first to under-
stand the effect of process parameters on micro- and
macro-scale properties. In the case of injection-mould-
ing, the main parameters of the microstructure: fibre
length22,23 and orientation distributions,24–26 crystallin-
ity,27 and fibre28 and void29 content, are altered by cer-
tain process parameters30–32 and have an effect on
mechanical properties.33–35 Taguchi’s table enabled
the effect of injection-moulding parameters on trad-
itional mechanical properties to be understood.
Differential scanning calorimetry, density measure-
ments, chemical dissolutions and section observations
by scanning electron microscope (SEM) gave access to
the microstructure state. Secondly, a Mori–Tanaka
homogenization scheme was implemented using previ-
ously characterized microstructure parameters and
variations. The non-linear behaviour of the matrix
required a linearization of the problem in order to
come within the domain of validity of the mean-field
theory.36,37 In addition to problems of matrix non-
linearity, the bonding between fibres and resin is
rarely perfect,38,39 so a damage criterion was imple-
mented, based on the work of Fitoussi et al.40

Experimental set-up

Material

PEEK, a semi-crystalline thermoplastic polymer, has
very good mechanical and chemical properties,5 see
Table 1.

Moreover, it has a glass transition temperature of
143!C and a melting temperature of 343!C, which
enable it to be used at high temperature.2

In this study, a commercial grade carbon-fibre-rein-
forced PEEK was used: 90HMF40 provided by
Victrex!. The material contained 40wt% of short
carbon fibres (high-modulus carbon fibres with a
mean length of 120 mm) and an easy flow PEEK
grade. Test specimens, manufactured according to

ASTM D3641 - 10 a,41 were moulded with a DK 65/
160 injection-moulding press.

Design of experiments

In order to understand the influence of processing param-
eters on mechanical and damage properties, an L9
Taguchi table was used42 (Table 2). It enabled four par-
ameters to be varied on three levels. Each parameter was
chosen according to physical limits and previous
works.43–46 Finally, the mould temperature (Tmould) was
chosen to be above the PEEK glass transition tempera-
ture and below the PEEK degradation temperature of
420!C.47 The holding pressure (Phold) was chosen so as
to avoid shrink (low-holding pressure) and flash (high-
holding pressure), and the holding time (thold) (time for
which the holding pressure was applied) and cooling time
(tcool) (time from the end of holding time to part ejection)
were also chosen in order to avoid cold slug. All param-
eter levels are given in Table 2. For Tmould, the levels
were those measured during manufacturing. The tem-
perature of the hopper was 50!C, the barrel profile
temperature was 385!C–390!C–395!C, and the nozzle
temperature was 405!C for all experiments. To obtain
stable experimental results, the first five parts made in
each trial were not taken into consideration.

Characterization

Monotonic and cyclic tensile tests were carried out on a
testing machine with hydraulic grips respecting stand-
ard NF ISO 527-2,48 with a crosshead speed of 5mm/
min (approximately 2 e" 3 s" 1) at room temperature
(23!C). Young’s modulus, strength and fracture strain
were determined as the mean of at least three tensile
tests. For cyclic tensile tests, special care was taken
during the unloading of the stress, to avoid a compres-
sive state.

In order to understand the damage phenomena after
tensile tests, the fracture surfaces were observed
by SEM with a Nova NanoSEM 450. Samples were
platinum–palladium coated in a QUORUM Q150RS
sputter coater to avoid electrical charges.

Temperature was measured during the tensile tests to
understand the non-linear behaviour of the material.
The infrared camera was a Flir SC7000 set to an acqui-
sition frequency of 50 Hz. Its operational range was
from þ 20!C to 50!C with a NETD lower than 25mK

Table 1. Mechanical properties of PEEK (Victrex! PEEK 90 G).

Tensile Young’s
modulus (MPa)

Failure tensile
stress (MPa)

Failure tensile
strain (%)

3700 $ 100 110 $ 1 15 $ 1



at 25!C. It featured an InSb detector with a wavelength
of 3.5–5 $ 0.25 mm and a focal length of 50 $ 0.5mm.

Modelling

Mean-field homogenization

The homogenization scheme chosen to predict the
mechanical behaviour of the carbon-fibre-reinforced
PEEK was the model first developed by Mori and
Tanaka49 and improved by Benveniste.21 Like all
mean-field homogenization schemes, it is based on
Eshelby’s inclusion problem50 of the accommodation
of an inclusion in a matrix. The theory considers an
inclusion (for example, a fibre) embedded in the
matrix. It is an analytical and explicit model in which
the stiffness tensor (LMT) is given by equation (1). The
equation can be solved by summing the effects of all
phases.

LMT ¼ Lm I þ Arh i I þ Er " Ið ÞAr

! "" 1
# $h i" 1

ð1Þ

where Ar ¼ " Lr " Lmð ÞEr þ Lm½ )" 1 Lr " Lmð Þ is the
strain concentration tensor of the dilute Eshelby
model, Xrh i ¼

PN
r¼1 vrXr is the volume average oper-

ator over the N phases, vr is the volume fraction of
phase r, Lr (respectively, Lm) is the stiffness tensor of
phase r (respectively, the matrix), Er is the Eshelby
tensor of phase r, depending on its aspect ratio
(length/diameter) and matrix stiffness tensor.

For this model, with the Eshelby tensor, inclusions
(fibres here) are considered as isotropic. This is true for
glass fibres but not for carbon fibres.21 A new model
using an ‘autocoherent’ methodology51 will be devel-
oped in order to take the orthotropic stiffnesses of
carbon fibres into account. Although the anisotropy
of carbon fibre was not considered here, we introduced

the fibre orientation distribution as plotted in Figure 7.
Then, as can be seen in Table 5, this distribution
induced different values for longitudinal and transverse
moduli.

Non-linear behaviour: Elastoplastic phase

In this study, plasticity is considered macroscopically.
Based on the basic law of plasticity, equation (2) with
Von Mises equivalent stress, equation (3), plasticity was
implemented by an implicit formulation.

f ¼ !eq " R pð Þ ð2Þ

!eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
* ! " 1

3
* tr !ð Þ

& '
: ! " 1

3
* tr !ð Þ

& 's

ð3Þ

The hardening law R pð Þ was determined by an ana-
lysis of cyclic tensile tests.

R pð Þ ¼ R0 þ Rcrit: 1 " expð":pÞ½ ) ð4Þ

A consideration of matrix plasticity, at micro scale,
would require linearization of its mechanical behav-
iour, for example, with the secant method.7,8

Non-linear behaviour: Damage criteria

Considering elastic fibres and an elastoplastic matrix, it
was easy to model fibre/matrix interface damage. This
micromechanical damage depends on fibre orientation
according to load orientation. For this type of compos-
ite, damage occurs at the fibre-matrix interface.40,51

Fitoussi determined a quadratic three-dimensional
fibre-matrix interface failure criterion for discontinu-
ous-reinforcement composite40 (equation (5)). It requires
the identification of three parameters: !Rn , the interface
failure normal stress; #Rs , the interface failure shear stress
and ’, the friction parameter. These parameters have
been identified for unidirectional carbon fibre with
PEEK matrix laminates by Lachaud.52 Thus, the criter-
ion has to be calculated around the diameter of the inter-
face, using the local axis for each orientation to take the
anisotropy of the damage into account. A damage vari-
able can be calculated as the ratio of the number of
times; the criterion is satisfied for each angular position
around the fibre to the total number of points calculated.

!in
!Rn

# $2
þ #is

#Rs

# $2
¼ 1 if !in 4 0

#is
#Rs þ !inh i" tanð’Þð Þ

& '2

¼ 1 if !in + 0

8
>><

>>:
ð5Þ

Table 2. L9 design of experiments.

Trial no.
Mould
temp. (!C)

Holding
pressure (MPa)

Holding
time (s)

Cooling
time (s)

1 178 60 6 35

2 178 70 9 55

3 178 80 12 80

4 188 60 9 80

5 188 70 12 35

6 188 80 6 55

7 203 60 12 55

8 203 70 6 80

9 203 80 9 35

Test 203 80 12 35



Finally, a damage parameter was introduced in the
stiffness matrix of the fibre in order to compute the
global stiffness of the composite again.

Results and discussion

Mechanical and physical properties

The behaviour under quasi-static tensile loading is
shown in Figure 1. The mean values of Young’s modu-
lus (E), fracture strength (!R) and strain (eR) are
reported in Table 3.

In Figure 2, three zones can be seen: Zone 1
(s<100Mpa), an elastic zone; Zone 2 (100MPa<
s< 260–270MPa), where irreversible phenomena
appear and Zone 3, a crack propagation region with
a clear-cut increase in the average temperature.

The strength and failure strain of the 90HMF40
were high, so bonding between the fibre and the
matrix might be good.

Design of experiments, analysis

Tensile results are given in Tables 3 and 4. The effects of
injection parameters were determined (related to their
levels) by multi-linear regression. It was possible to
access the effects of parameters on the various results
obtained from tensile tests (Figures 3 to 5). The
ANOVA (analysis of variances) results are shown in
Tables 5 to 7. The results show that the mould tempera-
ture was the only significant factor affecting ultimate
stress and strain.

Table 8 shows the effect of each injection parameter
on the tensile properties for this PEEK.

At the levels of injection parameters use, holding
pressure did not have a significant effect on tensile
properties. The effects of holding time and cooling
time were also not significant. Thus, mould temperature

was the most significant parameter, with a positive
effect, essentially on failure stress and strain.

Damage characterization

In order to understand the damage behaviour, SEM
microscopy was carried out (Figure 6). Two different
mechanisms were noticeable: debonding (a) and matrix
plasticity (b). This picture was taken on the fracture
surface of a 90HMF40 specimen. It was observed that
debonding was the most important phenomenon in the
middle of the test specimen section, whereas matrix
plasticity was the most prominent near the outer sur-
faces. Thus, PEEK transcrystallinity (growth of crystal-
linity perpendicularly to the fibre surface) had a
significant effect on damage behaviour, as observed
by Friedrich et al.53 and Kim and Gao.54 This crystal-
linity is highly influenced by cooling rates (thermal

Table 3. Tensile results.

Trial no.
Ultimate
stress (Mpa)

Ultimate
strain (%)

Young’s
modulus (Mpa)

1 299.2 0.89 43,076

1 308.3 0.92 43,645

1 304.6 0.89 44,432

2 295.7 0.89 45,426

2 317.4 1.00 42,456

2 310.3 0.91 44,249

3 297.0 0.91 44,708

3 318.8 0.97 44,069

3 321.5 0.97 44,180

4 306.0 1.01 41,694

4 330.7 1.10 43,267

4 330.1 1.11 42,107

5 319.4 0.99 45,559

5 326.4 1.05 42,318

5 320.3 0.99 43,986

6 324.0 1.07 42,792

6 332.5 1.17 40,135

6 323.9 1.01 43,784

7 310.1 0.96 44,617

7 316.3 0.99 43,852

7 318.4 1.02 42,654

8 315.0 0.96 43,469

8 331.7 1.12 42,870

8 325.2 1.07 42,453

9 316.5 1.00 43,845

9 326.4 1.02 43,810

9 316.4 0.94 43,783

Test 316.7 0.95 45,690

Test 319.6 0.99 44,214

Figure 1. Behaviour of 90HMF40 during quasi-static tensile
tests (Trial no. 4 – first run).



history), which themselves affect the mechanical prop-
erties of the matrix27 and matrix/fibre interface.

The cooling rate decreased at high mould tempera-
ture as the temperature of the injected composite was
always the same. So, for higher mould temperature, the
time to reach room temperature was longer. Then resi-
dual stresses decreased and influence initial damages.
Figure 7 shows the relationship between damage
energy (Yd) and damage. Figures 8 to 10 illustrate
that high mould temperature decreased initial damage
and had no significant influence on the other damage

parameters. Thus, if initial damage decreased, the fail-
ure stresses and strains increased.

This can explain why mould temperature had a very
significant effect on fracture strength and strain.

Furthermore, fibre orientation is directly impacted
by matrix flow,6 which is influenced by fibre con-
tent, mould section and, of course, the thermal
environment.

Load–unload tensile tests

For the non-linear behaviour of the material to be mod-
elled, the damage and plasticity evolution laws and
scenarios had to be determined, so load–unload tensile
tests were carried out (Figure 11). The tests were strain
controlled so as to keep a constant strain rate (very
important for modelling).

Modelling

Elastic homogenization

The first step was to validate the global elastic predic-
tion using the micro-parameters shown in Table 9,

Figure 3. Effects of control factors on Young’s modulus.

Figure 2. Stress and average relative temperature.
Figure 4. Effects of control factors on ultimate strain.

Figure 5. Effects of control factors on ultimate stress.

Table 4. Mechanical properties of 90HMF40.

Material
properties
of 90HMF40 Ex (GPa) Ey (GPa) !r

x (MPa) "r
x (%)

Tests 43.5 $ 1.1 – 317.1 $ 10.2 1.00 $ 0.07

Numerical
model for
comparison

45.5 20.0 – –



where lf and rf are the fibre length and radius, respect-
ively. A representative distribution of fibre length mea-
sured (Figure 12). A representative distribution of
orientation was also taken on the basis of the experi-
mental data (Figure 13). Samples were cut and
observed with a microscope to determine the distribu-
tion of orientation by image analysis and computation.

Non-linear prediction

Once the elastic prediction was validated, we focused
on the non-linear behaviour of the material. From the
results of cyclic tensile tests, macroscopic isotropic
hardening law parameters were determined (see
Table 10) with the fit of the plastic curve determined
by tensile tests (Figure 14). The matrix non-linear

behaviour was thus modelled. Effects of control factors
are given in Figure 15.

Moreover, Fitoussi et al.40 criteria parameters were
determined by Eshelby50 for failure stresses (Table 10)
by means of unidirectional laminate failure analysis.

Table 6. ANOVA results for strain.

Source of variation S DOF Variance Fcalc Risk Signif Contribution (%)

Temperature 7.69039E" 06 2 3.8452E" 06 13.297088 0.0002123 Yes 49.15

Holding pressure 1.50503E" 07 2 7.52516E" 08 0.2602278 0.7734459 No 0.96

Holding time 3.72931E" 07 2 1.86466E" 07 0.6448173 0.5353254 No 2.38

Cooling time 1.6486E" 06 2 8.24298E" 07 2.8505095 0.0814323 No 10.54

Error 5.78352E" 06 20 2.89176E" 07 36.96

Total 1.56459E" 05 26 6.01767E" 07 100.00

ANOVA: analysis of variances; DOF: Degrees of freedom.

Table 5. ANOVA results for Young’s modulus.

Source of variation S DOF Variance Fcalc Risk Signif Contribution (%)

Temperature 6,253,891 2 3,126,946 2.697 0.092 No 16.9

Holding pressure 659,047 2 329,523 0.284 0.756 No 1.8

Holding time 4,824,197 2 2,412,098 2.080 0.151 No 13.1

Cooling time 1,971,676 2 985,838 0.850 0.442 No 5.3

Error 23,190,867 20 1,159,543 62.8

Total 36,899,678 26 1,419,218 100.0

DOF: Degrees of freedom; ANOVA: analysis of variances.

Table 7. ANOVA results for stress.

Source of variation S DOF Variance Fcalc Risk Signif Contribution (%)

Temperature 1174 2 587 7.94 0.00 Yes 40.13

Holding pressure 167 2 84 1.13 0.34 No 5.73

Holding time 18 2 9 0.12 0.89 No 0.60

Cooling time 87 2 44 0.59 0.56 No 2.98

Error 1479 20 74 50.56

Total 2925 26 113 100.00

ANOVA: analysis of variances; DOF: Degrees of freedom.

Table 8. Effects of injection parameters on tensile properties
for 90HMF40.

Injection parameters 90HMF40

Tmould E¼ /!r%/"r%
Phold No effect

thold No effect

tcool No effect



The friction coefficient was assumed to take the clas-
sical value of 0.3.

Finally, the prediction of the model was compared
with experimental data obtained from monotonic ten-
sile tests. As can be seen from Figure 16, there was
fairly good agreement between the modeling prediction
and the experimental data (error< 8%). It should be
noted that the experimental data corresponded to the
experimental design and thus had an unusually wide
dispersion.

Figure 6. SEM image of fracture surface (debonding zone (a) and matrix plasticity (b)).

Figure 7. Damage vs. energy damage. Figure 9. Effects of control factors on damage parameter ad.

Figure 8. Effects of control factors on damage initiation.



Conclusions and perspectives

Thanks to a design of experiments, it has been possible
to determine the effects of process parameters on micro-
structure and, thus, on mechanical properties.

Observation of fracture surfaces revealed non-linear
phenomena responsible for material failure. Tensile
tests and cyclic (load–unload) tensile tests gave an
understanding of the scenarios of damage and

Figure 11. Behaviour of 90HMF40 during load–unload tensile
tests.

Figure 10. Effects of control factors on damage parameter $d.
Figure 12. Fibre length distribution.

Table 9. Model parameters input to Mori–Tanaka model.

Material parameters

Matrix Fibre properties (Young’s modulus in fibre direction)

Em (GPa) %m Ef (GPa) %f lf (m) rf (m)

Parameter value 3.8 0.325 450 0.27 Distribution 2.5 e" 6

Table 10. Parameters of the matrix.

Hardening law Fitoussi criteria

Material parameters R0 (MPa) Rcrit (MPa) g !R
n (MPa) #R

s (MPa) f

Parameter value 45 $ 10 240 $ 40 " 2100 $ 500 80.8 $ 3 165 $ 10 0.3

Figure 13. Fibre orientation distribution.



plasticity. Thanks to an infrared thermography analysis
carried out during the tensile tests, the scenario was
refined. A micromechanical model based on Mori–
Tanaka homogenization theory was developed, featur-
ing micro-damage and coupling with macro-plasticity,
and gave a good prediction of quasi-static tensile test
results. An extension to load–unload tensile tests is
needed to check the model accuracy.

Possible perspectives include:

. Development of failure modelling of the short-fibre-
reinforced composite and integration of the model
into the computations.

. 3D microstructurally based modelling and
Simulation (with use of tomography).

. Behaviours temperature and time dependence of this
carbon-fibre-reinforced PEEK.

. Simulation of deformation and damage, integration
of matrix viscoelasticity into models, integration of
plasticity at microscale, etc.

. Simulation of deformation and damage of this crys-
talline material during fatigue and creep.

. Integration of more sophisticated crystal plasticity-
based models into mechanical behaviour simulation.

. Work on more advanced or enhanced interface
criteria.

Figure 16. Prediction and experimental data for monotonic
tensile test.Figure 14. Stress vs. plastic strain for quasi-static cycled tests.

Figure 15. Significant process parameters for hardening law.
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