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This work studies the influence of some constraints on a stabilizing feedback law. It is considered an abstract nonlinear control system for which we assume that there exists a linear feedback law that makes the origin of the closed-loop system globally asymptotically stable. This controller is then modified via a cone-bounded nonlinearity. A well-posedness and a stability theorems are stated. The first theorem is proved thanks to the Schauder fixedpoint theorem, the second one with an infinite-dimensional version of LaSalle's Invariance Principle. These results are illustrated on a linear Korteweg-de Vries equation by some simulations and on a nonlinear heat equation.

Introduction

The study of systems formed by a feedback interconnection of a system and a cone-bounded nonlinearity has received considerable attention in recent decades (see e.g [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], [START_REF] Zaccarian | Modern anti-windup synthesis: control augmentation for actuator saturation[END_REF], or [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF]). Indeed, in most of systems, the control input has a nonlinear dynamic. Nowadays, it is well known that neglecting these nonlinearities can lead to undesirable and even catastrophic behaviors for the closed-loop system. Without any assumption on the open-loop system, only a local stabilization result can be obtained. A classical research line is then to analyze the basin of attraction or to obtain a better one using anti-windup techniques in the case of saturated controls ( [START_REF] Grimm | Antiwindup for stable linear systems with input saturations: an LMI-based synthesis[END_REF] or [START_REF] Coutinho | Computing estimates of the region of attraction for rational control systems with saturating actuators[END_REF]).

Tackling this kind of nonlinearities in the case of finite dimensional systems is already a difficult problem. However, nowadays, numerous techniques are available (see e.g. [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF][START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF][START_REF] Sussmann | On the stabilizability of multiple integrators by means of bounded feedback controls[END_REF]) and such systems can be analyzed with different techniques: an appropriate Lyapunov function and a sector condition of the saturation map, as introduced in [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] or a frequency approach, leading to the so-called Popov's criterion, as it is reviewed in [START_REF] Jayawardhana | The circle criterion and input-to-state stability[END_REF].

To the best of our knowledge, the study of this topic in the infinite dimensional case has started with [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF][START_REF] Seidman | A note on stabilization with saturating feedback[END_REF][START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF]. More recently, some new results have been stated in [START_REF] Jayawardhana | Infinite-dimensional feedback systems: the circle criterion and input-to-state stability[END_REF][START_REF] Daafouz | Nonlinear control of a coupled pde/ode system modeling a switched power converter with a transmission line[END_REF][START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF][START_REF] Prieur | Wave equation with conebounded control laws[END_REF][START_REF] Curtain | Stabilization of collocated systems by nonlinear boundary control[END_REF]. Note that these results deal with control linear systems. The present paper aims at contributing to the study of feedback interconnection of a system (possibly nonlinear) and a cone-bounded nonlinearity in the framework of partial differential equations, more precisely for abstract control systems described with the semigroup theory ( [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] and [START_REF] Miyadera | Nonlinear semigroups[END_REF] are good introductions to linear semigroups and nonlinear semigroups, respectively. The Port-Hamiltonian framework, that models a lot of infinitedimensional systems, is reviewed in [START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF]).

In this article, an interconnection of a system with a nonlinearity that is continuous, monotonic, linearly bounded, and vanishes at 0, is considered. Hence, these nonlinearities are more general than the saturations. When the system is linear, the feedback interconnection of a linear system and a nonlinearity can be referred to as systems of Lur'e type for which the Popov's criterion is well known (see e.g. [START_REF] Khalil | Nonlinear Systems Second Edition[END_REF]). In [START_REF] Jayawardhana | Infinite-dimensional feedback systems: the circle criterion and input-to-state stability[END_REF], an infinite-dimensional version of Lur'e systems is introduced. The authors derive some conditions, similar to the Popov's criterion for finite-dimensional systems, which ensure that the origin for the interconnection of a linear infinite-dimensional system and a nonlinearity satisfying a sector condition is globally exponentially stable. Let us mention also [START_REF] Chow | Hysteresis in the linearized Landau-Lifshitz equation[END_REF], where the linearized Landau-Lifshitz equation with a hysteresis is analyzed.

One of the most known functions belonging to this class of nonlinearities is the saturation. This topic has been introduced in [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF] in the context of infinite-dimensional systems. In open loop, the systems considered are linear. In this article, the case of a priori bounded feedback is studied for abstract (possibly nonlinear) systems. A saturation function bounds the control input in the space where the origin is stabilized. To be more specific, for compact control operators, some conditions are derived to deduce, from a detectability assumption, the asymptotic stability when closing the loop with a saturating controller (see [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]Theorem 5.1] for a precise statement of this result). An infinite-dimensional version of the LaSalle's Invariance Principle is applied to obtain a weak convergence of the solution to the origin. This convergence becomes strong if the control space is equal to R. This special case occurs for instance when dealing with a partial differential equation coupled with a controlled ordinary differential equation. In [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF], the authors considered the same problem and obtained a better result with weaker assumptions. Indeed, they took advantage of the saturation function introduced in [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF] and proved, without assuming the compactness of the control operator, but assuming only stabilizability, that saturating a stabilizable feedback law makes the origin globally asymptotically stable. Moreover, in [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF], the case of unbounded control operators is tackled. A good introduction to unbounded control operators is [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF].

The aim of this article is to obtain complementary results to the results of [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF] and those of [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]. Moreover, in this paper, the open-loop system is nonlinear. Using a cone-bounded nonlinearity (possibly not globally Lipschitz), more general than the saturation introduced in [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF], we derive some conditions to deduce the well-posedness of the closed-loop system by applying the Schauder's fixed-point theorem and the global asymptotic stability of the origin of the closed-loop system by using an infinite-dimensional version of the LaSalle's Invariance Principle. Finally, these results are applied on two specific infinite-dimensional examples, the linear Korteweg-de Vries equation and a nonlinear heat equation.

The article is organized as follows. In Section 2, we state our problem and present our main results. A subsection aims also at comparing our results to the existing results. In Section 3, the well-posedness of the Cauchy problem is tackled using the Schauder fixed-point theorem. In Section 4, the asymptotic stability of the origin for the closed-loop system is proven using an infinitedimensional version of the LaSalle's Invariance Principle. Section 5 illustrates the main results of this paper with a Korteweg-de Vries equation with a distributed and bounded control and a nonlinear heat equation with a distributed and bounded control. Finally, Section 6 collects some concluding remarks.

Notation: Let c ∈ C, (c) (resp. (c)) denotes the real part (resp. the imaginary part) of c. The identity operator associated to a Hilbert space X is denoted by

I X . An operator A : D(A) ⊂ X → X is said dissipative if, for all x, x ∈ X, it holds that { Ax -Ax, x -x X } ≤ 0. An operator A : D(A) ⊂ X → X is said to be m-dissipative if
and only if A is dissipative and there exists λ 0 > 0 such that Ran(I -λ 0 A) = X. Given a strongly continuous semigroup T over X, the positive orbit through φ ∈ X is defined by O + := ∪ t∈R+ T (t)φ. The strong ω-limit set of ψ is the (possibly empty) set defined by ω(ψ) := τ ≥0 clos X t≥τ T (t)ψ . A ball centered at x 0 > 0 of radius r in X defined by B(x 0 , r) = {x ∈ X, x -x 0 X ≤ r}. Given a Hilbert space X, a sequence (x n ) n∈N ∈ X weakly converges to x if, for every x ∈ X, lim n→+∞ x n , x X = x, x X .

2 Problem statement and main results

Problem statement

Let X be a Hilbert space equipped with scalar product •, • X and norm • X . Let U be another Hilbert space with scalar product •, • U and norm • U . Moreover, let A be a (possibly nonlinear) dissipative operator that is the infinitesimal generator of a strongly continuous semigroup of contractions on X denoted by (T (t)) t≥0 with domain D(A). From [START_REF] Crandall | Semi-groups of nonlinear contractions and dissipative sets[END_REF]Corollary 3.3], this implies that D(A) is dense in X. Finally, let B be in L(U, X), the space of bounded linear operators from U to X.

We consider the stabilization problem of the origin of the following infinitedimensional control system ẋ = Ax + Bu

where u in U denotes the controlled input. The aim of this paper is to study the case where the control is given by

u = -σ(B x), (2) 
where σ : U → U is a mapping which will be characterized later on.

The system (1)-( 2) is a feedback interconnection of a (possibly nonlinear) system and a nonlinearity denoted by σ. In the case of linear systems, it can be referred to a Lur'e system as in [START_REF] Jayawardhana | Infinite-dimensional feedback systems: the circle criterion and input-to-state stability[END_REF]. However, note that the nonlinearity σ considered all along this paper is different from the one introduced in [START_REF] Jayawardhana | Infinite-dimensional feedback systems: the circle criterion and input-to-state stability[END_REF].

Existing results and contributions

In [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF] and [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF], the authors considered the case where the control is bounded. To take into account this type of constraint, these papers introduced a saturation function, which is defined by, for all s ∈ U ,

sat(s) =    s for all s U ≤ u s , s s U u s for all s U ≥ u s , (3) 
where u s ∈ (0, ∞) denotes the saturation level. Note that this function reduces to the identity when the U -norm of its argument is close to 0. Such a situation arises for a large class of control systems and studying what effect can have a bounded stabilizing controller on the stability of the closedloop system is already an open problem even for finite-dimensional systems (see e.g. [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] or [START_REF] Laporte | Global stabilization of multiple integrators by a bounded feedback with constraints on its successive derivatives[END_REF]). In this paper, inspired by [START_REF] Castelan | Control design for a class of nonlinear continuous-time systems[END_REF] and [START_REF] Prieur | Wave equation with conebounded control laws[END_REF], we will consider nonlinearities more general than the saturations. Let us define them.

Definition 1 (Cone-bounded nonlinearities on U ) Let σ : U → U be a continuous operator such that 1. for all u in U , { u, σ(u) U } = 0 implies u = 0; 2. there exists a positive value L such that, for all u ∈ U , we have σ(u

) U ≤ L u U ; 3. for all u, v in U we have { σ(u) -σ(v), u -v U } ≥ 0.

Example 1 (Examples of cone-bounded nonlinearities)

1. Any linear mapping σ(u) = µu, where µ is a positive value, is a conebounded nonlinearity; 2. The saturation given by ( 3) is a cone-bounded nonlinearity. The fact that this function satisfies items 1 and 2 is easy to check. The last item has been checked in [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF]. Indeed, in this paper, the operator given by ( 3) is proved to be a m-dissipative operator. Hence, in particular, the operator sat U is monotone. Therefore, it satisfies item 3;

3. For all s ∈ R, the so-called localized saturation (as considered in e.g., [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], [START_REF] Khalil | Nonlinear Systems Second Edition[END_REF]) defined by

sat loc (s) =      -u s if s ≤ -u s , s if -u s ≤ s ≤ u s , u s if s ≥ u s , (4) 
with u s a positive value, is a cone-bounded nonlinearity; 4. For any positive value u s , the function s ∈ R → u s tanh s us is a conebounded nonlinearity; 5. The function σ :

s ∈ R → sat loc (ϕ(s)), (5) 
where u s > 1 and where ϕ is defined as follows

ϕ : s ∈ R →      -|s| -1 -1 if s < -1, s if s ∈ [-1, 1], √ s -1 + 1 if s > 1, (6) 
takes values in a bounded set, but it is not globally Lipschitz because of the function s → √ s in the definition of the function ϕ. In the following, we will consider the following closed-loop system

ẋ = Ax -Bσ(B x) := A σ x, x(0) = x 0 , (7) 
where A σ : D(A σ ) ⊂ X → X is a nonlinear operator for which we assume that

D(A σ ) = D(A). (8) 
We wish to find conditions which ensure asymptotic stability of the origin of system [START_REF] Coutinho | Computing estimates of the region of attraction for rational control systems with saturating actuators[END_REF].

Note that, from [22, Corollary 2.10, page 20], since A is dissipative, for all λ > 0, the operator J λ : D(J λ ) → D(A) defined by

J λ := (I X -λA) -1
exists and satisfies the following inequality, for all x, x ∈ D(J λ )

J λ x -J λ x X ≤ x -x X . (9) 
Moreover, we have

D(J λ ) = Ran(I X -λA).
Moreover, since A generates a strongly continuous semigroup of contractions, from [22, Theorem 4.20, page 103], A is also a m-dissipative operator, which implies that Ran(I X -λA) = X.

Some existing results

Some existing results can be found in the literature. In this section, we will focus in particular on [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF] and [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF]. These papers study the particular conebounded nonlinearity given by (3). Hence, in this section only, we focus on the case where σ(s) = sat U (s), ∀s ∈ U.

In [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF], it is assumed the following properties Assumption 1 1. We have σ(s) = sat U (s);

2. The operator A is linear and generates a strongly continuous of contractions denoted by (W (t)) t≥0 ;

3. The operator (λI X -A) -1 is compact for all positive values λ;

4. The operator B is compact;

5. For all ψ ∈ X, the only solution to

B T (t)ψ = 0 ( 11 
)
is ψ = 0. ( 12 
)
Items 1., 2. and 3. allow to state the well-posedness of [START_REF] Coutinho | Computing estimates of the region of attraction for rational control systems with saturating actuators[END_REF]. Items 4. and 5. allow to apply a weak version of LaSalle's Invariance Principle. Note that the item 5. of these assumptions refers to a detectability property. In [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF], it is proved that, for each x 0 ∈ X, the operator A σ generates a strongly continuous semigroup of contractions denoted by (T sat U (t)) t≥0 and, for each x 0 ∈ X, there exists a unique solution to [START_REF] Coutinho | Computing estimates of the region of attraction for rational control systems with saturating actuators[END_REF] defined for all t ∈ R ≥0 and given by x(t) = T sat U (t)x 0 . Moreover, the following holds, for all x 0 ∈ X, x(t) X 0 as t → +∞.

(

) 13 
In his paper, the author only obtains a weak attractivity. In fact, since the paper aims at finding result for a particular partial differential equation, i.e. a beam equation, a stronger result is not necessary. The control operator for the partial differential equation belongs to the space L(R, X). Hence, another theorem which takes into account this particular case is stated in [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]. The author of [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF] proves that, under Assumption 1 and assuming moreover that U = R, then, A σ generates a strongly continuous semigroup of contractions denoted by (T sat U (t)) t≥0 and, for each x 0 ∈ X, there exists a unique mild solution to [START_REF] Coutinho | Computing estimates of the region of attraction for rational control systems with saturating actuators[END_REF] denoted by x(t) := T sat U (t)x 0 . Moreover, the following holds, for all

x 0 ∈ X lim t→+∞ T sat U (t)x 0 X = 0 ( 14 
)
Note that in the proof of these two results Slemrod does not use the particular form of sat U . He only uses the fact that it is globally Lipschitz, monotone and the property 1 of Definition 1.

In [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF], a better result is stated. The assumptions are weaker than Assumption 1. Let us state them Assumption 2 1. We have σ(s) = sat U (s); 1. The operator A is linear and generates a strongly continuous of contractions denoted by (W (t)) t≥0 ; 2. The operator A -BB generates a strongly continuous of contractions denoted by (T I (t)) t≥0 that satisfies the following, for all z 0 ∈ Z

lim t→+∞ T I (t)z 0 Z = 0. ( 15 
)
Unlike Assumption 1 provided by [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF], neither the operator B nor (λI Z -A) -1 are assumed to be compact. Moreover, instead of assuming a detectability property as in item 3 of Assumption 1, only a stabilizability property is assumed in [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF].

A stronger result than the result provided by [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF] is stated in [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF]. It is proved that, under Assumption 2, A σ generates a strongly continuous semigroup of contractions denoted by (T sat U (t)) t≥0 and, for each x 0 ∈ X, (7) admits a unique solution denoted by x(t) := T sat U (t)x 0 . Moreover, the following holds, for all

x 0 ∈ X lim t→+∞ T sat U (t)x 0 X = 0. ( 16 
)
Unlike the proof of the result given in [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF], the proof of this latter result uses the special structure of sat U . Moreover, the authors of [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF] derive some conditions in order to obtain a similar result for unbounded control operators. Since this paper is devoted to the case of bounded control operators, this result will not be discussed here. Papers [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF] and [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF] have inspired a lot of researchers. Among the results derived from these papers, [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF] or [START_REF] Daafouz | Nonlinear control of a coupled pde/ode system modeling a switched power converter with a transmission line[END_REF] can be cited. Note that, even in the context of finite-dimensional systems, these papers have inspired some researchers (see e.g., [START_REF] Liu | On finite-gain stabilizability of linear systems subject to input saturation[END_REF]).

Remark 1 In the paper [START_REF] Jayawardhana | Infinite-dimensional feedback systems: the circle criterion and input-to-state stability[END_REF], the authors focus on another type of cone-bounded nonlinearity. Indeed, the nonlinearity under consideration in this paper is called a sector condition and is defined as follows: a nonlinearity Φ : U → U satisfies a sector condition if there exist two operators

K 1 , K 2 ∈ L(X, U ) such that { (Φ(s) -K 1 s, Φ(s) -K 2 s U } ≤ 0, ∀s ∈ U. ( 17 
)
Note that the cone-bounded nonlinearity σ used all along this paper is a particular case of this nonlinearity. Indeed, if one takes K 2 := 0, it is easy to see that the cone-bounded nonlinearity satisfies a cone-bounded nonlinearity. However, let us recall that in our work the operator A may be nonlinear, which is not the case of the paper [START_REF] Jayawardhana | Infinite-dimensional feedback systems: the circle criterion and input-to-state stability[END_REF]. Moreover, when looking at the assumptions of [14, Page 422-423, (H1)-(H4)], imposing K 2 = 0 implies that the origin for the open-loop system is globally asymptotically stable. In our work, we do not need this open-loop asymptotic stability.

First contribution: well-posedness

Now, we are able to state our first contribution. Here is its statement.

Theorem 1 (Well-posedness and Lyapunov stability) Assume that σ is a cone-bounded nonlinearity. Moreover, assume that one of the two conditions is fullfilled:

1. σ is globally Lipschitz; 2. There exists a Banach space X 0 such that D(A) ⊆ X 0 and such that (a) the canonic injection from X 0 to X is compact; (b) it holds, for all x,

sup x∈X J 1 (x -Bσ(B x)) X0 < ∞. (18) 
Then, for all x 0 in D(A), there exists a unique strong solution to (7)1 and the operator A σ generates a strongly continuous semigroup of contractions (T σ (t)) t≥0 such that the two functions

t → T σ (t)x 0 X , t → A σ T σ (t)x 0 X are non increasing.
Remark 2 If A is linear, the condition (18) may be reduced to the following assumption:

sup x∈X J 1 (-Bσ(B x)) X0 < ∞. (19) 
Indeed, in that case, [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF] implies [START_REF] Laporte | Global stabilization of multiple integrators by a bounded feedback with constraints on its successive derivatives[END_REF].

Remark 3 Following [22, Lemma 2.13], the condition (18) may be rewritten as the following statement: there exists a positive value λ 0 such that, for all x ∈ X,

sup x∈X J λ0 (x -Bσ(B x) X0 < ∞. (20) 
In order to make easier the reading, we let λ 0 = 1 as in [START_REF] Laporte | Global stabilization of multiple integrators by a bounded feedback with constraints on its successive derivatives[END_REF], without loss of generality.

Remark 4

The function [START_REF] Coron | Control and Nonlinearity[END_REF] in Example 1 shows that a cone-bounded nonlinearity does not have to be globally Lipschitz to ensure the well-posedness of the closed-loop system. Therefore, Theorem 1 can be seen as an extension of the classical result stated in [29, Lemma IV 2.1. page 165], where the nonlinearity has to be globally Lipschitz.

Example 2

The condition [START_REF] Laporte | Global stabilization of multiple integrators by a bounded feedback with constraints on its successive derivatives[END_REF] imposes a global bound on the mapping σ in a specific norm. As a first illustration, consider the following linear Korteweg-de Vries (for short KdV) equation

     ∂ t x(t, z) + ∂ z x(t, z) + ∂ zzz x(t, z) + 1 Ω (z)u(t, z) = 0, (t, z) ∈ R + × (0, L), x(t, 0) = x(t, L) = ∂ z x(t, L) = 0, t ∈ R + , x(0, z) = x 0 (z), ( 21 
)
where L is a positive value, u(t, z) is the control, Ω is a nonempty subset of (0, L) and 1 Ω is defined by

1 Ω (z) = 1 if z ∈ Ω, 0 otherwise. ( 22 
)
Setting X = L 2 (0, L) and U = L 2 (Ω), system (21) can be written as in (1) denoting

A : D(A) ⊂ L 2 (0, L) → L 2 (0, L), x → -x -x , (23) 
where

D(A) = {x ∈ H 3 (0, L), x(0) = x(L) = x (L) = 0}. ( 24 
)
and

B : L 2 (Ω) → L 2 (Ω), u → 1 Ω (z)u. ( 25 
)
A straightforward computation, together with some integrations by parts, shows that

{ Ax, x X } ≤ 0, x ∈ D(A), { y, A y X } ≤ 0, y ∈ D(A ). ( 26 
)
Since A is a closed linear operator and D(A) is dense in X, according to [24, Corollary 4.4, Chapter 1, page 15], these latter inequalities imply that A is the infinitesimal generator of a linear strongly continuous semigroup of contractions on X.

Let σ : U → U be defined by

σ(u)(z) = σ(u(z)), ∀z ∈ Ω,
where σ : R → R. The assumption given in ( 18) is satisfied as soon as σ is bounded. Indeed, assume σ is bounded by a positive value u s , that is

|σ(u(z))| ≤ u s , ∀z ∈ [0, L]. (27) 
Note that if σ is bounded, it implies that σ is also bounded as follows:

σ(u) X ≤ Lu s . (28) 
To prove that (18) holds, we follow a strategy similar to the one used in [START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF] or [START_REF] Prieur | Wave equation with conebounded control laws[END_REF]. First note that

X 0 := H 1 0 (0, L) ⊃ D(A)
embeds compactly in X by the Rellich-Kondrachov theorem (see [1, Theorem 9.16, page 285]). This set satisfies item (2)(a) of Theorem 1.

The operator A has a compact resolvent (see e.g. [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF]), which implies that its spectrum consists only of eigenvalues. Moreover, A generates a linear strongly continuous semigroup of contractions, hence all the eigenvalues of the operator are located in the open left half of the complex plane. In particular 1 / ∈ σ(A) and J 1 is invertible. Hence, there exists a unique solution x to the equation -(I X -A)x(z) = -Bσ(u), where u ∈ U . This latter equation can be rewritten as follows

x(z) + x (z) + x (z) = -Bσ(u),

x(0) = x(L) = x (L) = 0. ( 29 
)
The unique solution to this solution can be expressed compactly as follows

x = -J 1 (Bσ(u)). ( 30 
)
Multiplying the first line of ( 29) by x and integrating between 0 and L leads to

x 2 L 2 (0,L) + L 0 xx dz + L 0 xx dz = - L 0 σ(Bu)xdz (31) 
Integrating by parts this latter inequality twice and using boundary condition in (21) lead to

x 2 L 2 (0,L) ≤ -|x (0)| 2 - L 0 σ(Bu)xdz (32) 
Applying Young's inequality and using the fact that σ is bounded, we obtain

x 2 L 2 (0,L) ≤ ε 1 Lu 2 s + 1 ε 1 x 2 L 2 (0,L) , (33) 
where

ε 1 > 1. Hence, x 2 L 2 (0,L) ≤ Lu 2 s ε2
, with ε 2 := 1 -1 ε1 . Now, let us multiply the first line of ( 29) by zx and integrate between 0 and L. After performing some integrations by parts and using the boundary conditions in [START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF], we obtain

3 2 x 2 L 2 (0,L) = 1 2 x 2 L 2 (0,L) - L 0 zx 2 dz - L 0 zxσ(Bu)dz ≤ 1 2 x 2 L 2 (0,L) + 1 2 x 2 L 2 (0,L) + L 3 2 u s
Therefore, we have

x 2 L 2 (0,L) ≤ M, (34) 
where

M := L 3 2 u s + Lu 2 s ε2
. By the Poincaré inequality, there is an equivalence between the norm x L 2 (0,L) and x H 1 0 (0,L) . Hence, using the expression (30), we can conclude that there exists a positive value c such that

J 1 (Bσ(u)) H 1 0 (0,L) ≤ c. (35) 
Thus, if σ is bounded, the condition (18) is satisfied (and more precisely [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF] in Remark 2) for the operator A defined in [START_REF] Pazoto | Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping[END_REF] and [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], and the operator B defined in [START_REF] Prieur | Wave equation with conebounded control laws[END_REF].

Example 3 As a second illustration, consider the following nonlinear heat equation

     ∂ t x(t, z) = ∂ zz x(t, z) + sin(x(t, z)) + u(t, z), (t, z) ∈ R + × [0, 1] x(t, 0) = x(t, 1) = 0, t ∈ R + , z(0, x) = x 0 (z), z ∈ [0, 1]. (36) 
Setting X := L 2 (0, 1) and U = L 2 (0, 1), system (36) can be written as in [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] denoting

A : D(A) ⊂ L 2 (0, 1) → L 2 (0, 1), x → x + sin(x), (37) 
where

D(A) := {x ∈ H 2 (0, 1), x(0) = x(1) = 0}, (38) 
and B := I X .

(39) In Appendix B, the operator (37) is proved to be m-dissipative. Therefore, it generates a strongly continuous semigroup of contractions.

Let σ : U → U be defined by

σ(u)(z) = σ(u(z)), z ∈ [0, L], (40) 
where σ : R → R. Following a similar strategy than for the KdV example and using some inequalities proved in Appendix B, the assumption given in ( 18) is satisfied as soon as σ is bounded.

Second contribution: Asymptotic stability

The second result refers to the global asymptotic stability of the closed-loop system defined by [START_REF] Coutinho | Computing estimates of the region of attraction for rational control systems with saturating actuators[END_REF]. Let (T I (t)) t≥0 be the strongly continuous semigroup of contractions generated by A -BB * .

Theorem 2 (Global asymptotic stability) Assume that σ is a cone-bounded nonlinearity and that, for all x 0 in D(A), there exists a unique strong solution to [START_REF] Coutinho | Computing estimates of the region of attraction for rational control systems with saturating actuators[END_REF]. Suppose also that the operator A σ generates a strongly continuous semigroup of contractions denoted by t → T σ (t) such that the two functions

t → T σ (t)x 0 X , t → A σ T σ (t)x 0 X
are non increasing, for all x 0 ∈ D(A). Assume moreover that 1. for all x 0 in D(A),

lim t→+∞ T I (t)x 0 X = 0; 2. D(A) equipped with the graph norm • D(A) = • X + A • X is a Banach
space which is compactly embedded in X. Then, the origin of the closed-loop system (7) is globally asymptotically stable.

Remark 5 Theorem 2 is a continuation of the work of [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]. The author of this latter paper assumes that the operator (λI X -A) -1 is compact for all real λ > 0 and that the open-loop system satisfies the following observability property B T (t)x 0 = 0 , ∀t ≥ 0 ⇒ x 0 = 0, ∀x 0 ∈ X.

(41) Our result needs only the origin to be stabilizable with the feedback law u = -B x. In [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF] it is assumed the compactness of the operator B. The latter assumption implies that the weak ω-limit set, which is defined by {ψ ∈ X, there exists a sequence t n such that T σ (t n )ψ T σ (t)φ as t n → +∞}, is nonempty and invariant. In this paper, we assume an alternative property, that is D(A) is compactly embedded in X, which implies that the strong ωlimit (the one we defined in the notation) is nonempty and invariant. Note that this property implies a stronger property for the open-loop system than the property assumed in [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]. However, the operator B does not require to be compact in this paper, as assumed in [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF].

Proof of Theorem 1: well-posedness

This section aims at proving Theorem 1. A Schauder fixed-point theorem will be used. Let us recall it.

Theorem 3 (Schauder fixed-point theorem ( [START_REF] Coron | Control and Nonlinearity[END_REF], Theorem B.17, page 391)) Let X be a Banach space and C ⊆ X be a convex and compact space. Therefore, every continuous mapping f : X → C admits a fixed-point.

The proof of Theorem 1 is given just below.

Proof of Theorem 1: First, note that D(A) = D(A σ ) and A σ is dissipative in X. Indeed, for all x, x ∈ D(A)

{ A σ x -A σ x, x -x X } = { Ax -Ax, x -x X } -{ Bσ(B x) -Bσ(B x), x -x X } , ≤ -{ σ(B x) -σ(B x), B (x -x) U } , ≤0, (42) 
where to obtain the last two inequality the dissipativity of A and the item 3 of Definition 1 have been used. Now, we split our proof into two cases.

First case: item 1 holds. In this case, [29, Lemma 2.1., Part IV, page 165] implies that A σ is a m-dissipative operator. From [22, Theorem 4.20, page 103], the operator A σ , generates a strongly continuous semigroup of contractions on X denoted by (T σ (t)) t≥0 . Moreover, from [22, Corollary 3.7, page 53], it follows that

t → A σ T σ (t)x 0 X (43) 
is non increasing. From item 2 of Definition 1, it holds σ(0) = 0 and T σ (t)0 = 0. Therefore, the function t → T σ (t)x 0 X (44) is a non-increasing function. This concludes the proof of Theorem 1 in the case where item 1 holds.

Second case: items 2a and 2b hold. Since A σ is a dissipative operator, the operator J1 = (I X -A σ ) -1 exists and is continuous. Moreover, from [22, Corollary 2.10, page 20], we have D( J1 ) = Ran(I X -A σ ).

In the second case, in order to apply [17, Theorem 4], we must show that X = Ran(I X -A σ ).

The inclusion Ran(I

X -A σ ) ⊂ X is obvious. Let us prove that X ⊂ Ran(I X -A σ ).
In other words, for x in X, we must show that there exists x in D(A) such that (I X -A)x = x -Bσ(B x).

Let T : X → D(A) ⊆ X 0 be the mapping

T (x) = J 1 [x -Bσ(B x)].
Let C be the set defined by

C = {x ∈ X 0 : x X0 ≤ N },
where N comes from [START_REF] Laporte | Global stabilization of multiple integrators by a bounded feedback with constraints on its successive derivatives[END_REF].

By assumption (item 2a of the statement of Theorem 1), the canonical injection from X 0 to X is compact. Thus, the set C is pre-compact as a subset of X and the closure in X of C is compact in X. It is moreover convex since it is a ball of radius N centered at 0. From item 2b in the statement of Theorem 1, we compute, for all x in D(A),

T (x) X0 = J 1 [x -Bσ(B x)] X0 , ≤ N.
Hence, T (X) ⊆ C. Employing Schauder fixed point theorem, it implies that there exists a unique solution to T (x) = x and thus to [START_REF] Coutinho | Computing estimates of the region of attraction for rational control systems with saturating actuators[END_REF]. Therefore, from [START_REF] Komura | Nonlinear semi-groups in Hilbert space[END_REF]Theorem 4], it implies that A σ is a m-dissipative operator. Hence, the result is obtained similarly to the first case. It concludes the proof of Theorem 1. Before proving it, let us prove the following lemma, that links the attractivity in D(A) and in X.

Lemma 1 Let (T σ (t)) t≥0 be a semigroup of contractions on X, a Hilbert space. Let D(A) be dense in X. Hence, if for all x 0 ∈ D(A), the following holds

lim t→+∞ T σ (t)x 0 X = 0. ( 45 
)
hence, for all x 0 ∈ X, lim t→+∞ T σ (t)x 0 X = 0 (46)

Proof of Lemma 1:

Note that the proof is inspired by [START_REF] Lasiecka | Strong stability of elastic control systems with dissipative saturating feedback[END_REF]. Pick x 0 ∈ X. Since D(A) is dense in X, for all positive value ε, there exists x0 ∈ D(A) such that

x 0 -x0 X ≤ ε 2 . ( 47 
)
Since (T σ (t)) ≥0 is a semigroup of contractions, it holds, for all t ≥ 0

T σ (t)x 0 -T σ (t)x 0 X ≤ ε 2 . (48) 
Morever, with (45), there exists t := t (ε) such that, for all x0 ∈ D(A)

T σ (t)x 0 X ≤ ε 2 , ∀t ≥ t . (49) 
Therefore, using a triangle inequality together with (48) and (49), one is able to prove that

T σ (t)x 0 X ≤ ε 2 , ∀t ≥ t . (50) 
This concludes the proof of Lemma 1. 2

Proof of Theorem 2:

We aim at proving that, for all x 0 ∈ D(A),

lim t→+∞ T σ (t)x 0 X = 0. ( 51 
)
Indeed, once (51) holds, it is straightforward from Lemma 1 that the proof of Theorem 2 is achieved.

The proof is divided into three steps. Given x ∈ D(A), we first prove that the ω-limit set, denoted by ω(x), is compact and invariant for the nonlinear semigroup (T σ (t)) t≥0 . Then we prove that, for all initial conditions in ω(x), the solution to (7) converges to 0 in X. Finally, it is proven that, for all initial conditions in D(A), the solution to (7) converges to 0 in X. First step: Compactness and invariance of ω(x). For all x in D(A),

x X + A σ x X = x X + Ax -Bσ(B x) X , ≥ c 1 Bσ(B x) X + Ax -Bσ(B x) X , ≥ min{1, c 1 } Ax X ,
where the second inequality has been obtained from item 2 of Definition 1 and with c 1 = 1 B L(U,X) B L(X,U ) L . This implies, for all x in D(A),

min{1, c 1 }( x X + Ax X ) ≤ (1 + c 1 )( x X + A σ x X ).
Since by sssumptions, for all x in D(A), the two mappings t → T σ (t)x X and t → A σ T σ (t)x X are nonincreasing, the former inequality implies

T σ (t)x D(A) ≤ (1 + c 1 ) min{1, c 1 } ( x X + A σ x X ) , ∀t ≥ 0.
The set D(A) equipped with the graph norm being compactly embedded in X, it yields that the positive orbit O + (x) is precompact in X. Therefore, from [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF]Theorem 3.2], for all x in D(A), ω(x) is not empty, compact and invariant to the nonlinear semigroup (T σ (t)) t≥0 , i.e.,

T σ (t)w ∈ ω(x), ∀(w, t) ∈ ω(x) × R + . ( 52 
)
Second step: Asymptotic stability of the origin with initial conditions in ω(x). Let x be in D(A). For all t ≥ 0, due to the dissipativity of the operator A,

1 2 d dt T σ (t)x 2 X ≤ -{ σ(B T σ (t)x), B T σ (t)x U } ≤ 0. ( 53 
)
Since

C := clos {O + (x)} is compact in X and σ is continuous, the function z ∈ C → { σ(B z), B z U } ∈ R is uniformly continuous. Let W : R + → R t → W (t) := { σ(B T σ (t)x), B T σ (t)x U }. ( 54 
)
The function t → T σ (t)x is continuous since (T σ (t)) t≥0 is a strongly continuous semigroup. Moreover, by assumption, its time derivative, i.e. the function t → A σ T σ (t)x, is bounded. Therefore, the function t → T σ (t)x 0 is uniformly continuous. Hence, W is uniformly continuous as a combination of two uniformly continuous functions. From (53), it yields, for all t ≥ 0,

1 2 T σ (t)x 2 X - 1 2 x 2 X ≤ - t 0 W (s)ds. (55) 
Or, rearranging terms, it yields, for all t ≥ 0, 

t 0 W (s)ds ≤ 1 2 x 2 X - 1 2 T σ (t)x 2 X ≤ 1 2 x 2 X . (56) 
From item 1 in Definition 1 of the cone-bounded nonlinearity and (52),

B T σ (t)w = 0, ∀w ∈ ω(x), ∀t ≥ 0. ( 60 
)
Hence, it implies that for all w ∈ ω(x),

T σ (t)w = T I (t)w , ∀t ∈ R + .
Therefore, from Assumption 1 of Theorem 2, we have, for all w ∈ ω(x),

lim t→+∞ T σ (t)w X = 0. ( 61 
)
Third step: Asymptotic stability of the origin with initial conditions in D(A). Let x ∈ D(A). The aim of this step is to prove that, for all x ∈ D(A)

lim t→+∞ T σ (t)x X = 0. ( 62 
)
Note that, from (53), we have that

lim t→+∞ T σ (t)x 2 X = V ∞ (x) ≥ 0. ( 63 
)
Then, two cases can occur:

-If V ∞ (x) = 0, then ω(x) = {0}. It means that (62) holds; -If V ∞ (x) = 0, then 0 / ∈ ω(x).
In this case, (62) does not hold.

We will argue by contradiction by assuming that the second item holds and by proving that this case cannot occur. Assumong that V ∞ (x) = 0 implies that there exists t 1 > 0 such that, for all t ≥ t 1 ,

T σ (t)x 2 X -V ∞ (x) ≤ 1 3 V ∞ (x), ( 64 
) and w -T σ (t 1 )x X ≤ ε 2m 2 , ( 65 
)
where ε 2m is a positive value that will be specified in the following. Moreover, in the following, we will consider the space

ω := ω(x) ∩ {w ∈ ω(x) | w X ≥ } , (66) 
where is a positive value. Note that {0} / ∈ ω . Let w ∈ ω . From (61), for all w ∈ ω , there exists t(w) > 0 such that

T σ (t(w))w X ≤ 1 6 w X . ( 67 
)
Since T σ (t(w)) is a continuous operator, there exists a positive value ε 1 (w) such that, for all z ∈ B(w, ε 1 (w)),

T σ (t(w))z -T σ (t(w))w X ≤ 1 6 w X . (68) 
Therefore, for all z ∈ B(w, ε 1 (w)),

T σ (t(w))z X ≤ T σ (t(w))z -T σ (t(w))w X + T σ (t(w))w X ≤ 1 3 w X . ( 69 
)
By reducing ε 1 (w) if needed, we may assume that ε 1 (w) ≤ 1 3 w X . Hence, for all z ∈ B(w, ε 1 (w)),

w X -z X ≤ z -w X ≤ 1 3 w X . (70) 
Therefore, for all z ∈ B(w, ε 1 (w)),

w X ≤ 3 2 z X , (71) 
and with (69), for all z ∈ B(w, ε 1 (w)),

T σ (t(w))z X ≤ 1 2 z X . ( 72 
)
The family {B(w, ε 1 (w)), w ∈ ω(x)} is a cover by open subsets of ω(x). Since ω(x) is a compact set, we can extract a finite cover which we index as follows

ω(x) ⊂ N1 i=1 {B (w 1i , ε 1 (w 1i ))} , (73) 
where (w 1i )'s are in ω(x) and for a suitable positive integer N 1 and (72) has been used. By considering

t := max i∈{1,...N1} t(w 1i ), (74) 
together with the fact that the function t → T σ (t)z X is non increasing for any z ∈ ω(x) ⊂ D(A), we have, for all z ∈ ω(x),

T σ (t )z X ≤ T σ (t(w 1i ))z X ≤ 1 2 z X , (75) 
where i ∈ {1, . . . , N 1 } is selected such that z ∈ B(w 1i , ε 1 (w 1i )) and ( 75) has been used. Since the functions w → T σ (t )w and V : w → V (w) = w 2 X are continuous, for all w ∈ ω(x), there exists ε 2 (w) > 0 such that, for all z ∈ B(w, ε 2 (w)),

|V (z) -V (w)| ≤ 1 5 V (w), |V (T σ (t )z) -V (T σ (t )w)| ≤ 1 4 V (w). (76) 
Therefore, with (75), for all z ∈ B(w, ε 2 (w)),

V (T σ (t )z) ≤ V (T σ (t )w) + 1 4 V (w), ≤ 1 4 V (w) + 1 4 V (w), ≤ 1 2 V (w). (77) 
Moreover, the first inequality in (76) yields for all z ∈ B(w, ε 2 (w)),

V (w) ≤ 6 5 V (z). (78) 
Finally, with (77), it follows, for all z ∈ B(w, ε 2 (w)),

V (T σ (t )z) ≤ 3 5 V (z). (79) 
The family B w, ε2(w)

2

, w ∈ ω(x) is a cover by open subsets of ω(x).

Since ω(x) is a compact set, there exists (w 21 , . . . , w 2N2 ) in ω(x) N2 such that

ω(x) ⊂ N2 i=1 B w 2i , ε 2 (w 2i ) 2 . ( 80 
)
Let us pick

ε 2m := min i ε 2 (w 2i ). (81) 
Let x ∈ D(A). From (53), the function t → T σ (t)x 2 X is non-increasing and lower-bounded. Hence, there exists

V ∞ (x) ∈ R such that lim t→+∞ T σ (t)x 2 X = V ∞ (x) ≥ 0. ( 82 
)
Let us prove by contradiction that V ∞ (x) = 0. We thus assume that V ∞ (x) = 0. This implies that there exists t 1 > 0 such that, for all t ≥ t 1 ,

T σ (t)x 2 X -V ∞ (x) ≤ 1 3 V ∞ (x). (83) 
Moreover, there exists w ∈ ω(x) such that

w -T σ (t 1 )x X ≤ ε 2m 2 . ( 84 
) Since w ∈ ω(x), there exists i ∈ {1, . . . , N 2 } such that w ∈ B w 2i , ε2 (w2i) 2 . Therefore, 
w 2i -T σ (t 1 )x X ≤ w 2i -w X + w -T σ (t 1 )x X , ≤ ε 2 (w 2i ) 2 + ε 2m 2 , ≤ ε 2 (w 2i ). (85) 
Since T σ (t 1 )x ∈ B (w 2i , ε 2 (w 2i )), Equation (79) together with the fact that

T σ (t 1 + t )x = T σ (t )T σ (t 1 )x imply, T σ (t 1 + t )x 2 X = V (T σ (t )T σ (t 1 )x) ≤ 3 5 T σ (t 1 )x 2 X . (86) 
Therefore, with (79) and (83), it follows, for all t ≥ t 1

T σ (t + t * )x 2 X -V ∞ (x) ≤ 3 5 T σ (t 1 )x 2 X -V ∞ (x) ≤ 3 5 V ∞ (x) + 1 3 V ∞ (x) -V ∞ (x) ≤ - 1 3 V ∞ (x). (87) 
Thus, we have

T σ (t + t )x 2 X ≤ 2 3 V ∞ (x) < V ∞ (x). (88) 
Since the function t → T (t)x 2 X is nonincreasing, we obtain a contradiction with (82). Therefore

V ∞ (x) = 0.
This concludes the proof of the global attractivity of the origin. The stability holds by assumption. Thus, using Lemma 1 , it concludes the proof of Theorem 2. 2 5 Applications

Application to a linear Korteweg-de Vries equation

In this section, we illustrate Theorems 1 and 2 with the linear Korteweg-de Vries equation as considered in Example 2. In addition, we run some simulations.

Let us note that B : 21) is L 2 (0, L)-globally asymptotically stable (see e.g. [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF] or [START_REF] Rosier | Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain[END_REF]). The stabilizability assumption of Theorem 2 is satisfied. Now, let us tackle the case where the feedback law is bounded with the following operator defined, for all (t, z

x ∈ X → x| Ω ∈ U . Let u(t, z) = -B x(t, z) := -x(t, z)| Ω , the origin for (
) ∈ R + × [0, L] σ : u ∈ U → σ(u) = σ(u)(t, z), (89) 
where σ is the function has been introduced in (5). Due to item 4 of Example 1, it is a cone-bounded nonliearity. This particular cone-bounded nonlinearity is illustrated by Figure 1.

The feedback law under consideration is as follows

u = -Bσ(B x) = -1 Ω σ(x| Ω ) = -σ(1 Ω x). (90) 
Note that with such a feedback law the results of [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF] cannot be applied since the function u ∈ U → σ(u) ∈ U is not globally Lipschitz. Moreover, since we are considering a cone-bounded nonlinearity different from the one defined by (3), the results provided in [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF] cannot be applied. As stated in Example (2), it is known that the conditions of Theorem 1 are satisfied. Therefore, Theorem 1 applies. Thus, the operator

A σ : D(A σ ) = D(A) ⊂ L 2 (0, L) → L 2 (0, L), w → -w -w -Bσ(B w) (91) 
generates a strongly continuous semigroup of contractions. Moreover, using the Lemma 2 given in the Appendix B.2, all the items of Theorem 2 are satisfied. Hence, Theorem 2 applies and one can conclude that the origin for [START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF] with u = -σ (1 Ω x) is globally asymptotically stable.

Using a numerical scheme inspired by [START_REF] Pazoto | Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping[END_REF], we perfomed some numerical simulations. We note x the solution to [START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF] with (98) and x the solution to

     ∂ t x(t, z) + ∂ z x(t, z) + ∂ zzz x(t, z) + 1 Ω x(t, z) = 0, (t, z) ∈ R + × (0, L) x(t, 0) = x(t, L) = ∂ z x(t, L) = 0, t ∈ R + x(0, z) = x0 (z).
(92) This latter equation refers as the Korteweg-de Vries with a linear feedback law.

We pick x(0, z) = x(0, z) = 1 -cos(z) and L = 2π which is a critical case for the stability of the linear Korteweg-de Vries equation as it is reviewed in [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]. Let us choose Ω = 1 3 L, 2 3 L . Figure 2 illustrates the solution to the system ( 21) with (98). We check on the simulation the origin for this equation is attractive. Figure 3 illustrates the solution to the system (92). It can be checked that the stabilizability assumption of Theorem (2) is satisfied. Figure 4 illustrates the control u(t, z) = σ (1 Ω x) (t, z) with respect to the time and the space. We can check that the feedback law is bounded by the constant u s = 1.5. Finally, Figure 5 illustrates the time-evolution of the Lyapunov functions x 2 L 2 (0,L) and x 2 L 2 (0,L) . Note that the convergence in L 2 (0, L) of x is faster than the convergence in L 2 (0, L) of x. 

Application to a nonlinear heat equation

In this section, we illustrate Theorems 1 and 2 with the linear nonlinear heat equation as considered in Example 2. Let us note that B : x ∈ X → x ∈ U . Let u(t, z) = -B x(t, z) := -x(t, z), the origin for (36) is L 2 (0, L)-globally asymptotically stable. Indeed, focus on the following Lyapunov function

V (x) = 1 0 x(t, z) 2 dz. ( 93 
)
Its derivative along [START_REF] Zaccarian | Modern anti-windup synthesis: control augmentation for actuator saturation[END_REF] yields

d dt V (x) = 1 0 x(t, z)∂ zz x(t, z)dz + 1 0 sin(x)(t, z)x(t, z)dz - 1 0
x(t, z) 2 (94) Performing some integrations by parts and using a Poincaré inequality leads to

0 0.5 1 1.5 2 
d dt V (x) ≤ - 1 0 ∂ z x(t, z) 2 dz + 4 π 2 1 0 ∂ z x(t, z) 2 dz - 1 0 x(t, z) 2 (95) 
Hence, we have

d dt V (x) ≤ -V (x). (96) 
Therefore, the stabilizability assumption of Theorem 2 is satisfied. Now, let us tackle the case where the feedback law is bounded with the following operator defined, for all (t, z

) ∈ R + × [0, L] σ : u ∈ U → σ(u) = σ(u)(t, z), ( 97 
)
where σ is the function has been introduced in (5). Due to item 4 of Example 1, it is a cone-bounded nonliearity. This particular cone-bounded nonlinearity is illustrated by Figure 1.

The feedback law under consideration is as follows

u = -Bσ(B x) = -σ(x). (98) 
Note that with such a feedback law neither the results of [START_REF] Slemrod | Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control[END_REF], nor the ones of [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF] cannot be applied since we are considering a nonlinear operator A.

As stated in Example 3, it is known that the conditions of Theorem 1 are satisfied. Therefore, Theorem 1 applies. Thus, the operator

A σ : D(A σ ) = D(A) ⊂ L 2 (0, L) → L 2 (0, L), w → w + sin(w) -Bσ(B w) (99) 
generates a strongly continuous semigroup of contractions. Moreover, using the Lemma 3 given in the Appendix B.2, all the items of Theorem 2 are satisfied. Hence, Theorem 2 applies and one can conclude that the origin for [START_REF] Zaccarian | Modern anti-windup synthesis: control augmentation for actuator saturation[END_REF] with u = -σ(x) is globally asymptotically stable.

Conclusion

In this paper, the analysis of a stabilizing feedback law modified via a conebounded nonlinearity has been tackled with various techniques. The wellposedness and the Lyapunov stability are proved using a Schauder fixed-point theorem and some nonlinear semigroups results. Finally, assuming a stabilizability property and precompactness of the trajectories of the solution, an infinite-dimensional version of the LaSalle's Invariance Principle has been used to conclude on the asymptotic stability of the origin. These results have been illustrated on a linear Korteweg-de Vries equation.

A possible future research line could be the study of unbounded control operators. Assuming the existence of a stabilizing feedback law for an unbounded control operator, is the origin still asymptotically stable when saturating the controller? In [START_REF] Seidman | A note on stabilization with saturating feedback[END_REF], the question has been tackled assuming that the semigroup associated to the closed-loop system with a saturated controller generates a strongly continuous semigroup of contractions. A natural question is: without assuming this latter property, is the Cauchy Problem well-posed? Is the origin of the closed-loop system still globally asymptotically stable ?

A Precompacity of the KdV equation with a cone-bounded nonlinearity

This section is devoted to the proof of the precompactness of the canonical embedding from D(Aσ) = D(A), defined in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], into X := L 2 (0, L). Let us state the lemma and prove it.

Lemma 2

The canonical embedding from D(Aσ), equipped with the graph norm, into X := L 2 (0, L) is compact.

Proof of Lemma 2:

We follow the strategy of [START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF], [START_REF] Prieur | Wave equation with conebounded control laws[END_REF] and [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF]. Let us recall the definition of the graph norm

x 2 D(Aσ ) := x 2 L 2 (0,L) + Aσx 2 L 2 (0,L) = L 0 |x(z)| 2 + | -x (z) -x (z) -σ (1 Ω x) (z)| 2 dz = L 0 |x(z)| 2 + |x (z) + x (z) + σ (1 Ω x) (z)| 2 dz. (100) 
Note that σ

(1 Ω x) L 2 (0,L) ≤ 2 x L 2 (0,L) . (101) 
From the definition of the graph norm, we get the following two inequalities

x 2 D(Aσ ) ≥ x 2 L 2 (0,L) (102) 
and, since, for all (s, s) ∈ C 2 , it holds |s + s| 2 ≤ 2|s| 2 + 2|s| 2 , we have

x 2 D(Aσ ) ≥ 1 2 L 0 | -σ (1 Ω x) (z)| 2 dz + 1 2 L 0 |x (z) + x (z) + σ (1 Ω x) (z)| 2 dz ≥ 1 4 L 0 |x (z) + x (z)| 2 dz. (103) 
Noticing that x 2 L 2 (0,L) = x + x -x 2 L 2 (0,L) , we have

x 2 L 2 (0,L) ≤ 2 x + x 2 L 2 (0,L) + 2 x 2 L 2 (0,L) , (104) 
and using that

x 2 L 2 (0,L) = x + x -x + zx -zx 2 L 2 (0,L) , we obtain x 2 L 2 (0,L) ≤2 x + x 2 L 2 (0,L) + 2 x -zx + zx 2 L 2 (0,L) ≤2 x + x 2 L 2 (0,L) + 4 x -zx 2 L 2 (0,L) + 4 zx 2 L 2 (0,L) ≤2 z + x 2 L 2 (0,L) + 4 x 2 L 2 (0,L) -8 L 0 zx (z)x(z)dz + 8 zx 2 L 2 (0,L) .
Deriving some integrations by parts, we get

L 0 zx (z)x(z)dz = 3 2 x 2 L 2 (0,L) ,
and therefore

x 2 L 2 (0,L) ≤2 x + x 2 L 2 (0,L) + 4 x 2 L 2 (0,L) -12 x 2 L 2 (0,L) + 8 zx 2 L 2 (0,L) . (105) Hence, 13 x 2 L 2 (0,L) ≤2 x + x 2 L 2 (0,L) + 4 x 2 L 2 (0,L) + 8L 2 x 2 L 2 (0,L) . (106) 
Plugging inequality (104) in (106), we have

13 x 2 L 2 (0,L) ≤2 x + x 2 L 2 (0,L) + 4 2 x + x 2 L 2 (0,L) + 2 x 2 L 2 (0,L) + 8L 2 x 2 L 2 (0,L) ≤10 x + x 2 L 2 (0,L) + 8 x 2 L 2 (0,L) + 8L 2 x 2 L 2 (0,L) .
Therefore,

x 2 L 2 (0,L) ≤ 2 x + x 2 L 2 (0,L) + 8L 2 5 x 2 L 2 (0,L) . (107) 
Considering Equations ( 102) and (103), it leads us to the following inequality, for all x ∈ D(A),

x 2 L 2 (0,L) ≤ ∆ x 2 D(Aσ ) (108) 
where ∆ is a term which depends only on L. Thus, if we consider now a sequence {xn} n∈N in D(Aσ) bounded for the graph norm of D(Aσ), we have from (108) that this sequence is bounded in H 1 0 (0, L). Since the canonical embedding from H 1 0 (0, L) to L 2 (0, L) is compact, there exists a subsequence still denoted {xn} n∈N such that xn → x in L 2 (0, L). Thus x belongs to L 2 (0, L) which allows us to state that D(Aσ) embedds compactly in X. It concludes the proof of Lemma 2. 2

B Nonlinear heat equation

B.1 Proof of the m-dissipativity of the nonlinear heat equation

This subsection is devoted to the proof of the following theorem.

Theorem 4 The operator defined by (37) is m-dissipative

Proof of Theorem 4:

The proof of Theorem 4 is divided in two steps. First, the operator A is proved to be dissipative. Secondly, we prove that, for all f ∈ L 2 (0, L), there exist x ∈ D(A) such that

x -Ax = f. ( 109 
)
Let us recall that the dissipativity and the existence of x ∈ D(A) such that (109) holds imply that A is a m-dissipative operator. We aim at applying the Schauder fixed-point theorem to the following nonhomogeneous linear ODE

x -x = -sin(y) + f,

x(0) = x(1) = 0, (115) 
where y ∈ L 2 (0, 1). It is easy to see that there exists a unique solution to (115). Focus on the map T : L 2 (0, 1) → L 2 (0, 1)

y → x = T (y) (116) 
where x = T (y) is the unique solution to (115). We define C := {x ∈ H 1 0 (0, 1) | x H 1 0 (0,1) ≤ M }.

From the theorem of Rellich, the injection of H 1 0 (0, 1) in L 2 (0, 1) is compact, then C is bounded in H 1 0 (0, 1) and is relatively compact in L 2 (0, 1). Moreover, it is a closed subset of L 2 (0, 1). Thus C is a compact subset of L 2 (0, 1). In order to apply the Schauder theorem, we have to prove that T (L 2 (0, 1)) ⊂ C for a suitable choice of M and λ. Let us multiply the first line of (115) by z and then integrate between 0 and 1. After some integrations by parts, one has 

Therefore, since x 2 L 2 (0,1) and x H 1 0 (0,1) are equivalent by the Poincaré inequality, one has

x H 1 0 (0,1) ≤ M,

where M := f 2 L 2 (0,1) + 1. Hence, applying Theorem 3, it concludes the proof of Theorem 4. 2

B.2 Precompacity of the nonlinear heat equation with a cone-bounded nonlinearity

This subsection is devoted to the proof of the following lemma.

Lemma 3

The canonical embedding from D(Aσ), equipped with the graph norm, into X := L 2 (0, 1) is compact.

Proof of Lemma 3:

We follow the strategy of [START_REF] Marx | Stabilization of a linear Kortewegde Vries with a saturated internal control[END_REF], [START_REF] Prieur | Wave equation with conebounded control laws[END_REF] and [START_REF] Novel | Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane[END_REF]. Let us recall the definition of the graph norm 

Noticing that x 2 L 2 (0,1) = x -x + x 2 L 2 (0,1) , we have

x 2 L 2 (0,1) = x + x 2 L 2 (0,1) + x L 2 (0,1) 2 = x 2 L 2 (0,1) + x L 2 (0,1) + 2 1 0

x(z)x (z)dz + x L 2 (0,1) .

(125) Therefore, we have 

Performing an integration by parts, we obtain 1 0

x(z)x (z)dz = -x (z) 2 L 2 (0,1) .

(127)

Hence, using (124), the following inequality holds

x 2 L 2 (0,1) ≤ 8 x 2 D(Aσ ) . (128) 
Thus, if we consider now a sequence {xn} n∈N in D(Aσ) bounded for the graph norm of D(Aσ), we have from (108) that this sequence is bounded in H 1 0 (0, L). Since the canonical embedding from H 1 0 (0, L) to L 2 (0, L) is compact, there exists a subsequence still denoted {xn} n∈N such that xn → x in L 2 (0, L). Thus x belongs to L 2 (0, L) which allows us to state that D(Aσ) embedds compactly in X. It concludes the proof of Lemma 3.

2

  Figure 1 illustrates the functions s → σ(s) and s → 2s with s ∈ [-2, 2] and u s = 1.5. It is clear that this function is a cone-bounded nonlinearity, as introduced in Definition 1.

Fig. 1

 1 Fig. 1 Red line: 2s; Blue line: σ(s) with us = 1.5

2 4

 2 Proof of Theorem 2: asymptotic stability The proof of Theorem 2 relies on the use of an infinite-dimensional version of the LaSalle's Invariance Principle stated in [13, Theorem 3].

Since W takes positive values, it yields 0 ≤ lim t→+∞ t 0 W

 0 (s)ds < ∞. (57) From Barbȃlat's Lemma, we get lim t→+∞ W (t) = 0. (58) Thus, from the definition of ω(x), { σ(B w), B w U } = 0 , ∀w ∈ ω(x).

Fig. 2

 2 Fig. 2 Solution x(t, z) with the control u(t, z) = σ (1 Ω x) (t, z) where us = 1.5.

Fig. 3

 3 Fig.3 Solution x(t, z) with the control u(t, z) = 1 Ω x(t, z).

Fig. 4

 4 Fig. 4 Control u(t, z) = σ (1 Ω x)) (t, z) where us = 1.5.

Fig. 5 2 L 2

 522 Fig. 5 Time-evolution of the Lyapunov functions x 2 L 2 (0,L) and x 2 L 2 (0,L)

1 0 1 0 0 (x -x) 2 dz ≤ 4 π 2 1 0

 1101 First step: Dissipativity of the operator A. Note that we haveAx -Ax, x -x L 2 (0,1) = (x -x)(x -x )dz + L 0 (x -x)(sin(x) -sin(x))dz. (110)Performing some integrations by parts leads toL 0 (x -x)(x -x )dz = -(x -x ) 2 dz.(111)Moreover, using the fact that sin is Lipschitz together with a Poincaré inequality, one hasL 0 (x -x)(sin(x) -sin(x))dz ≤ L (x -x ) 2 dz.(112)Hence, it is easy to see thatAx -Ax, x -x L 2 (0,1) ≤ 0. (113)Second step: Existence of x ∈ D(A) such that (109) holds To prove the existence of x ∈ D(A) such that (109) holds, on has to prove that there exists a solution to the following nonlinear ODEx -x + sin(x) = f, x(0) = x(1) = 0.(114)

2 L 2 ( 0 , 1 ) + x 2 L 2

 220122 (0,1) .

x 2 D(Aσ ) := x 2 L 2 ( 0 , 1 ) + Aσx 2 L 2 ( 2 + 2 L 2 (

 2220122222 |x (z) + sin(x)(z) -σ (x) (z)| 2 dz (121) Note that we have x 2 D(Aσ ) ≥ x

- 1 0

 1 x(z)x (z)dz = x (z)2 L 2 (0,1) .

A function x : [0, ∞) → X is called a strong solution to (7) if x(t) ∈ D(A)for all t ≥ 0 and if it satisfies the initial value problem.