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Abstract—Today, communicating devices are widespread and
the IoT trend tends to make them incontrovertible in our
everyday life. According to some forecast, 50 billions of these
devices should be available by 2020. The first consequence is
that this massive advent of connecting devices will have a huge
impact on the world energy consumption. In this context, it
is then mandatory to deal with power as soon as possible
in the design process of such systems. This paper presents a
new power estimation approach at early design phases which
is based on the decomposition of a digital system into a set
of basic operators. Each operator has its own model which
estimates both switching activity and power consumption. By
interconnecting several operators, statistical information is then
propagated to enable a global power estimation of a given system.
The methodology has been evaluated on a simple use-case. The
preliminary results indicate a promising speedup of the design
process with less than 8.0% of error compare to classical power
estimation tools.

I. INTRODUCTION

Nowadays energy consumption is a major criterion to evalu-
ate any electronic system, especially when it comes to systems
working at high throughput with restricted energy consumption
constraints and these devices will connect billions of services
including smart homes, wearable devices, health-care and
smart cities, where the major source of power is a battery
or an energy harvesting system.

As technology moves forward, new low-power FPGA plat-
forms may allow to turn the proposed system into a low
power and customizable FPGA-IoT platform[1]. Due to the
technological trends towards high-level integration, high op-
erating frequencies and low cost, Field Programmable Gate
Arrays (FPGAs) constitute one of the best solution for rapid
prototyping. These devices have reached such a high level
of performance that they constitute an interesting solution to
implement IoT functionality. FPGAs are programmable logic
devices which can implement any digital function for different
fields of application. The major drawback of these devices,
compare to their ASICs counterparts, is their relatively high
power consumption since they are not optimized for a given
application and are far more generic and flexible. It is then
even more important to optimize the power consumption in
the design flow of such systems and estimate power in various
design stages. Power estimation techniques in FPGA can be
divided into two categories according to the abstraction level

of the circuit description: low level and high level (system
level). At low level, transistors, logic gates and registers are
specified and fully described physically, whereas at high level,
only a global structure or behavioral view is considered.
Generally, this last level lacks from technological details which
are crucial to get an accurate information on the dissipated
power. Accurate power estimation is achieved at low-level with
a significant simulation time that is often prohibitive.

In this paper, a new power estimation technique is presented,
which consists of a high-level methodology and proposes the
simulation of digital systems based on basic operators. Each
operator has been carefully modeled using low-level informa-
tion to get accurate results. Combining low-level information
and high-level modeling leads to significant speedup of the
design process with accurate power estimation.

This paper is organized as follows: Section II presents a
small background about the power consumption on FPGAs
then related works which describe the existing techniques for
power estimation. Section III describes the proposed method-
ology. Section IV illustrates the use of our methodology on a
case study and provides results. Finally, Section V summarizes
the paper.

II. BACKGROUND AND RELATED WORKS

The total power dissipated has two origins: first the static
power, second the dynamic power. Static power is directly
related to the transistors’ leakage current. Dynamic power is
the power dissipated in a logic design due to switching capaci-
tances and short circuit power. Dynamic power is proportional
to the switching activity per clock cycle then it is highly data-
dependent. The total power consumption expressed in eq. 1

PTotal = PDyn + PStat = αCV 2
ddf + VddIleakage (1)

where PDyn is the dynamic power and depends on the
switching activity factor α, the node capacitance C, the supply
voltage Vdd, and the frequency f . The static power PStat

is estimated as Vdd Ileakage, where Ileakage represents the
leakage currents. C and Ileakage are technology dependent.

All the presented techniques in the state of the art are
methods to estimate the dynamic power consumption which
is design dependent.



Today, probabilistic and statistical techniques are the two
main types of techniques used for power estimation. Proba-
bilistic methodology is based on input probability of a signal
pattern to estimate the internal transitions in a digital block.
Then, probabilities are propagated from the inputs through
the circuit to get the output probability used for the next
component [2], [3]. The main drawback in probabilistic meth-
ods is that they do not take into account glitches activities
and propagation delays. However, these factors have a signif-
icant impact on power. Statistical techniques, as presented in
[4], are based on a randomly generated input patterns and
consist in monitoring power dissipation through a specific
power tool. With this approach, accurate results require a
huge number of input patterns to cover different scenarios. A
significant simulation time is usually deplored and constitutes
a critical limitation for these techniques. In the work of [5],
a methodology was proposed, based on real measurements,
which allows to model power consumption with architectural
and algorithmic parameters. Design reuse is a key advantage of
this method. In [6], a power estimation technique at RTL level
is proposed. It enables the power estimation of a macro (e.g.
adder) or an IP directly from the study of the inputs/outputs
statistical properties. Their models deliver an average error
ranging from 9% to 15%.

III. METHODOLOGY

In this work, we will only focus on dynamic power, since it
is the type of power that can be optimized during the design.
We also made the assumption that any hardware system can
be represented by a set of basic operators that exchange data
with each other. Each operator may be fully characterized
in terms of statistical input/output relationship and power
consumption after FPGA implementation. We also provide
each component model with two sub-models M1 and M2 that
are described in Fig. 1. M1 is used to estimate the dynamic

Fig. 1. Operator Model

power from the signal activity of the operator’s inputs and
from the percentage high parameter. It provides an average
of the energy consumed during a period of 1s. The signal
activity of the inputs is expressed in terms of millions of
transitions per second (Mtr/sec) whereas percentage high only
represents the time ratio during which the signal is HIGH in a
clock period. M2 enables to estimate the signal activity of the
outputs (as well as the percentage high) and is useful when
designers want to propagate activity among all operators in
order to obtain the power estimation for the full design. The
proposed methodology is composed of 2 steps. The first step

is an operator characterization in which each operator is fully
implemented in the FPGA. After implementation, a low-level
power analyzer is used to estimate the average dynamic power
that is consumed by the operator. In this step, We obtain M1
after timing simulations with randomly generated input metrics
i.e. switching activity rate and percentage high. Both (α, p) are
the input metrics of the two models while power dissipation
and (β, h) are the output metrics for M1 and M2 respectively.
In the second step, the system is built by connecting different
operators. The functionality as well as the power models are
described in SystemC in order to ease the interoperability
between components. A simple example on the methodology
can be described here: for a system composed of N operators,
the total power consumption can be derived. Let us assume that
the switching activity rate is αi, and that pi is the % high at the
input of opi. Therefore (βi,hi) constitutes the output feature
vector of the operator. α1 and p1 respectively correspond to
the switching activity and percentage high at the input of the
op1 given by the input stimuli. M1,i and M2,i are the two
models for the opi, then by propagating these information to
the next operators, the total power expressed as in eq. 2.

PGlobal =M1,1(α1, p1) +

N−1∑
i=2

M1,i(βi−1, hi−1). (2)

IV. CASE STUDY

As an illustration of the methodology, we have chosen to
consider two basic functions i.e a basic multiplier accumulator
(MAC) operator, and a parallel to serial converter (P2S) as
basic operators.

A. MAC and P2S Operators

The MAC operator is a basic element used in a wide
range of applications for digital signal processing. It consists
in multiplying two operands and accumulate the result in a
dedicated register. Fig. 2 describes an architecture overview
of the operator. Note that, this is a simple and generic
representation of a MAC unit.

Fig. 2. MAC Architecture

The implementation details in terms of resources are pre-
sented in Table I. This table shows the resources of the
implemented MAC on FPGA in which the DSP blocks are
not used. Note that the target FPGA is a Virtex-7 FPGA:
xc7z045ffg900-2.

In addition to the MAC operator, a parallel to serial (P2S)
operator is described in Fig. 3. This operator aims at receiving
4 inputs (coded into 16 bits) in parallel and to transmit each
of these inputs in a serial way to the next block. This module
is driven by a clock.



Resource MAC P2S
LUT 185 25

D Flip-Flop 107 26
I/O 84 87

BUFG 1 1

TABLE I
REQUIRED RESOURCES FOR BOTH MAC AND P2S UNITS AT RT LEVEL

(XC7Z045FFG900-2 FPGA)

Fig. 3. Parallel to Serial Architecture

In order to build both M1 and M2 models for the MAC or
for the P2S, a first characterization step has been performed.
The operator has been implemented on the FPGA target and
resources results have been provided. A clock frequency of
200 MHz has been applied to the component.

B. System Build : the Neural Network Example

As an example, A Multi-Layer Perceptron Neural Net-
work (MLP) has been studied. The structure of this network
is depicted in Fig. 4. In the forward phase, the hidden
layer weight matrix is multiplied by the input vector X =
(x1, x2, x3, . . . , xn)

T to compute the hidden layer output:

yh,j = f

(
Ni∑
i=1

wh,jixi − θ

)
(3)

where wh,ji is the weight connecting input i to unit j in
the hidden neuron layer. θ is an offset termed bias that is also
connected to each neuron. In this example, we have chosen
not to model the f activation function that would usually
require the use of an additional operator based on a simple
memory. We assume that this simplification does not hinder
the methodology principles and results.

Fig. 4. Structure of a Multi-Layer Perceptron

In our approach, the hardware implementation of neural net-
works can be performed using the MAC and the P2S operators.
A complete architectural view of a hardware implementation
of such network is described in Fig. 5. The example deals
with the implementation of a (8× 4× 3) MLP. The A inputs
consist of 16 bits that are connected to a first MAC layer in
order to compute the results of the hidden layer. The w inputs

are used as second inputs of the MAC operators and provide
the weights. At the output of the first MAC layer, the results
correspond to the outputs of the hidden layer. These results are
then sent to the P2S module that serialized them and provide
them to the next MAC layer that is used to compute the 3
outputs of the neural network.

A full implementation of the neural network has been
performed on a the xc7z045ffg900-2 FPGA target and Table II
shows the implementation results in terms of used resources.

Resource Utilization
LUT 1313

D Flip-Flops 775
I/O 199

BUFG 1

TABLE II
RESOURCE OF NEURAL NETWORK AT RT LEVEL

In order to obtain an estimation of the power consumed
by the neural network, we have built a complete model that
consists in connecting both M1 and M2 models of each
involved operator. The complete resulting model is depicted
in Fig. 6.

A high level simulation is then performed by giving the
same test-bench as in the ”real” implemented neural network.
Power estimation is performed in each phase of propagation
by storing the values of the power for each operator.

In the next section, detailed results are given that compare
the power estimated values from our models with the power
values of the global neural network taken from the Xilinx
Power Analyzer tool.

C. Results and Discussions

A low-level power estimation tool has been used to esti-
mate the power consumption of the complete neural network.
The dynamic power consumption of the full design is 239.0
mW. Table III shows the dynamic power consumption of
the different operators instances that are used to model the
neural network as shown in the Fig. 6. The dynamic power
consumption is recorded after each parameters propagation
in the proposed model. By summing up the recorded power
values, we obtain a total dynamic power estimation of the
model as expressed in eq. 4.

Instance Name Operators Dynamic Power (mW)
A Op1 49.0
B Op1 49.0
C Op1 49.0
D Op1 49.0
E Op2 1.0
F Op1 8.0
G Op1 8.0
H Op1 8.0

TABLE III
DYNAMIC POWER ESTIMATION OF OPERATORS

PMethod = PA+PB +PC +PD +PE +PF +PG+PH (4)



Fig. 5. Neural Network architecture at RT Level

Fig. 6. Neural Network Model at High Level

In order to measure the accuracy, the percentage of error (in
terms of power estimation) compare to the real implementation
at RT level, we have Pref power that results from the real
implementation of the neural network, and Pmethod is the total
power that has been obtained using our models. The obtained
results for this implementation show that Pref = 239.0 mW ,
Pmethod = 221.0 mw which corresponds to an estimation
error of only 7.5 %. Note that, the real implementation takes
into account all technological details and has a complete
knowledge of the placement and routing of the components
that are implemented. In fact 8% of error is due to the lack of
all the technological information. This result was expected but
it seems very promising that dealing with signal activity rates
and % of logic high only is enough to obtain a good accuracy
and to speedup the design process.

V. CONCLUSION

In this paper, we have proposed a new approach for
the FPGA dynamic power estimation, at system level. It is

achieved by the decomposition of a digital system into a set
of basic operators. By propagating and summing up the esti-
mated power computed for each operator, we obtain a global
power estimation. The presented method allows designers to
early perform power estimation in the design flow. We have
shown that our method provides significant results, since the
estimation error is less than 8%. We have then demonstrated
that taking the signal activity and percentage HIGH parameters
are sufficient enough to obtain a correct accuracy at high level.
As future work, we will improve our models based on real
power measurements, on various hardware platforms.
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